
CS 747 (Autumn 2016): Mid-semester Examination

Instructor: Shivaram Kalyanakrishnan

8.30 a.m. – 10.30 a.m., September 10, 2016, 101/103/105 New CSE Building

Total marks: 15

Note. For questions carrying 2 or more marks, provide brief justifications and/or calculations
along with each answer to illustrate how you arrived at the answer. For questions carrying 1 mark,
you need not describe the intermediate steps.

Question 1. Consider an n-armed bandit instance whose arms a1, a2, . . . , an yield Bernoulli (that
is, 0 or 1) rewards with means p1, p2, . . . , pn, respectively, such that p1 ≥ p2 ≥ p3 ≥ · · · ≥ pn (thus,
a1 is an optimal arm). For t = 1, 2, . . . , let rt denote the 0-or-1 reward obtained by an algorithm
on its t-th pull. Answer the following questions relating to the application of different sampling
algorithms on this bandit instance.

1a. Let A1 be an algorithm that (1) samples the n arms in a round-robin fashion once, and (2)
for t ≥ n + 1, (2.1) if t is a perfect square (1, 4, 9, 25, . . . ), samples an arm that is picked
uniformly at random, else (2.2) samples an arm with the highest empirical mean (breaking
ties uniformly at random). For A1, what is lim

T→∞

1

T

∑T
t=1

E[rt]? [1 mark]

1b. Let A2 be an ǫ-greedy algorithm, 0 < ǫ ≤ 1, that (1) samples each arm once, and (2) at every
time step thereafter: with probability 1− ǫ, samples an arm with the highest empirical mean
(breaking ties uniformly at random), and with probability ǫ, samples an arm that is picked
uniformly at random. For A2, what is lim

T→∞

1

T

∑T
t=1

E[rt]? [1 mark]

1c. Let A3 be an algorithm that samples arms uniformly at random. For t = 2, 4, 6, . . . , what
is the probability that after t pulls made by A3, the number of 0-rewards received and the
number of 1-rewards received are equal (that is, the sequence r1, r2, . . . , rt has t

2
0’s and t

2

1’s)? [1 mark]

1d. Denote the probability described in 1c by Q(t). Is Q(t) a monotonically increasing function
of t, a monotonically decreasing function of t, or neither? [1 mark]

1e. Describe a condition on our bandit instance (that is, on p1, p2, . . . , pn) such that Q(t) is
maximal. [1 mark]



Question 2. While discussing stochastic multi-armed bandits in class, we made the assumption of
stationarity : that is, that the true means of the arms in the bandit instance being sampled do not
change over time. On the contrary, in many practical applications (such as on-line advertising),
the true means (click-though rates of ads) do gradually change with time. How would you design
a regret-minimisation algorithm (or revise an existing one) for the nonstationary setting? Provide
a high-level sketch in a few lines; do not write equations or pseudocode. [1 mark]

Question 3. Consider an MDP M = (S,A,R, T, γ), with a set of states S = {s1, s2}; a set of
actions A = {a1, a2}; a transition function T and a reward function R as specified in the table be-
low; and a discount factor γ = 2

3
. A state transition diagram corresponding to M is shown below.

In the figure, each transition is annotated with (action, transition probability, reward); transitions
with zero probabilities are not shown. (You should be familiar with this MDP if you looked at last
year’s mid-semester paper: it is the MDP from Question 3 in that paper!)

Transition probabilities Rewards

T (s1, a1, s1) = 1 R(s1, a1, s1) = 0
T (s1, a1, s2) = 0 R(s1, a1, s2) = 0

T (s1, a2, s1) = 1/2 R(s1, a2, s1) = −1
T (s1, a2, s2) = 1/2 R(s1, a2, s2) = 2

T (s2, a1, s1) = 1 R(s2, a1, s1) = 1
T (s2, a1, s2) = 0 R(s2, a1, s2) = 0

T (s2, a2, s1) = 1/4 R(s2, a2, s1) = 0
T (s2, a2, s2) = 3/4 R(s2, a2, s2) = 1

s s21

(a , 1, 1)

(a , 1/2, 2)
(a , 1/2, −1)

(a , 3/4, 1)

(a , 1, 0)1

2

2

1

2

2
(a , 1/4, 0)

Answer the following questions about this MDP.

3a. Consider a run of Value Iteration, which is initialised with V 0(s1) = −3;V 0(s2) = 0. What
is the next iterate?: that is, what are V 1(s1) and V 1(s2)? [2 marks]

3b. Consider an agent that at time t = 1, is in state s2. At every time step, the agent follows
policy π22, by which it takes action a2 from state s1 and action a2 from state s2. What is the
expected sum of the first three rewards that the agent accrues? Equivalently, using notation
from class, what is E[r1 + r2 + r3]? [2 marks]

Question 4. Let M be the set of all MDPs with n states and 2 actions: that is, each element of
M is an MDP (S,A,R, T, γ), such that |S| = n and |A| = 2. For M ∈ M, let N(M) denote the
number of deterministic optimal policies for M . Provide a set L of integers such that

1. For every M ∈ M, N(M) is an element of L, and

2. For every l ∈ L, there exists M ∈ M such that N(M) = l.

In other words, you must provide the set of all possible values N(M) can take when M is drawn
from M. Prove that your answer is correct. [5 marks]



Solutions

1a. At time t, the number of times each arm has been pulled is at least in the order of
√
t/n, and so,

by Hoeffding’s inequality and union bounds, the probability that a suboptimal arm has the highest
empirical mean is at most in the order of tA · exp(−B ·

√
t/n), for some constants A > 0, B > 0.

Consequently the fraction of suboptimal “exploitation” pulls vanishes as t → ∞. The fraction of
“exploration” pulls is anyway in the order of 1/

√
t, which also vanishes as t → ∞. We are only left

with optimal pulls. Hence, lim
T→∞

1

T

∑T
t=1

E[rt] = p1.

1b. Since at time t, the number of times each arm has been pulled is at least in the order of ǫt/n,
the probability that a suboptimal arm has the highest empirical mean is at most in the order of
tA · exp(−B · t/n), for some constants A > 0, B > 0. Consequently the fraction of suboptimal
“exploitation” pulls vanishes as t → ∞. In contrast with 1a, the fraction of “exploration” pulls
remains a constant ǫ. Hence, lim

T→∞

1

T

∑T
t=1

E[rt] = p1(1− ǫ) + (ǫ/n)
∑n

i=1
pi.

1c. Since the probability of getting a 1-reward on a pull is 1

n

∑n
i=1

pi (and the probability of getting
a 0-reward is the remainder), the probability of getting an equal number of 0- and 1-rewards is:

Q(t)
def

=

(

t

t/2

)

(

1

n

n
∑

i=1

pi

)t/2(

1− 1

n

n
∑

i=1

pi

)t/2

.

1d. Observe that Q(t) is uniformly 0 in the case that the means are all 0 or the means are all 1.
If not, we have

Q(t+ 2)

Q(t)
= 4

(

n
∑

i=1

pi

)(

1−
n
∑

i=1

pi

)

(

t+ 1

t+ 2

)

< 1.

Thus, when both 0- and 1-rewards are possible, Q(t) is a monotonically decreasing function of t.

1e. From the expression for Q(t), we observe that it is maximal when
∑n

i=1
pi =

n
2
.

2. If the means of the arms change with time, we cannot trust “old” samples to be indicative of the
current means: we must either discard them completely (by keeping a recency window) or discount
them based on age. To make up for lack of information about recently unsampled arms, we also
need to explore and learn at a non-vanishing—rather than decaying—rate in the nonstationary
setting. If the drift in the means can be modeled, the prediction of the model can be used to
guide exploration. At an extreme, if the means are changing quickly and unpredictably, we can run
bandit algorithms for the adversarial (rather than stochastic) setting.

3a. By applying the Bellman Optimality Operator to V 0, we get:

V 1(s1) = max

{

1
(

0 + γV 0(s1)
)

,
1

2

(

−1 + γV 0(s1)
)

+
1

2

(

2 + γV 0(s2)
)

}

= −1

2
,

V 1(s2) = max

{

1
(

1 + γV 0(s1)
)

,
1

4

(

0 + γV 0(s1)
)

+
3

4

(

1 + γV 0(s2)
)

}

=
1

4
.



3b. Below are the possible 3-step trajectories, along with their rewards and probabilities.

s1 s2 s3 s4 r1 + r2 + r3 Probability of trajectory

s2 s1 s1 s1 0 + (−1) + (−1) = −2 1

4
· 1

2
· 1

2
= 1

16

s2 s1 s1 s2 0 + (−1) + 2 = 1 1

4
· 1

2
· 1

2
= 1

16

s2 s1 s2 s1 0 + 2 + 0 = 2 1

4
· 1

2
· 1

4
= 1

32

s2 s1 s2 s2 0 + 2 + 1 = 3 1

4
· 1

2
· 3

4
= 3

32

s2 s2 s1 s1 1 + 0 + (−1) = 0 3

4
· 1

4
· 1

2
= 3

32

s2 s2 s1 s2 1 + 0 + 2 = 3 3

4
· 1

4
· 1

2
= 3

32

s2 s2 s2 s1 1 + 1 + 0 = 2 3

4
· 3

4
· 1

4
= 9

64

s2 s2 s2 s2 1 + 1 + 1 = 3 3

4
· 3

4
· 3

4
= 27

64

From this table, we get

E[r1 + r2 + r3] = (−2)
1

16
+ (1)

1

16
+ (2)

1

32
+ (3)

3

32
+ (0)

3

32
+ (3)

3

32
+ (2)

9

64
+ (3)

27

64
=

135

64
.

It is a good idea to verify the answer through an alternative argument. The expected number of time
steps (among {1, 2, 3}) that the agent starts (and takes an action) from s2 is 1+

3

4
+ 1

4
· 1
2
+ 3

4
· 3
4
= 39

16
.

Therefore, the expected number of time steps it starts from s1 is 3− 39

16
= 9

16
. The expected reward

obtained by starting at s2 and taking action a2 is 3

4
(1) + 1

4
(0) = 3

4
, and the expected reward from

starting at s1 and taking action a2 is 1

2
(−1) + 1

2
(2) = 1

2
. In all, the expected three-step reward is

therefore 39

16
· 3

4
+ 9

16
· 1

2
= 135

64
.

4. L = {1, 2, 4, 8, . . . , 2n}. In other words, (1) the number of optimal policies in any element of M
is of the form 2i, where i ∈ {0, 1, 2, . . . , n}, and indeed (2) for every i ∈ {0, 1, 2, . . . , n}, there exists
an MDP M ∈ M such that N(M) = i. We shall prove (1) and (2) in turn. We find the following
two definitions useful for our proof.

• Since A has exactly two actions, for a ∈ A, denote by ac the element of A \ {a}.

• For π1, π2 ∈ Π, denote by Diff(π1, π2) the set of states on which π1 and π2 take different

actions: Diff(π1, π2)
def

={s ∈ S : π1(s) 6= π2(s)}.

(1) Consider an arbitrary MDP M ∈ M. We know that every MDP has at least one optimal policy,
a unique optimal value function V ⋆, and a unique action value function Q⋆. Let π⋆ be an arbitrary
optimal policy for M , which we shall fix as a basis. Now, let S⋆

= be the set of states in which the
complementary action to π⋆ has an equal Q-value under π⋆:

S⋆
=

def

={s ∈ S : Q⋆(s, (π⋆(s))c) = Q⋆(s, π⋆(s))}.



It is easily verified that for any policy π ∈ Π, if Diff(π, π⋆) ⊆ S⋆
=, then Bπ(V ⋆) = V ⋆. By a

working similar to that in the proof of the policy improvement theorem, it follows that V π = V ⋆.
On the other hand, if Diff(π, π⋆) \ S⋆

= 6= ∅, we find that V ⋆ ≻ Bπ(V ⋆), and therefore, V ⋆ ≻ V π.
We conclude that a policy π ∈ Π is optimal if and only if Diff(π, π⋆) ⊆ S⋆

=. Thus, the number of
optimal policies in M is exactly the number of subsets of S⋆

=, which is 2|S
⋆

=|.

(2) Given i ∈ {0, 1, 2, . . . , n}, we describe an MDP M ∈ M such that N(M) = 2i. Take M =
(S,A,R, T, γ), wherein S = {s1, s2, . . . , sn}, A = {a1, a2}, and γ = 0. M will only contain self-loops

at each state: for s ∈ S, a ∈ A, T (s, a, s) = 1 (and so, for s′ ∈ S, s′ 6= s, we get T (s, a, s′) = 0).
By this construction, the action value function is completely determined by the reward function,
which we manipulate to our end. We define, for s, s′ ∈ S, a ∈ A:

R(s, a, s′) =











1 a = a1;

1 a = a2 ∧ s ∈ {s1, s2, . . . , si}; and

0 a = a2 ∧ s ∈ {si+1, si+2, . . . , sn}.

For this MDP, we observe that every policy that picks either a1 or a2 in states s1, s2, . . . , si, and
picks action a1 in states si+1, si+2, . . . , sn, is an optimal policy. Every policy that picks a2 in even
one state among si+1, si+2, . . . , sn is not an optimal policy. Thus, the number of optimal policies
for this MDP is 2i.

5


