
CS 747 (Autumn 2015): End-semester Examination

Instructor: Shivaram Kalyanakrishnan

9.30 a.m. – 12.30 p.m., November 21, 2015, LA 301

Total marks: 25

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. Consider the following on-line learning method to estimate the expected value of a
real-valued random variable X. We begin with an initial estimate µ0, and then for t = 1, 2, . . . ,

• Obtain xt as an i.i.d. sample of X, and
• Revise our estimate as µt ← (1− αt)µt−1 + αtxt.

αt is the learning rate at step t. Assume X is normally distributed with mean µ and variance σ2.

1a. If we choose αt = α, where α ∈ (0, 1) is a constant, what is E[µt]? [2 marks]

1b. If we choose αt =
1
t
, what is E[µt]? [2 marks]

Question 2. Consider an MDP with three states, s1, s2, and s3, of which the last is a terminal
state. Episodes can start either at s1 or at s2. The MDP, together with the policy π being followed
by an agent, is such that if at s1, the agent necessarily goes to s2, gaining a reward of 1 for the
transition. If in s2, the agent necessarily goes to s3—but in this case, the reward can either be −3
or 4. No discounting is used to calculate values; that is, γ = 1.

In its first 40 episodes, the following are the number of times each trajectory has been encoun-
tered by the agent:

s1, π(s1), 1, s2, π(s2),−3, s3 15 times,
s1, π(s1), 1, s2, π(s2), 4, s3 5 times,
s2, π(s2),−3, s3 10 times, and
s2, π(s2), 4, s3 10 times.

2a. Based on this data, what are the Monte Carlo estimates of V π(s1) and V π(s2)? [1 mark]

2b. To what estimates of V π(s1) and V π(s2) would TD(0) converge if run repeatedly over these
trajectories? [1 mark]

Question 3. You are given access to an efficient planner, which, given an MDP M as input,
computes an optimal policy π⋆ for M :

π⋆ = RUN–PLANNER(M).

Your task is to construct a learning algorithm L that makes meaningful use of RUN-PLANNER
as a subroutine. An agent that applies L while sequentially sampling an MDP (S,A,R, T, γ) must
eventually start taking optimal actions with probability 1. Provide pseudocode for L. [3 marks]



Question 4. An agent interacts with a 3-state, 3-action MDP, in which the discount factor γ = 1/2.
The agent initialises its estimate of the action value function as in the table below.

Q a1 a2 a3
s1 5 6 9

s2 0 -1 2

s3 6 4 -3

The agent then encounters the following trajectory:

s2, a2, 4, s2, a3, 0, s3, a2 (4 and 0 are rewards).

4a. If the agent was implementing Q-learning with a constant learning rate of α = 0.1, what
would the action value table be after making the first two learning updates? [2 marks]

4b. If the agent was implementing Sarsa with a constant learning rate of α = 0.1, what would
the action value table be after making the first two learning updates? [2 marks]

Question 5. Explain tile coding, describing its different configuration parameters and their effects.
[3 marks]

Question 6. In an MDP with three states, s1, s2, and s3, a policy π is such that V π(s1) = 4
V π(s2) = 6, and V π(s3) = −5. Under π, the steady-state probability of being in s1 is 1/2, and the
probabilities of being in s2 and s3 are each 1/4. A learning agent seeks to approximate V π(·) as

V π(·) ≈ w1f(·) + w2,

where f(·) is a state feature, and w1 and w2 are the weights to learn. Features for the three states
are as follow: f(s1) = 2, f(s2) = 1, and f(s3) = −1.

6a. If the agent performs Monte Carlo policy evaluation with this linear generalisation scheme,
to what values will w1 and w2 converge? [3 marks]

6b. How would your answer change if the agent uses linear TD(0) instead for policy evaluation?
[1 mark]

Question 7. Consider the following zero sum matrix game, with two players A (row) and B
(column). A can take actions a1 and a2, while B can take actions b1 and b2. Each entry in the
matrix shows A’s reward when A and B play actions from the corresponding row and column (B
gets the negative of the same reward).

b1 b2
a1 1 -1

a2 -2 0

7a. What is A’s minimax strategy? What is the least reward that A can possibly get by playing
its minimax strategy? [2 marks]

7b. What is B’s minimax strategy? What is the least reward that B can possibly get by playing
its minimax strategy? [2 marks]

7c. Suppose A plays a strategy in which a1 is picked with probability 0.1, and a2 is picked with
probability 0.9. What is the maximum possible reward B can get? [1 mark]



Solutions

1a. Unrolling the recursion, we get for t = 1, 2, . . . :

µt = (1− α)tµ0 +

t∑

τ=1

α(1− α)τ−1xτ .

Thus E[µt] = (1− α)tµ0 +
∑t

τ=1 α(1− α)τ−1
E[xτ ] = (1− α)tµ0 + (1− (1− α)t)µ.

1b. Unrolling the recursion, we get for t = 1, 2, . . . :

µt =
1

t

t∑

τ=1

xτ ,

and therefore E[µt] = µ.

2a. There are 20 trajectories passing through s1, and the total reward accrued over them, subse-
quent to passing s1, is (1+−3)×15+(1+4)×5 = −5. Hence, the Monte Carlo estimate of V π(s1)
is −5/20 = −1/4. Similarly, there are 40 trajectories passing through s2, and the total reward
accrued over them, subsequent to passing s2, is −3 × 15 + 4 × 5 + −3 × 10 + 4 × 10 = −15. The
resulting Monte Carlo estimate of V π(s2) is therefore −15/40 = −5/8. Marks are awarded only if
both answers are correct.

2b. The batch TD estimates V π
TD-est(·) must satisfy

V π
TD-est(s1) = R(s1, π(s1), s2) + V π

TD-est(s2), and V π
TD-est(s2) = R(s2, π(s2), s3) + V π

TD-est(s3),

where R(s1, π(s1), s2) and R(s2, π(s2), s3) are empirical averages of the corresponding rewards.
Since R(s1, π(s1), s2) = 1, R(s2, π(s2), s3) = −3/8, and V π

TD-est(s3) = V π(s3) = 0, we obtain
V π
TD-est(s2) = 5/8 and V π

TD-est(s2) = −3/8. Marks are awarded only if both answers are correct.

3. The most natural use of RUN-PLANNER is to keep at hand a policy that is optimal with
respect to the current estimate of the environmental dynamics and rewards. In order to get enough
evidence for building this model, while also being able to eventually acting optimally, a GLIE policy
must be followed. Here is a sketch of the algorithm to employ; several variants are possible.

1. Let T̂ and R̂ be running estimates of the true transition and reward functions. A uniform
random policy may be followed until each possible state-action pair is visited at least once, and
at which point T̂ and R̂ become well-defined. The following steps are repeated subsequently.

2. At each step t, let πt = RUN-PLANNER(S,A, R̂, T̂ , γ). An action at is picked uniformly at
random with probability 1/t, and as πt(st) with probability 1− 1/t.

3. Reward rt and next state st+1 are obtained and used to update T̂ and R̂.

4. t is incremented, and we go to 2.



4a. Let the table given correspond to Q0(·, ·). We get

Q1(s2, a2) = Q0(s2, a2)(1− α) + α(4 + γQ0(s2, a3)) = −1× 0.9 + 0.1× (4 + 0.5× 2) = 0.4.

If s 6= s2 or a 6= a2, Q1(s, a) = Q0(s, a). From the second update, we get

Q2(s2, a3) = Q1(s2, a3)(1− α) + α(0 + γQ1(s3, a1)) = 2× 0.9 + 0.1× (0 + 0.5× 6) = 2.1,

and again, if s 6= s2 or a 6= a3, Q2(s, a) = Q1(s, a). Thus, Q2(·, ·) is as follows.

Q a1 a2 a3
s1 5 6 9

s2 0 -0.4 2.1

s3 6 4 -3

4b. Our working is similar to 4a, but because we perform Sarsa updates, we have

Q1(s2, a2) = Q0(s2, a2)(1− α) + α(4 + γQ0(s2, a3)), and

Q2(s2, a3) = Q1(s2, a3)(1− α) + α(0 + γQ1(s3, a2)).

The table for Q2(·, ·) is as follows.

Q a1 a2 a3
s1 5 6 9

s2 0 -0.4 2

s3 6 4 -3

5. Section 8.3.2 in the textbook by Sutton and Barto (1998) has a thorough description of tile
coding. After defining the concept, the main configuration parameters that the answer must dis-
cuss are the tile width (which influences generalisation), the number of tilings and the offset (which
influence the resolution), and also the resulting demands on computation and memory.

6a. Under the function approximation scheme provided, we approximate V π(s1) by 2w1 + w2,
V π(s2) by w1 +w2, and V π(s3) by −w1 +w2. Under Monte Carlo (TD(1)) updating, (w1, w2) will
converge to (w⋆

1, w
⋆
2), which minimises the the squared difference between the true and approximated

values, weighted by the stationary probabilities.

(w⋆
1, w

⋆
2) = argmin

(w1,w2)∈R2

1

2
(4− 2w1 − w2)

2 +
1

4
(6− w1 − w2)

2 +
1

4
(−5 + w1 − w2)

2 .

By setting first derivatives w.r.t. w1 and w2 to zero, we find that w⋆
1 = 3 and w⋆

2 = −3/4.

6b. TD(0) with linear function approximation also converges, but its fixed point need not be equal
to (w⋆

1, w
⋆
2). However, there do exist bounds on the distance between the fixed point of TD(0) and

(w⋆
1, w

⋆
2).



7a. Let A’s strategy be to play a1 with probability p, and a2 with probability 1−p. Let B’s strategy
be to play b1 with probability q, and b2 with probability 1− q. Clearly A’s expected reward is

R(A) = −R(B) = pq(1) + p(1− q)(−1) + (1− p)q(−2) + (1− p)(1− q)(0),

which may be rewritten as

R(A) = −R(B) = −p− 2q + 4pq = −p− 2q(1− 2p) = p(−1 + 4q)− 2q.

If p < 1/2, B can set q = 1 to restrict R(A) to 3p− 2, and if p ≥ 1/2, B can set q = 0 to restrict
A’s reward to −p. Clearly the highest reward A can hope for, assuming B acts adversarially, is by
setting p = 1/2, which yields R(A) = −1/2.

7b. A symmetric argument holds. If q < 1/4, A can set p = 0 to restrict R(B) to 2q, and if
q ≥ 1/4, A can set p = 1 to restrict R(B) to 1 − 2q. B must set q = 1/4 to obtain a minimax
reward of 1/2.

7c. Since p = 0.1, R(B) = 0.1 + 1.6q. B can maximise this reward by setting q = 1, which gives it
a reward of 1.7.


