
CS 747 (Autumn 2017): End-semester Examination

Instructor: Shivaram Kalyanakrishnan

9.30 a.m. – 12.30 p.m., November 22, 2017, 101/103 New CSE Building

Total marks: 25

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. Consider an MDP M = (S,A, T,R, γ), with a set of states S = {s1, s2}; a set of
actions A = {a1, a2}; a transition function T and a reward function R as specified in the table be-
low; and a discount factor γ = 1

2 . A state transition diagram corresponding to M is shown below.
In the figure, each transition is annotated with (action, transition probability, reward); transitions
with zero probabilities are not shown.

Transition probabilities Rewards

T (s1, a1, s1) = 1 R(s1, a1, s1) = 0
T (s1, a1, s2) = 0 R(s1, a1, s2) = 0

T (s1, a2, s1) = 1/2 R(s1, a2, s1) = 0
T (s1, a2, s2) = 1/2 R(s1, a2, s2) = 2

T (s2, a1, s1) = 1 R(s2, a1, s1) = 1
T (s2, a1, s2) = 0 R(s2, a1, s2) = 0

T (s2, a2, s1) = 1/4 R(s2, a2, s1) = −1
T (s2, a2, s2) = 3/4 R(s2, a2, s2) = 1

s s21

(a , 1, 1)

(a , 1/2, 2)

(a , 3/4, 1)

(a , 1, 0)1

2

2

1

2

2

(a , 1/2, 0)

(a , 1/4, −1)

An RL agent has an initial action value function Q as described in the table below.

Q a1 a2
s1 2 0
s2 1 3

Suppose the agent is in state s1 to begin, and uses an ǫ-greedy strategy for action selection with
ǫ = 0.1. Write down every possible configuration of the Q table after the first learning update is
made, under each of the following learning algorithms. Take the learning rate α as 0.1.

1a. Q-learning. [2 marks]

1b. Expected Sarsa. [2 marks]

Question 2. Consider the MDP shown in the figure, with a single state s and a single action a.
The reward on taking the action is x > 0; the discount factor is γ.

1, x

s

2a. For the unique policy π, which takes a from s, what is V π(s)? [1 mark]

2b. Consider an agent that learns V π(s) using TD(0), starting with an initial estimate V 0 = 0.
For t ≥ 0, let V t denote the estimate after t updates have been made. If the agent uses a
constant learning rate α ∈ [0, 1], what is V t as a function of x, t, γ, and α? [2 marks]

2c. What value of α minimises the approximation error |V π(s)− V t|? Does your answer contra-
dict the standard assumption on the learning rate that we made in class? Explain. [2 marks]

Question 3. In class we primarily considered the infinite discounted reward setting; Question 2
above, too, considers the same setting. The present question pertains to the finite horizon setting.
Consider an MDP with a set of states S, a set of actions A, a transition function T , and a reward
function R. For a specified horizon H > 0, the value function V π of a policy π is defined as follows,
with notations as usual. For s ∈ S:

V π(s) = Eπ[r
0 + r1 + r2 + · · ·+ rH−1|s0 = s].

In other words, V π(s) is the expected sum of the first H rewards obtained by starting at s and
following π. Assume that the task is continuing (with no terminal states).

You must provide two temporal difference learning algorithms for an agent to learn V π by inter-
acting with the MDP. The first algorithm must be a Monte Carlo algorithm, with no bootstrapping.
The second algorithm must be analogous to TD(0), with full bootstrapping. [3 marks]

Question 4. A human expert who knows the (unique) optimal policy π⋆ for a task M =
(S,A, T,R, γ) decides to help an agent that is learning to perform the same task. The agent
learns using a provably convergent RL algorithm (such as Q-learning with suitably annealed explo-
ration and learning rates). In order to help the agent, the expert gives it a reward of 1 whenever
it takes the optimal action, and a reward of 0 otherwise. Thus, the agent learns essentially learns
on the MDP Mhuman = (S,A, T,Rhuman, γ), where for s, s′ ∈ S and a ∈ A, Rhuman(s, a, s′) = 1 if
a = π⋆(s), and Rhuman(s, a, s′) = 0 if a 6= π⋆(s). The agent makes no use of the original rewards
(from R).

Will the agent eventually achieve optimal behaviour on M , the original task? Prove that your
answer is correct. [4 marks]

Question 5. This question asks you to derive the policy gradient theorem for the simplest of
non-trivial MDPs: a 2-armed bandit. Consider a bandit with Bernoulli arms a1 and a2, whose
mean rewards are p1 and p2, respectively, with 0 < p2 < p1 < 1. An agent uses a stochastic policy
π to sample the arms; the policy has a single parameter θ ∈ R. The specific form of the policy is
given by the action-selection probabilities

π(a1) =
1

1 + e−θ
, and π(a2) =

e−θ

1 + e−θ
.

The algorithm is initialised with θ0 = 0, which gives an equal probability to sample each arm.
For t ≥ 0, θt+1 is obtained from θt by performing a policy gradient update that depends on the
particular reward obtained.

5a. What is the expected reward J (from one pull) of π? [1 mark]

5b. Derive an update rule for θ: that is, write down θt+1 in terms of θt, the arm pulled, the
reward obtained, and a learning rate. The rule must be consistent with taking a step along
the gradient of J . [3 marks]

5c. Describe the expected cumulative regret of this policy gradient algorithm as a function of
the number of pulls T . You do not have to provide a mathematical expression: it will suffice
to describe the expected cumulative regret as, say, logarithmic, sub-linear, or linear in T.
Provide suitable justification. [1 mark]

Question 6. What is the idea behind the Dyna-Q architecture? Briefly describe the main elements
of the architecture. You do not have to provide pseudocode. [2 marks]

Question 7. Consider a 2-player general sum matrix game. Player A can take actions a1 and a2,
and Player B can take actions b1 and b2. The table below shows each player’s rewards when they
play different pairs of actions.

A’s action B’s action A’s reward B’s reward

a1 b1 2 0
a1 b2 1 1
a2 b1 −1 2
a2 b2 3 0

What strategy must each player follow if the expected sum of their individual rewards is to be
maximised? What is the maximal expected sum? Justify your answers. [2 marks]

Solutions

1a. The agent starts from state s1, and can take either action a1 or a2.

• If a1 is taken, the only possible transition is s1, a1, 0, s1, which leads to the following change
to the Q table (all other entries remain unchanged).

Q(s1, a1)← Q(s1, a1)(1−α)+α(0+γmax{Q(s1, a1), Q(s1, a2)}) = 2×0.9+0.1×(0.5×2) = 1.9.

• If a2 is taken, one possible transition is s1, a2, 0, s1, which leads to the following change to
the Q table (all other entries remain unchanged).

Q(s1, a2)← Q(s1, a2)(1−α)+α(0+γmax{Q(s1, a1), Q(s1, a2)}) = 0×0.9+0.1×(0.5×2) = 0.1.

The other possible transition is s1, a2, 2, s2, which leads to the following change to the Q table
(all other entries remain unchanged).

Q(s1, a2)← Q(s1, a2)(1−α)+α(2+γmax{Q(s2, a1), Q(s2, a2)}) = 0×0.9+0.1×(2+0.5×3) = 0.35.

1b. The only difference under Expected Sarsa is that rather than take a maximum over the Q-
values of the target state, we use an expectation (according to ǫ-greedy action selection). The
working is similar.

• If a1 is taken, the only possible transition is s1, a1, 0, s1, which leads to the following change
to the Q table (all other entries remain unchanged).

Q(s1, a1)← Q(s1, a1)(1− α) + α(0 + γ((1− ǫ+ ǫ/2)Q(s1, a1) + (ǫ/2)Q(s1, a2)))

= 2× 0.9 + 0.1× (0.5× (0.95× 2 + 0.05× 0)) = 1.895.

• If a2 is taken, one possible transition is s1, a2, 0, s1, which leads to the following change to
the Q table (all other entries remain unchanged).

Q(s1, a2)← Q(s1, a2)(1− α) + α(0 + γ((1− ǫ+ ǫ/2)Q(s1, a1) + (ǫ/2)Q(s1, a2)))

= 0× 0.9 + 0.1× (0.5× (0.95× 2 + 0.05× 0)) = 0.095.

The other possible transition is s1, a2, 2, s2, which leads to the following change to the Q table
(all other entries remain unchanged).

Q(s1, a2)← Q(s1, a2)(1− α) + α(2 + γ((1− ǫ+ ǫ/2)Q(s2, a2) + (ǫ/2)Q(s2, a1)))

= 0× 0.9 + 0.1× (2 + 0.5× (0.95× 3 + 0.05× 1)) = 0.34.

2a. V π(s) = x+ γx+ γ2x+ . . . to ∞ = x
1−γ

.

2b. Clearly for t ≥ 1, α = 0, we have V t = 0. For t ≥ 1, α > 0,

V t = V t−1(1− α) + α(x+ γV t−1)

= V t−1(1− α+ αγ) + αx

= V t−2(1− α+ αγ)2 + αx(1 + (1− α+ αγ))

= V t−3(1− α+ αγ)3 + αx(1 + (1− α+ αγ) + (1− α+ αγ)2)

= V 0(1− α+ αγ)t + αx(1 + (1− α+ αγ) + (1− α+ αγ)2 + · · ·+ (1− α+ αγ)t−1)

= 0 + αx
1− (1− α+ αγ)t

1− (1− α+ αγ)

=
x

1− γ
(1− (1− α+ αγ)t).

2c. |V π(s) − V t| = x
1−γ

(1 − α(1 − γ))t, which is minimised by setting α = 1 (in fact, but for the
constraint that α ∈ [0, 1], α can be set even higher). The conditions on the learning rate we con-
sidered in class—

∑

∞

t=0
1
αt

=∞ and
∑

∞

t=0
1

(αt)2
<∞, achieved, for example, by setting αt =

1
t
—are

necessary when there is stochasticity in the rewards or transitions. The MDP in this question is
deterministic.

3. We assume that the agent follows π and goes along a trajectory s0, a0, r0, s1, a1, r1, s2, For
t ≥ 1, it uses a learning rate αt =

1
t
.

To implement a Monte Carlo algorithm, the agent keeps a value function estimate V : S → R,
which is initialised arbitrarily. At t ≥ H, the following update is made when state st is reached.

V (st−H)← V (st−H)(1− αt) + αt(r
t−H + rt−H+1 + · · ·+ rt−1).

It is less straightforward to write down a bootstrapped update. Since the value function is a
finite (rather than infinite) sum, it does not give rise to a recursive definition. However, for h > 1,
the value function V π

h for a horizon h can be written down in terms of the value function V π
h−1 for

a horizon h− 1. For s ∈ S,

V π
h (s) = Eπ[r

0 + V π
h−1(s

1)|s0 = s], where

V π
1 (s) = Eπ[r

0|s0 = s].

A bootstrapping algorithm keeps H value functions V1, V2, . . . , VH : S → R, each meant to
predict the sum of a corresponding number of future rewards. At t ≥ 1, the following min{t,H}
updates are made. For 1 < h ≤ min{t,H},

Vh(s
t−h)← Vh(s

t−h)(1− αt) + αt(r
t−h + Vh−1(s

t−h+1)), and

V1(s
t−1)← V1(s

t−1)(1− αt) + αtr
t−1.

Each value function estimate converges in the limit to the corresponding finite sum; in particular
VH converges to V π.

4. The answer depends on whether the task M is continuing or episodic.
Assume that M is continuing (which means Mhuman is also continuing). If π⋆ is followed in

Mhuman, then regardless of the start state, every trajectory will yield only 1’s as rewards. Thus, for
all s ∈ S, V π⋆

Mhuman(s) =
1

1−γ
. Take any other policy π 6= π⋆. From at least one state s, the policy

will yield 0 as the first reward along trajectories following π. It follows that Qπ
Mhuman(s, π(s)) <

1
1−γ

= V π⋆

Mhuman(s). It is also true that Q-values can never exceed 1
1−γ

, since 1 is the highest reward

available in Mhuman. Hence, by the policy deprovement theorem, π will be strictly dominated by
π⋆ on Mhuman, making π⋆ the unique optimal policy for Mhuman. The learning agent will converge
to π⋆.

If M is episodic, then the number of steps to termination from a given state can differ based
on the policy followed. This property can lead to M and Mhuman having different optimal policies,
as illustrated in the example below.

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

s1

s2

(a , 1, 0)

(a , 1, 1)1 1

(a , 1, 0)2 2

1(a , 1, 10)

2(a , 1, 0)
3s

(a , 1, 1)

(a) M

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

s1

s2

(a , 1, 0)

(a , 1, 1)1 1

(a , 1, 0)2 2

1

2(a , 1, 0)
3s

(a , 1, 1)

(a , 1, 1)

(b) Mhuman

Figure 1: Two episodic MDPs with 3 non-terminal states, 2 actions, and no discounting. All
transitions are deterministic. The “original” MDP M in (a) has an optimal policy π⋆ such that
π⋆(s1) = a1, π

⋆(s2) = a1, and π⋆(s3) = a1. In the MDP Mhuman constructed by the human expert
in (b), a1 is rewarded 1 from all three states, while a2 is rewarded 0 from all three states. Even so,
a2 becomes the unique optimal action from s1.

5a. J = π(a1)p1 + π(a2)p2.

5b.

dJ

dθ
=

d

dθ

(

2
∑

k=1

π(ak)pk

)

=
2
∑

k=1

pk
d

dθ
(π(ak))

=
2
∑

k=1

π(ak)
pk

π(ak)

d

dθ
(π(ak))

= Eak∼π

[

pk
π(ak)

d

dθ
(π(ak))

]

= Eak∼π,r∼Bernoulli(pk)

[

r

π(ak)

d

dθ
(π(ak))

]

.

The derivation shows that if arm ak is drawn with probability π(ak), and r ∈ {0, 1} is drawn
as the reward from the arm, then r

π(ak)
d
dθ

(π(ak)) is an unbiased estimate of dJ
dθ
. It can be worked

out that d
dθ

(π(a1)) = π(a1)π(a2) and
d
dθ

(π(a2)) = −π(a1)π(a2). As a consequence, we obtain the
following set of rules to obtain θt+1 from θt, for t ≥ 0.

• If a1 was pulled and yielded reward 0, θt+1 ← θt.

• If a1 was pulled and yielded reward 1, θt+1 ← θt + αt
eθt−1

1+eθt−1
.

• If a2 was pulled and yielded reward 0, θt+1 ← θt.

• If a2 was pulled and yielded reward 1, θt+1 ← θt − αt
1

1+e−θt
.

The policy parametrisation is such that larger values of θ will favour a1. Indeed observe that
the policy gradient update increases θ when a1 gives a 1-reward, and decreases θ when a2 gives a
1-reward.

5c. In general, policy gradient algorithms can get stuck at local minima. If that was to happen in
this case, the incurred regret would be linear, since the inferior arm will be played with a non-zero
probability for all time.

However, observe that dJ
dθ

becomes zero only at θ = ±∞. In other words, there is no local
minimum in our example. The actual regret will depend on the rate at which θt approaches ∞.1

1We thank Sabyasachi Ghosh for pointing out an error in an earlier version of the solution.

6. At the heart of Dyna-Q is a model learned from environmental interaction. The agent’s ex-
periences are used to refine both the action value function Q and the model M . In addition, M
is used to simulate experiences (possibly from a distribution that is different from the on-policy
distribution), which are also used to update Q. Updates to M and Q based on experience, as well
as updates to Q based on simulated experiences from M , can all be performed asynchronously,
making Dyna-Q a very flexible architecture. In particular, simulations can be performed whenever
compute time is available; they contribute to speeding up learning.

7. Let Player A play action a1 with probability x and action a2 with probability 1− x. Let Player
B play action b1 with probability y and action b2 with probability 1−y. The expected sum of their
rewards is

S(x, y) = xy(2 + 0) + x(1− y)(1 + 1) + (1− x)y(−1 + 2) + (1− x)(1− y)(3 + 0).

Observe that for any given x, S(x, y) is a linear function of y: therefore it will be maximised at
either y = 0 or y = 1. Similarly, for any given y, S(x, y) is a linear function of x: therefore it
will be maximised at either x = 0 or x = 1. It follows that S(x, y) must be maximal for one of
(x = 0, y = 0), (x = 0, y = 1), (x = 1, y = 0), and (x = 1, y = 1). From the table we observe
that the first configuration is the maximal one. In other words, Player A must play action a2 with
probability 1, and Player B must play action b2 with probability 1. The resulting sum of their
rewards is 3 + 0 = 3.

