
Model-based Reinforcement Learning

Shivaram Kalyanakrishnan

September 25, 2017

Abstract

The Reinforcement Learning (RL) problem requires an agent that is interacting with an
MDP to (eventually) start taking actions according to an optimal policy. The difference with
the planning problem is that the transition and reward functions of the MDP are unknown
to the agent—they only manifest themselves indirectly through (state, action, reward, next
state) tuples. In this note, we outline a procedure for an agent to solve the RL problem by
maintaining estimates of the transition and reward functions. These estimates (the model),
which are refined based on experience, eventually converge to the true values. An agent
that explores sufficiently, while also acting greedily with respect to its model, will eventually
perform optimal action-selection.

1 Learning Algorithm

Assume an agent interacts with an MDP (S,A, T,R, γ). We shall assume that S, A, and γ are
known to the agent: it is only T and R that are not directly available. However, if the agent
takes action a ∈ A from state s ∈ S, we may assume that the next state s′ ∈ S is drawn with
probability T (s, a, s′), and the corresponding reward r is drawn from a real-valued distribution
with mean R(s, a, s′).

If our agent must eventually figure out an optimal policy, it needs to be able to visit every
state in the MDP. To ensure it does so, we make the convenient assumption that our MDP is
ergodic: that is, the probability of reaching any state from any state, following any policy, is
positive.

The algorithm shown on the next page is a model-based algorithm that estimates T and R
through experience. Its estimates—T̂ and R̂—constitute a model of the environment. If each
state-action pair is visited infinitely often, T̂ and R̂ (estimated based on empirical frequencies)
will converge to T and R, respectively. An agent that takes actions that are optimal for the
MDP (S,A, T̂ , R̂, γ), will, eventually, act optimally for the true MDP (S,A, T,R, γ), as well. To
balance exploration and exploitation, our agent follows action-selection that is Greedy in the
Limit with Infinite Exploration. One way to do so is to follow an εt-greedy policy with respect
to the model, where εt = 1

t .
The exploration strategy can be further optimised; our primary interest at the moment is

to establish sufficiency. The algorithm shown serves as a proof that the RL problem can indeed
be solved. Observe that the space complexity of the algorithm is Θ(|S|2|A|). Indeed model-free
algorithms can solve the RL problem with only Θ(|S||A|) space. Hence, estimating the model
is not a necessary step for solving the RL problem.

1

Model-based Reinforcement Learning

For s, s′ ∈ S, a ∈ A : T̂ [s][a][s′]← 0.
For s, s′ ∈ S, a ∈ A : R̂[s][a][s′]← 0.
modelV alid← False.

For s, s′ ∈ S, a ∈ A : totalTransitions[s][a][s′]← 0.
For s ∈ S, a ∈ A : totalV isits[s][a]← 0.
For s, s′ ∈ S, a ∈ A : totalReward[s][a][s′]← 0.

Assume the agent is born in state s0.
For t = 0, 1, 2, . . . :

If modelV alid:
πopt ←MDPPlan(S,A, T̂ , R̂, γ).

at ←

{
πopt(st) with probability 1− εt,
UniformRandom(A) with probability εt.

Else:
at ← UniformRandom(A).

Take action at, obtain reward rt and next state st+1.
UpdateModel(st, at, rt, st+1).

UpdateModel(s,a, r, s′)

totalTransitions[s][a][s′]← totalTransitions[s][a][s′] + 1.
totalV isits[s][a]← totalV isits[s][a] + 1.
totalReward[s][a][s′]← totalReward[s][a][s′] + r.

If ¬modelV alid:
If ∀ss ∈ S,∀aa ∈ A : totalV isits[ss][aa] ≥ 1 then modelV alid← True.

If modelV alid:
For ss ∈ S :

T̂ [s][a][ss]← totalTransitions[s][a][ss]
totalV isits[s][a] .

If totalTransitions[s][a][ss] > 0:

R̂[s][a][ss]← totalReward[s][a][ss]
totalTransitions[s][a][ss] .

2

