
CS 747 (Autumn 2016): End-semester Examination

Instructor: Shivaram Kalyanakrishnan

9.30 a.m. – 12.30 p.m., November 17, 2016, 101/103/105 New CSE Building

Total marks: 25

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. What is the difference between planning and learning? When we considered the
learning problem in class, what assumption did we make regarding the underlying MDP, which we
did not have to make for solving the planning problem? [2 marks]

Question 2. An agent interacts with an episodic MDP M , which has a fixed start state sinit. In
other words: each episode starts in sinit, and regardless of the agent’s actions, the episode terminates
with probability 1 after a finite number of transitions. In fact, it is guaranteed that there will be
no more than H transitions in each episode, for some H > 0. The agent’s rewards are bounded in
the range [−Rmax, Rmax], for some Rmax > 0. No discounting is used for calculating values (that
is, the discount factor is 1).

If V ⋆
M (sinit) is the value of sinit under an optimal policy for M , clearly the maximum expected

cumulative reward that an agent can accrue in J > 0 episodes—by following an optimal policy—is
V ⋆
M (sinit) · J . On the other hand, a learning algorithm L, which cannot know the optimal policy

for an arbitrary MDP, can only hope to achieve optimal behaviour in the limit of experience. The
expected cumulative regret of L on M (after J episodes) is the difference between V ⋆

M (sinit) ·J
and the expected sum of rewards that L accrues over J episodes while interacting with M .

Describe a learning algorithm whose expected cumulative regret scales logarithmically with J
on every episodic MDP M . The learning algorithm is given the number of states and actions in
the MDP as input. The transition and reward functions are not known directly, but the agent can
sample them by interacting with M . The agent has knowledge of H and Rmax. Provide a bound
on the expected cumulative regret, which, in addition to showing the logarithmic dependence on J ,
also shows the dependence on M , H, and Rmax. Sketch a proof that L enjoys the claimed bound.
[5 marks]

Question 3. Recall that Monte Carlo Tree Search is a key module in AlphaGo, the program that
recently defeated the human Go champion. What is the primary challenge in applying Monte Carlo
Tree Search to the game of carrom (that is, the simulated version of carrom on which you worked
for your project)? Can the idea of model-based forward simulation still be used effectively by a
carrom-playing agent? [2 marks]

Question 4. Consider the MDP shown in Figure 1, with states s1, s2, and s3, and actions a1 and
a2. The MDP is episodic. Each episode has an equal probability (1/3) of starting in any of the three
states. From s1, action a1 deterministically takes the agent to s2, and action a2 deterministically
takes the agent to s3. Transitions out of s2 and s3 terminate the episode and reset the agent in
one of the three states. No discounting is used in the calculating values. In the figure, transitions
resulting from action a1 are shown with solid arrows; those from action a2 are shown with dotted
arrows. The reward for each transition is shown along with the corresponding arrow.

The following questions, about an agent that interacts with this MDP, relate to various as-
pects of reinforcement learning: (a) prediction, (b) function approximation, (c) control, (d) partial
observability, and (e) batch learning. Answer each question independently: do not carry over
assumptions from one to the other.

4a. Suppose an agent follows policy π111, which is such that π111(s1) = a1, π
111(s2) = a1, and

π111(s3) = a1. The agent estimates the value function of π111 using the TD(0) algorithm.
A learning rate of αj = 1

j
is used during the jth episode. To what will the agent’s estimate

converge? [1 mark]

4b. This time the agent uses a linear generalisation scheme to approximate the value function of
π111. It has a single scalar parameter θ; features corresponding to the states are: φ(s1) = 1,
φ(s2) = −1, and φ(s3) = 2. In other words, the agent intends to approximate V π111

(s1) ≈ θ,
V π111

(s2) ≈ −θ, and V π111

(s3) ≈ 2θ. If the agent applies TD(1) with this linear function
approximation scheme, while following π111 and continuing to anneal the learning rate har-
monically, to what will θ converge? [2 marks]

4c. Suppose the agent is interested in optimal control, and it now maintains an estimate of an
action value function, which it updates using a learning rate αj = 1

j
during the jth episode.

The agent uses an ǫ-greedy policy, with ǫ = 1
10 ; this exploration rate is kept constant, and

not decayed over time. (i) To what will the estimate converge if the agent makes Q-learning
updates? (ii) To what will the estimate converge if the agent makes Sarsa updates? [3 marks]

4d. Suppose that unfortunately, our agent loses its sensation, leaving it unable to detect in which
state it currently is. Even more severely, it loses its memory: it cannot remember its previous
actions and rewards. All it knows is that at every stage, it can choose either action a1 or
action a2. What (stateless, memoryless) strategy will yield the agent the highest expected
per-episode reward? Do not worry how the agent might learn such a strategy; assume that it
(magically) knows the best way to behave in the environment given its handicaps. [2 marks]

4e. Suppose our agent decides to use a batch learning method, specifically experience replay
with Q-learning updates. The agent follows some exploration policy to gather the batch of
trajectories shown below (from 6 episodes).

[s2, a2, 3] [s3, a2, 2] [s1, a1, 4, s2, a2, 3] [s3, a2, 2] [s1, a2, 1, s3, a1, 5] [s1, a1, 4, s2, a1, 0]

The agent now makes repeated passes over these samples, performing Q-learning updates with
a learning rate of 1

t
during the tth pass. If an infinite number of passes are performed during

this batch update, to what will the agent’s estimate of the optimal action value function
converge? [2 marks]

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

s1

s2

s3

episode and
Terminate

restart

4

1

3

1a

2a 0

5

2

Figure 1: MDP corresponding to Question 4.

Question 5. What broad principle was illustrated in class using Tetris as a case study? What
lessons from our related discussion carry over to other sequential decision making tasks? [2 marks]

Question 6. Consider the following zero sum matrix game, with two players A (row) and B
(column). A can take actions a1 and a2, while B can take actions b1 and b2. Each entry in the
matrix shows A’s reward when A and B play actions from the corresponding row and column (B
gets the negative of the same reward).

b1 b2
a1 1 2

a2 1 -1

Let RA(p, q) be the expected reward obtained by A when

• A plays a1 with probability p, and action a2 with probability 1− p, and

• B plays b1 with probability q, and action b2 with probability 1− q.

Since it is a zero sum game, the corresponding expected reward for B is RB(p, q) = −RA(p, q).

6a. Plot a graph of minq RA(p, q) against p. [1 mark]

6b. Plot a graph of minpRB(p, q) against q. [1 mark]

6c. If πA is a minimax strategy for A, and πB is a minimax strategy for B, show that they are also
best responses against each other: that is, if A (B) plays πA (πB), then B (A) can maximise
its expected reward by playing πB (πA). [2 marks]

Solutions

1. The objective of both planning and learning is to find an optimal policy for a given MDP. Under
planning, we assume that the MDP (including its transition and reward functions) is fully specified
to the agent, and so finding an optimal policy amounts to computing it. In the learning setting,
the agent is not directly given access to the transition probabilities and rewards, but the agent may
interact sequentially with the MDP. In order to find an optimal policy merely by interaction, it is
necessary that every state in the MDP be reachable from every other state.

2. Define a multi-armed bandit instance in which each arm corresponds to a fixed deterministic
policy π for M . Let the “pull” of an arm correspond to playing the associated policy for one entire
episode, starting at sinit and until the episode terminates. Clearly,

• the number of arms in this bandit is |A||S|,

• each arm has its episodic rewards lying in [−HRmax, HRmax], and

• an optimal arm plays an optimal policy π⋆ for M , getting an expected reward of V ⋆
M (sinit).

We can apply the UCB algorithm to our bandit instance, invoking it suitably to account for the
range of rewards. From a result we know, we can say that after J pulls, the regret of our algorithm
upper-bounded by

O

∑

π:V π

M
(sinit) 6=V ⋆

M
(sinit)

(HRmax)
2

V ⋆
M (sinit)− V π

M (sinit)
log(J)

 .

3. The two main ideas underlying Monte Carlo Tree Search are (1) to evaluate states a few steps
into the future, while also accounting for the cost of reaching those states from the current one,
and (2) maintaining estimates of values of visited states, and updating them after each visit. The
second idea cannot be implemented as is in carrom: since it has a continuous state space and action
noise, states will typically not get visited more than once. The idea of evaluating states a few steps
into the future is still valid. If state-value estimation is inexact (as it invariably is in practice), one
usually obtains more reliable estimates by looking a few steps into the future, rather than directly
evaluating the current state.

4a. TD(0) converges to the value function of the policy being evaluated. The agent’s estimate
converges to

V π111

(s1) = 4;V π111

(s2) = 0;V π111

(s3) = 5.

4b. Under linear TD(1), the coefficient θ at convergence minimises the squared distance between
the approximated values and the true values of the states, weighted by the corresponding stationary
probabilities. When π111 is followed, the stationary probabilities of s1, s2, and s3 are 1/4, 1/2, and
1/4, respectively. Thus, we have

θconvergeed = min
θ∈R

(

1

4
(4− θ)2 +

1

2
(0 + θ)2 +

1

4
(5− 2θ)2

)

= 2.

4c. Notice that the agent’s behaviour ensures that every state-action pair gets visited infinitely
often in the limit. Q-learning will converge to the optimal action value function, given by

Q⋆(s1, a1) = 7;Q⋆(s1, a2) = 6;Q⋆(s2, a1) = 0;Q⋆(s2, a2) = 3;Q⋆(s3, a1) = 5;Q⋆(s3, a2) = 2.

Since action selection is ǫ-greedy, the agent will eventually start taking optimal actions with proba-
bility 1−ǫ+ ǫ

2 , and suboptimal actions with probability ǫ
2 . Sarsa, an on-policy method, will converge

to the action value function of this converged behaviour policy B:

QB(s1, a1) = 6.85;QB(s1, a2) = 5.85;QB(s2, a1) = 0;QB(s2, a2) = 3;QB(s3, a1) = 5;QB(s3, a2) = 2.

4d. In class we discussed how memory can serve as a defence in the face of state aliasing (partial
observability). The essence of this question is to highlight a second defence: randomisation, which
can help to a lesser extent. Let us assume our agent plays action a1 with probability p and action
a2 with probability 1− p. The expected episodic reward of the agent is then

1

3

(

4p2 + 7p(1− p) + 6(1− p)(p) + 3(1− p)2
)

+
1

3
(3(1− p)) +

1

3
(5p+ 2(1− p)) .

This expression is maximised neither at p = 1 (play only a1) nor p = 0 (play only a2), but at
p = 7

12 , which corresponds to a stochastic policy.

4e. In general, batch Q-learning will converge to the action value function that is optimal with
respect to the maximum-likelihood model of the data. In this case, the MDP is deterministic and
indeed there is at least one of every possible transition in the data set. Consequently the batch
update will yield the optimal action value function:

Q⋆(s1, a1) = 7;Q⋆(s1, a2) = 6;Q⋆(s2, a1) = 0;Q⋆(s2, a2) = 3;Q⋆(s3, a1) = 5;Q⋆(s3, a2) = 2.

5. We used Tetris as a case study to illustrate that when generalisation and function approxima-
tion are used, it is possible for policy search methods to outperform value function-based methods.
Thus, representation is a key factor in deciding the success and failure of methods on different
learning tasks.

6. Clearly A’s expected reward is

RA(p, q) = −RB(p, q) = pq(1) + p(1− q)(2) + (1− p)q(1) + (1− p)(1− q)(−1),

which may be rewritten as

RA(p, q) = −RB(p, q) = 3p+ 2q − 3pq − 1.

Based on this expression, we obtain the required plots for (a) and (b), which are shown in Figure 2.
Notice that every p ∈ [23 , 1] yields a minimax strategy for A; the sole minimax strategy for B is
obtained by playing q = 1. Let us consider (c). If indeed A plays a minimax strategy, B’s reward
is 3p(q − 1) − 2q + 1 = q(3p − 2) + 1 − 3p, which is only maximised by q = 1. If B plays q = 1,
every strategy of A, including its minimax strategies, obtain the same expected reward of 1.

5

Figure 2: Plots for Question 6.

6

