
CS747: Foundations of Intelligent and Learning Agents July - Nov 2017

Guest Lecture 1: August 23
Lecturer: Manjesh K. Hanawal Scribe: Ansuma Basumatary

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Note: The material in this note is extracted from Chapter 21 of the book ’Understanding Machine Learning:
From Theory to Algortihm’ by Shai Shalev- Shwartz and Shai Ben-David

Online Learning (Adversarial Setting)

What is online learning?

“Online Machine Learning is a method of machine learning in which data becomes available in a sequential
order and is used to update our best predictor for future data at each step, as opposed to batch learning
techniques which generate the best predictor by learning on the entire training data set at once.” - Wikipedia

We call any algorithm that is of the form below as an Online Learning Algorithm (OLA). For simplicity we
focus on binary lables and 0− 1 loss function and assume that the size of hypothesis class if finite.

General Online Learning Algorithm A

1: Input : Hypothesis class H
2: for t = 1, 2, 3, · · · do
3: Receive sample xt
4: Select an hypothesis h ∈ H
5: Predict label ŷt = h(xt)
6: Receive true label yt and loss is |ŷt − yt|
7: Output: Return a hypothesis h ∈ H.

Note that we do not make any assumption on the way samples are generated – they could be generated
stochastically, deterministically or even adversarially. The true label is revealed in every round after the
prediction is made using some hypothesis. Depending on how the choice of an hypothesis is made in each
round, we get different OLAs. Each OLA is like a game between an enviroment and a learner which
procedes in rounds. In each round, the environment generates a sample and its associated label, and the
learner predicts the label only seeing the sample.

For any given sequence S = {(xi, yi) : i = 1, 2, . . . , T}, where T is an integer, let MS(A) =
∑T
i=1 |ŷt − yt|

denote the be the number of mistakes algorithm A makes on S, where ŷt is the prediction made by algorithm
A in round t.

Definition 1 (Mistake Bound) Let MH(A) = sup
S
MS(A) denote the maximum number of mistakes made

by algorithm A. A bound of the form MH(A) ≤ B <∞ is called a mistake bound.

1-1

1-2 Lecture 1: August 23

Definition 2 (Online Learnability) We say that the hypothesis class H is ‘learnable’ if there exists an
algorithm A and constant B <∞ (independent of S) such that MH(A) < B.

We would be interested in an OLA that has the smallest B on H. We first make the following assumption
on the way labels are generated

Assumption 1 (Realizability) All labels are generated by some hypothesis h∗ ∈ H, i.e., y = h∗(x) ∀ x.

Under the realizability assumption learning essentially boils down to search for the hypothesis in H that
generates the labels. In this setting, one can think of using an online algorithm that in every round eliminates
the hypotheses that are not consistent, i.e., make incorrect predictions. Based on this idea we have the
following algorithm named Consistent Algorithm (CA). The CA algorithm maintain a set, Vt, of all the
hypothesis that are consistent on the samples observed so far, i.e., {(x1, y1), (x2, y2), . . . , (xt, yt)} and selects
a hypothesis from this set for prediction in the next round.

Consistent Algorithm (CA)

1: Input : Hypothesis class H
2: Initialize: V1 = H
3: for t = 1, 2, 3, · · · do
4: Receive sample xt
5: Select an hypothesis h ∈ H
6: Predict label ŷt = h(xt)
7: Receive true label yt. Loss is |ŷt − yt|
8: Update Vt+1 = {h ∈ Vt : h(xt) = yt}
9: Output: Return a hypothesis h ∈ H.

Claim: The CA algorithm makes at most |H| − 1 mistakes, i.e., MH(CA) ≤ |H| − 1.
Proof: Observe that if the CA algoithm makes M mistakes at the end of t rounds, it must be the case
that |Vt| ≤ |H| −M , as atleast one hypothesis gets eliminated after a mistake. By realizability assumption
we also know that |Vt| ≥ 1 for all t. Hence maximum number of mistakes, MH(CA), should be such that
1 ≤ H−MH(CA).

Can we do better than the CA algorithm? We next present an algorithm, named Halving Algorithm (HA)
that has exponentially smaller mistake bound than the CA.

Halving Algorithm (HA)

1: Input : Hypothesis class H
2: Initialize: V1 = H
3: for t = 1, 2, 3, · · · do
4: Receive sample xt
5: Predict label ŷt = arg max

γ∈{0,1}
|{h ∈ Vt : h(xt) = γ}|

6: Receive true label yt. Loss is |ŷt − yt|
7: Update Vt+1 = {h ∈ Vt : h(xt) = yt}
8: Output: Return a hypothesis h ∈ H.

In any round t, the HA uses the set of hypothesis, Vt, that are consistent with the observations made so far
and predicts the lable of sample xt to that label which is the prediction made by the maximum number of
the hypothesis in Vt. Thus, HA uses majority voting to predict labels in each round.

Lecture 1: August 23 1-3

Claim: The HA algorithm makes at most log2(|H|) mistakes, i.e., MH(HA) ≤ log2(|H|).
Proof: If a mistake is made in round t, it must be the case that |Vt+1 ≤ |Vt|/2 as atleast half of the
hypotheses from Vt are dicarded. Also, by the realizability assumption we have |Vt| ≥ 1 for all t. Applying
this repeatedly, we get 1 ≤ VT+1 ≤ |V1|2−M if there are M mistakes after T rounds. Hence maximum
number of mistakes MH(MH) must satisfy 1 ≤ |H|2−MH(HA). Rearranging, the claimed mistake bound is
obtained.

Relaxing The Realizability Assumption

In general the hypothesis that generates the true labels may not belong to the the hypothesis class H over
which we want to learn, i.e., h∗ /∈ H. In this case, we may aim to find the best hypothesis in H and the best
hypothesis may not label all the samples correctly. In this case, we evaluate the performance of an OLA by
comparing the number of mistakes it makes and that made by the best hypothesis in H under the worst case
scenario. Specifically, regret of A that predicts label of xt as ŷt in round t is defined as follows:

RH(A, T) = sup
(x1,y1),...,(xT ,yT)

[
T∑
t=1

|ŷt − yt| − inf
h∈H

T∑
t=1

|h(xt)− yt|

]
.

Definition 3 We say that the hypothesis class H is learnable if there exists and an algorithm A such that

limT→∞
RH(A,T)

T = 0, i.e., the regret of A on H is sub-linear.

Our goal is to find an OLA with smallest sub-linear regret relative to H. Is this goal achievable? Notice that
in the general OLA we described, the true label is revealed after the predictions is made in every round. If
the labels are generated by an adversary, he can make the algorithm err in every rounds by just declaring
the true label to be opposite of what is predicted, i.e., yt = 1− ŷt. Then the total number of mistakes made
by any algorithm over T rounds is T . This can result in linear regret for any OLA. To see this, consider
a simple hypothesis class with two hypotheses, H = {h0, h1}, where hypothesis h0 predicts label 0 and h1
predicts 1 on all samples. For any sequence of labels y1, y2, · · · , yT , we have

inf
h∈H

T∑
t=1

|h(xt)− yt| = min

{
T∑
i=1

yt, T −
T∑
i=1

yt

}
≤ T/2.

Hence, for any OLA A,RH(A, T) ≥ T−T/2 ≥ T/2, i.e., linear in T and sub-linear regret cannot be achieved.

To overcome this impossibility result, one needs to restrict the power of the environment or (the adversary).
We do so by restricting the environment to decide the label in each round without knowing the prediction
made by the learner in that round. Further, we allow the learner to use randmonized strategies to make
predictions in each round, i.e., the learner can toss a coin of certain bias and decide on the prediction based
on the outcome of the toss. This further restricts the power of the environment – if the learner uses a
deterministic strategy in each round, the environment can figure it out (from the past observations) and
change its label generation strategy so that the strategy adopted the learner makes more mistakes. In
summary, we make the following assumptions:

1. The learner can randomize the predictions.

2. The environment has to decide yt without knowing the actual outcome of learner’s random prediction
in round t.

1-4 Lecture 1: August 23

Since we allow the learner to randomize the predictions, we henceforth consider the expected regret denoted
as E[RH(A, T)], where the expectation is over the randomness of the algorithm (or learner’s strategy). For
notational convenience, we drop the subscript H and write it as E[R(A, T)], the underlying hypothesis class
to be learned should be clear from the context.

Let pt = Pr{ŷt 6= yt} denote the probability that the learner predicts label as 1 in round t. This probability
could depend on all the past observations made by the learner. We have E[|ŷt − yt|] = |pt − yt|. Indeed,
E[|ŷt − yt|] = pt|1− yt|+ (1− pt)|0− yt|. If yt = 0, we get E[|ŷt − yt|] = pt = |pt − 0| and if yt = 1, we get
E[|ŷt− yt|] = 1− pt = |pt− yt|. The two cases can be compactly written as E[|ŷt− yt|] = |pt− yt|. Then, the
expected regret is given by

E[R(A, T)] = sup
(x1,y1),...,(xT ,yT)

[
T∑
t=1

|p̂t − yt| − inf
h∈H

T∑
t=1

|h(xt)− yt|

]
.

This modified set up can be interpreted as relaxing the predictions ŷt to take values in [0, 1] instead of either
0 or 1 only. Is sub-linear regret possible for this setup?

Theorem 1.1 For every hypothesis class H, there exits an OLA, A, whose predictions come from [0,1] and
has regret bound such that,

∀h ∈ H, E[RH(A, T)] ≤
√

2 log(|H|) · T ≈ O(
√
T).

Furthermore, no algorithm can achieve an expected regret bound smaller tha Ω(
√
T).

Weighted Majority Algorithm

The Weighted Majority (WM) algorithm maintains weights (w̃
(t)
i) for each of the hypotheses. A hypothesis

is selected in a round according to a probability (w
(t)
i) that is in proportion to its weight. After a hypothesis

is selected in round t, the true label is revealed from which los vectors for all the hypotheses lt{lt,i, i ∈ [d]}
is obtained. For example, loss for ith hypothesis can be set as lt,i = |hi(xt)− yt|. Then the expected loss in

round t is given by |pt − yt| =
∑d
i=1 w

(t)
i lt,i =< w(t), lt >. Depending on the loss values, the weights (w̃(t))

are updated. The pseudo-code of the WM is given below.

Weighted Majority (WM)

1: Input : Hypothesis class H and number of rounds T
2: Parameter: η =

√
2 log(|H|)/T

3: Initialize: w̃(1) = (1, 1, · · · , 1)
4: for t = 1, 2, 3, · · · do

5: Set w
(t)
i =

w̃
(t)
i∑
w̃

(t)
i

∀i = 1, 2, ..., d, where |H| = d

6: Receive loss vector lt := {lt,i : i ∈ [d]}
7: Compute expected cost < w(t), lt >

8: Update ∀i, w̃(t+1)
i = w̃

(t)
i · e−ηlt,i

Theorem 1.2 Let d = |H| and T > 2 log(d), then R(WM,T) ≤
√

2 log(d)T , i.e., WM is order optimal.

The above the algorithms are based on full Information setting as losses of all hypotheses are known in each
round. The setting is also referred to as prediction with expert advice.

