
CS 747 (Autumn 2015): Mid-semester Examination

Instructor: Shivaram Kalyanakrishnan

8.30 a.m. – 10.30 a.m., September 12, 2015, LA 301

Total marks: 15

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. Consider a 2-armed bandit instance whose arms 1 and 2 yield Bernoulli rewards p1
and p2, respectively, with 1 ≥ p1 > p2 ≥ 0 (thus arm 1 is the optimal arm). For t = 1, 2, . . . , let rt
denote the 0-or-1 reward obtained by an algorithm on its t-th pull. Answer the following questions,
which pertain to different sampling algorithms.

1a. Let A1 be an algorithm that at every step, pulls an arm that is selected uniformly at random.
What is the probability of getting a run in which the first five rewards obtained by A1 are all
0? [1 mark]

1b. Let A2 be an algorithm that (1) samples each arm once, then (2) selects the arm with the
higher empirical mean after these two initial pulls (breaking ties uniformly at random), and
(3) samples this selected arm at every time step thereafter. What is E[r10] for A2? [2 marks]

1c. Algorithm A3 is an ǫ-greedy algorithm, 0 < ǫ ≤ 1, that (1) samples each arm once, and (2) at
every time step thereafter: with probability 1− ǫ, samples the arm with the higher empirical
mean (breaking ties uniformly at random), and with probability ǫ, samples an arm that is
selected uniformly at random. For A3, what is lim

t→∞

E[rt]? [1 mark]

1d. For the UCB algorithm that we analysed in class (denoted UCB1 by Auer et al. (2002)),
what is lim

T→∞

1

T

∑T
t=1

E[rt]? [1 mark]

Question 2. M = (S,A,R, T, γ) is an MDP for which π⋆ is an optimal policy. Answer the
following questions about related MDPs.

2a. Let M1 be the MDP (S,A,R, T, γ′), where γ′ = γ
2
. Is π⋆ necessarily an optimal policy for

M1? [1 mark]

2b. Let M2 be the MDP (S,A,R′, T, γ), where R′ is a linear transformation of R. That is, for
some α, β ∈ R, and for every s, s′ ∈ S, a ∈ A,

R′(s, a, s′) = αR(s, a, s′) + β.

Is π⋆ necessarily an optimal policy for M2? [1 mark]



Question 3. Consider a MDP M = (S,A,R, T, γ), with a set of states S = {s1, s2}; a set of
actions A = {a1, a2}; a transition function T and a reward function R as specified in Table 1; and
a discount factor γ = 2

3
. A state transition diagram corresponding to M is shown in Figure 1.

Table 1: Transition probabilities and rewards (discount factor = 2/3).
Transition probabilities Rewards

T (s1, a1, s1) = 1 R(s1, a1, s1) = 0
T (s1, a1, s2) = 0 R(s1, a1, s2) = 0

T (s1, a2, s1) = 1/2 R(s1, a2, s1) = −1
T (s1, a2, s2) = 1/2 R(s1, a2, s2) = 2

T (s2, a1, s1) = 1 R(s2, a1, s1) = 1
T (s2, a1, s2) = 0 R(s2, a1, s2) = 0

T (s2, a2, s1) = 1/4 R(s2, a2, s1) = 0
T (s2, a2, s2) = 3/4 R(s2, a2, s2) = 1
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Figure 1: State transition diagram for M . Each transition is annotated with (action, transition
probability, reward). Transitions with zero probabilities are not shown.

For i, j ∈ {1, 2}, let πij denote the deterministic policy that takes action i from state s1 and action
j from state s2.

3a. What is the optimal value function for M? [4 marks]

3b. Among π11, π12, π21, and π22, which is an optimal policy? [1 mark]

Consider an agent that at time t = 1, is in state s1. At every time step, the agent follows policy
π22.

3c. What is the probability that the agent is in state s1 at time t = 3; that is, after it has taken
two actions? [1 mark]

3d. What is the probability that the agent is in state s1 at time t = T as T → ∞; that is, after
it has taken infinitely many actions? [2 marks]



Solutions

1a. The probability of getting a 0-reward on any given pull is 1

2
(1−p1)+

1

2
(1−p2); the probability

of getting a 0-reward on each of the first five pulls is therefore

(

1−
p1 + p2

2

)5

.

1b. The arm that gets selected after the first two pulls will be pulled at t = 10. The probability
that arm 1 gets selected is

q1 = p1(1− p2) +
1

2
p1p2 +

1

2
(1− p1)(1− p2).

The expected reward at t = 10 is p1q1 + p2(1− q1), which simplifies to:

(p1 − p2)
2 + p1 + p2
2

.

1c. As t → ∞, each arm is explored an infinite number of times, and so p̂t
1
→ p1 and p̂t

2
→ p2.

Therefore, in the limit, arm 1 is picked for exploiting (with probability 1 − ǫ), and the arms are
picked with equal probability ( ǫ

2
) while exploring. We get:

lim
t→∞

E[rt] = p1

(

1−
ǫ

2

)

+ p2
ǫ

2
.

1d. Since the expected cumulative regret of UCB is O(log(T )) for a horizon of T , the expected
cumulative reward is p1T −O(log(T )). Thus,

lim
T→∞

1

T

T
∑

t=1

E[rt] = p1.

2a. No; π⋆ need not be an optimal policy for M1. Consider Figure 2, which shows a state transi-
tion diagram for M and M1. M uses a discount factor of γ = 1

2
, while M1 uses a discount factor

of γ′ = 1

4
. In both MDPs, it is easy to see that a2 is the optimal action from s2, and a2 is the

optimal action from s3. However, the optimal action from s1 is different for M and M1. For M :
Q⋆(s1, a1) = 2, and Q⋆(s1, a2) = 1, and so a1 is the optimal action from s1. For M1; Q

⋆(s1, a1) =
2

3
,

and Q⋆(s1, a2) = 1, and so a2 is the optimal action from s1.

2b. No; π⋆ need not be an optimal policy for M2. In fact, π⋆ must be an optimal policy for M2

if α ≥ 0, but it need not be if α < 0. To see this, take M to be a 2-armed bandit with the arms’
rewards being 0 and 1. Clearly the optimal arm in M is sub-optimal in M2 if we take α = −1.
Adding a constant β to each reward does not change the relative order among policies, as it incre-
ments each value by the same amount ( β

1−γ
).
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Figure 2: State transition diagram for M (γ = 1

2
) and M1 (γ = 1

4
). Each transition is annotated

with (action, transition probability, reward).

3a. Solving Bellman’s equations corresponding to the four policies, we get the following results.

V π11

(s1) = 0;V π11

(s2) = 1.

V π12

(s1) = 0;V π12

(s2) =
3

2
.

V π21

(s1) =
15

8
;V π21

(s2) =
9

4
.

V π22

(s1) =
9

5
;V π22

(s2) =
21

10
.

Clearly, V π21

dominates all the other value functions, and so:

V ⋆(s1) =
15

8
;V ⋆(s2) =

9

4
.

3b. From the answer to the previous question, we see that π21 is an optimal policy, while π11, π12,
and π22 are not.

3c. Let xt denote the probability that at time t, the agent is in state s1. Thus, the probability of
being in state s2 at time t is 1 − xt. We are given that x1 = 1; based on the transition dynamics
of the MDP and the agent’s policy, we get:

xt =
1

2
xt−1 +

1

4
(1− xt−1) =

xt−1 + 1

4
.

Thus, x2 =
1

2
, and x3 =

3

8
.

3d. From the previous answer, we see that

xt =
x1
4t−1

+
t−1
∑

τ=1

1

4τ
,

and therefore,

lim
t→∞

xt = 0 +
1/4

1− 1/4
=

1

3
.


