
1/31

Theoretical Analysis of Policy Iteration

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

shivaram@cse.iitb.ac.in

August 2017

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 1 / 31



2/31

Overview

1. Background

MDP Planning
Bellman’s Equations and Bellman’s Optimality Equations
Solution strategies
Strong Running-time Bounds

2. Policy Iteration

Policy Improvement
Proof of Policy Improvement Theorem
Policy Iteration algorithm
Switching strategies and bounds

3. Analysis of Policy Iteration on 2-action MDPs

Basic Tools and Results
Howard’s Policy Iteration
Mansour and Singh’s Randomised Policy Iteration
Batch-Switching Policy Iteration

4. Summary and Outlook
Results for k -action MDPs
Open problems
References
Conclusion

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 2 / 31



2/31

Overview

1. Background

MDP Planning
Bellman’s Equations and Bellman’s Optimality Equations
Solution strategies
Strong Running-time Bounds

2. Policy Iteration

Policy Improvement
Proof of Policy Improvement Theorem
Policy Iteration algorithm
Switching strategies and bounds

3. Analysis of Policy Iteration on 2-action MDPs

Basic Tools and Results
Howard’s Policy Iteration
Mansour and Singh’s Randomised Policy Iteration
Batch-Switching Policy Iteration

4. Summary and Outlook
Results for k -action MDPs
Open problems
References
Conclusion

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 2 / 31



3/31

MDP Planning

� Markov Decision Problem: general abstraction of sequential decision making.

� An MDP comprises a tuple (S,A,R,T , γ), where

S is a set of states (with |S| = n),

A is a set of actions (with |A| = k ),

R(s, a) is a bounded real number, ∀s ∈ S,∀a ∈ A, and

T (s, a) is a probability distribution over S, ∀s ∈ S,∀a ∈ A.

� A policy π : S → A specifies an action from each state, and yields trajectory

s
0, a0 = π(s0), r0, s1, a1 = π(s1), r1, s2, . . . .

� The value of a policy π from state s is:

V
π(s) = E

[

∞
∑

t=0

γ t
r

t | s0 = s, at = π(st), t = 0, 1,2, . . .

]

,where

γ ∈ [0, 1) is a discount factor.
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,where

γ ∈ [0, 1) is a discount factor.
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Illustration: MDPs as State Transition Diagrams
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States: s1, s2, s3, and s4.

Actions: Red (solid lines) and blue (dotted lines).

Transitions: Red action leads to same state with 20% chance, to next-clockwise state with 80% chance.
Blue action leads to next-clockwise state or 2-removed-clockwise state with equal (50%) probability.

Rewards: R(∗, ∗, s1) = 0, R(∗, ∗, s2) = 1, R(∗, ∗, s3) = −1, R(∗, ∗, s4) = 2.

Discount factor: γ = 0.9.
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Bellman’s Equations

� Recall: Vπ(s) = E[r0 + γr1 + γ2r2 + . . . |s0 = s, at = π(st) for t = 0, 1, . . . ].

Bellman’s Equations: ∀s ∈ S,

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S T (s, π(s), s′)Vπ(s′).

Vπ : S → R is called the value function of π.
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Qπ is called the action value function of π.

Observe that Vπ(s) = Qπ(s, π(s)).

� The variables in Bellman’s Equations are the elements of Vπ.

n linear equations in n unknowns.

Given S, A, T , R, γ, and a fixed policy π, we can solve Bellman’s Equations

to obtain Vπ and Qπ. This step is called Policy Evaluation.
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Bellman’s Optimality Equations

� The Optimal Value Function V ⋆ def
=Vπ⋆

is unique solution of: ∀s ∈ S,

V
⋆(s) = max

a∈A

(

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ⋆(s′)

)

.

These are Bellman’s Optimality Equations.

� The Optimal Action Value Function Q⋆ def
=Qπ⋆

is given by: ∀s ∈ S,∀a ∈ A,

Q⋆(s, a) = R(s, a) + γ
∑

s′∈S T (s, a, s′)V ⋆(s′).

� Given Q⋆, we may obtain π⋆ by setting, ∀s ∈ S:

π⋆(s)← argmaxa∈A Q⋆(s, a).

Given π⋆, how can we obtain V ⋆ and Q⋆?
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Solution Strategies

� Value Iteration

V0 ← Arbitrary, element-wise bounded, n-length vector. t ← 0.
Repeat:

For s ∈ S:
Vt+1(s)← maxa∈A

(

R(s, a) + γ
∑

s′∈S T (s, a, s′)Vt(s
′)
)

.

t ← t + 1.

Until Vt ≈ Vt−1 (up to machine precision).

Convergence to V ⋆ guaranteed using a max-norm contraction argument.

� Linear Programming

Minimise
∑

s∈S

V (s)

subject to V (s) ≥
(

R(s, a) + γ
∑

s′

T (s, a, s′)V (s′)

)

,∀s ∈ S,∀a ∈ A.

n variables, nk constraints (or dual with nk variables, n constraints).
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Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.
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poly(n, k) · exp(O(
√

n log(n))) (Expected) [MSW96].

poly(n, k) · k0.6834n [GK17].

poly(n, k) for deterministic MDPs [MTZ10, PY13].

� Appeal of Policy Iteration:

Theoretical: naturally yields strong bounds (also enjoys good weak bounds [P94]).

Practical: very fast on MDPs encountered in typical applications.
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Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π′.

s s s s s s ss1 2 3 4 5 6 7 8

π

Improvable states

Improving actions

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31



10/31

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π′.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31



10/31

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π′.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

Policy Improvement Theorem:

(1) If π has no improvable states, then it is optimal, else

(2) if π′ is obtained as above, then

∀s ∈ S : Vπ′

(s) ≥ Vπ(s) and ∃s ∈ S : Vπ′

(s) > Vπ(s).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31



10/31

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π′.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

Policy Improvement Theorem:

(1) If π has no improvable states, then it is optimal, else

(2) if π′ is obtained as above, then

∀s ∈ S : Vπ′

(s) ≥ Vπ(s) and ∃s ∈ S : Vπ′

(s) > Vπ(s).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31



11/31

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).
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� Bellman Operator. For π ∈ Π, we define Bπ : (S → R)→ (S → R) as follows:

for X : S → R and ∀s ∈ S,

(Bπ(X ))(s)
def
=R(s, π(s)) + γ

∑

s′∈S

T (s, π(s), s′)X (s′).

� Fact 1. For π ∈ Π, X : S → R, and Y : S → R:

if X � Y , then B
π(X ) � B

π(Y ).

� Fact 2. For π ∈ Π and X : S → R:

lim
l→∞

(Bπ)l(X ) = V
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Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).
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Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).
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Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]
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Overview
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MDP Planning
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Solution strategies
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2. Policy Iteration

Policy Improvement
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Basic Tool: Policy Improvement and Policy Deprovement

π′ ≻ π.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement
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s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Deprovement

s s s s s s ss1 2 3 4 5 6 7 8

π

π � π′′.
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Basic Tool: Property of Improvement sets in 2-action MDPs

Consider π, π′ ∈ Π. If Vπ 6= Vπ′

, then π and π′ cannot

have the same set of improvable states.
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Contradiction!

1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1

Equal value functions.
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Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.
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Howard’s Policy Iteration (2-action MDPs)
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π2 0 0 0 0 0 0 0 1 1 1 0 0

π3 0 0 0 0 0 0 0 1 1 0 0 0
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If π has m improvable states and π
Howard’s PI−−−−−−→ π′, then

there exist m policies π′′ such that π′ � π′′ ≻ π.
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Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31



19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31



19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31



19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

� Number of policies with fewer than m⋆ improvable states visited

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31



19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

� Number of policies with fewer than m⋆ improvable states visited

≤
(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ · · ·+
(

n

m⋆ − 1

)

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31



19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

� Number of policies with fewer than m⋆ improvable states visited

≤
(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ · · ·+
(

n

m⋆ − 1

)

≤ 3
2n

n
.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31



19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

� Number of policies with fewer than m⋆ improvable states visited

≤
(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ · · ·+
(

n

m⋆ − 1

)

≤ 3
2n

n
.

Number of iterations taken by Howard’s PI: O
(

2n

n

)

[MS99, HGDJ14].
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Randomised Policy Iteration (2-action MDPs)

From the set of improving states, pick a

non-empty subset SI uniformly at random.

Switch actions of all states in SI .
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Switch actions of all states in SI .
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Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 20 / 31



20/31

Randomised Policy Iteration (2-action MDPs)

From the set of improving states, pick a

non-empty subset SI uniformly at random.

Switch actions of all states in SI .
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π1 0 0 0 0 0 0 0 0 0 0 0 1 1/7

π 0 0 0 0 0 0 0 0 0 0 0 0 Probability
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π3 0 0 0 0 0 0 0 0 0 0 1 1 1/7

π2 0 0 0 0 0 0 0 0 0 0 1 0 1/7

π1 0 0 0 0 0 0 0 0 0 0 0 1 1/7

π 0 0 0 0 0 0 0 0 0 0 0 0 Probability

If π has m improvable states and π
Randomised PI−−−−−−−−→ π′, then with

probability 1/2, there exist 2m−1 policies π′′ such that

π′′ ≻ π and ¬(π′′ ≻ π′).
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π6 0 0 0 0 0 0 0 0 0 1 1 0 1/7

π5 0 0 0 0 0 0 0 0 0 1 0 1 1/7

π4 0 0 0 0 0 0 0 0 0 1 0 0 1/7

π3 0 0 0 0 0 0 0 0 0 0 1 1 1/7

π2 0 0 0 0 0 0 0 0 0 0 1 0 1/7

π1 0 0 0 0 0 0 0 0 0 0 0 1 1/7

π 0 0 0 0 0 0 0 0 0 0 0 0 Probability

If π has m improvable states and π
Randomised PI−−−−−−−−→ π′, then with

probability 1/2, there exist 2m−1 policies π′′ such that

π′′ ≻ π and ¬(π′′ ≻ π′).

Number of policies eliminated is exponential in m. As before,

m⋆ can be tuned such that the expected number of iterations

taken by Randomised PI = O(1.7172n) [MS99].
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Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most ___ iterations on a 2-state MDP!
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Howard’s Policy Iteration takes at most _3_ iterations on a 2-state MDP!
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Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 22 / 31



22/31

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
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
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π4 0 1 1 0 1 1 1 1 1 0
x





π3 0 1 1 0 1 1 1 0 1 0
x





x





π2 0 1 1 0 0 0 1 0 1 0
x





π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

� Left-most batch can change only when all other columns are non-improvable.
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Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

π4 0 1 1 0 1 1 1 1 1 0
x





π3 0 1 1 0 1 1 1 0 1 0
x





x





π2 0 1 1 0 0 0 1 0 1 0
x





π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

� Left-most batch can change only when all other columns are non-improvable.

� Left-most batch can change at most 3 times (following previous result).

� T (n) ≤ 3× T (n− 2) ≤
√

3
n
.
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Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most 5 iterations on a 3-state MDP!
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The structures drawn above are called Trajectory-bounding Trees (TBTs) [KMG16a]

(and correspond to the Order Regularity Problem [H12, GHDJ15]).
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The structures drawn above are called Trajectory-bounding Trees (TBTs) [KMG16a]

(and correspond to the Order Regularity Problem [H12, GHDJ15]).

BSPI with 3-sized batches gives T (n) ≤ 5× T (n − 3) ≤ 1.71n.
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Batch-Switching Policy Iteration (BSPI)

Principle of constructing TBTs:

L+
π,IS

def
={π′ ∈ Π : ∃s ∈ IS(π′(s) 6= π(s)) ∧ ∀s ∈ (S \ IS)(π′(s) = π(s))};

L−

π,IS

def
={π′ ∈ Π : ∀s ∈ IS(π′(s) = π(s))}.
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Principle of constructing TBTs:

L+
π,IS

def
={π′ ∈ Π : ∃s ∈ IS(π′(s) 6= π(s)) ∧ ∀s ∈ (S \ IS)(π′(s) = π(s))};

L−

π,IS

def
={π′ ∈ Π : ∀s ∈ IS(π′(s) = π(s))}.

L+
π,IS

1 1 1 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0

L−

π,IS

π, IS: 0 0 0 0 0

0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
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Batch-Switching Policy Iteration (BSPI)

Principle of constructing TBTs:

L+
π,IS

def
={π′ ∈ Π : ∃s ∈ IS(π′(s) 6= π(s)) ∧ ∀s ∈ (S \ IS)(π′(s) = π(s))};

L−

π,IS

def
={π′ ∈ Π : ∀s ∈ IS(π′(s) = π(s))}.

L+
π,IS

1 1 1 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0

L−

π,IS

π, IS: 0 0 0 0 0

0 0 0 0 1
0 0 0 1 0
0 0 0 1 1

If (π1, IS1), (π2, IS2), . . . , (πt , ISt) is a trajectory encountered

by PI, it must satisfy, for 1 ≤ i < j ≤ t :

L
−

πi ,ISi
∩ L

+
πj ,ISj

= ∅.
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BSPI: Bounds

Batch size Depth of TBT Bound on number of iterations

1 2 2n

2 3 1.7321n

3 5 1.7100n

4 8 1.6818n

5 13 1.6703n

6 21 1.6611n

7 33 1.6479n
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Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].

Will the bound continue to be non-increasing in the batch size?
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BSPI: Bounds

Batch size Depth of TBT Bound on number of iterations

1 2 2n

2 3 1.7321n

3 5 1.7100n

4 8 1.6818n

5 13 1.6703n

6 21 1.6611n

7 33 1.6479n

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].

Will the bound continue to be non-increasing in the batch size?

If so, 1.6479n would be a bound for Howard’s Policy Iteration!
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BSPI: Effect of Batch Size b
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Averaged over n-state, 2-action MDPs with randomly generated transition and reward

functions. Each point is an average over 100 randomly-generated MDP instances and

initial policies [KMG16a].
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Overview

1. Background

MDP Planning
Bellman’s Equations and Bellman’s Optimality Equations
Solution strategies
Strong Running-time Bounds

2. Policy Iteration

Policy Improvement
Proof of Policy Improvement Theorem
Policy Iteration algorithm
Switching strategies and bounds

3. Analysis of Policy Iteration on 2-action MDPs

Basic Tools and Results
Howard’s Policy Iteration
Mansour and Singh’s Randomised Policy Iteration
Batch-Switching Policy Iteration

4. Summary and Outlook
Results for k -action MDPs
Open problems
References
Conclusion
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Policy Iteration on k-action MDPs

� What are the main differences between 2-action and k -action MDPs (k > 2)?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 28 / 31



28/31

Policy Iteration on k-action MDPs

� What are the main differences between 2-action and k -action MDPs (k > 2)?

In k -action MDPs, states can be both improvable and deprovable.
In k -action MDPs, there can be more than one improving action.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 28 / 31



28/31

Policy Iteration on k-action MDPs

� What are the main differences between 2-action and k -action MDPs (k > 2)?

In k -action MDPs, states can be both improvable and deprovable.
In k -action MDPs, there can be more than one improving action.

� Mansour and Singh’s analysis makes no assumption on which improving action is
picked, only that one is picked at all, in the states selected to be switched.

Bound for Howard’s PI: O
(

kn

n

)

iterations [MS99, HGDJ14].

Bound for Randomised PI: O
(((

1 + 2
log(k)

)

k
2

)n)

expected iterations [MS99].
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� Mansour and Singh’s analysis makes no assumption on which improving action is
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)

iterations [MS99, HGDJ14].

Bound for Randomised PI: O
(((

1 + 2
log(k)

)

k
2

)n)

expected iterations [MS99].

� Randomised Simple PI [KMG16b]: Switch only the “rightmost” improvable state;
switch to an improving action picked uniformly at random.

Bound: (2 + ln(k − 1))n expected iterations.
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� What are the main differences between 2-action and k -action MDPs (k > 2)?

In k -action MDPs, states can be both improvable and deprovable.
In k -action MDPs, there can be more than one improving action.

� Mansour and Singh’s analysis makes no assumption on which improving action is
picked, only that one is picked at all, in the states selected to be switched.

Bound for Howard’s PI: O
(

kn

n

)

iterations [MS99, HGDJ14].

Bound for Randomised PI: O
(((

1 + 2
log(k)

)

k
2

)n)

expected iterations [MS99].

� Randomised Simple PI [KMG16b]: Switch only the “rightmost” improvable state;
switch to an improving action picked uniformly at random.

Bound: (2 + ln(k − 1))n expected iterations.

� Recursive BSPI [GK17]: Deterministic switching strategy based on a binary
hierarchy of actions (that facilitates reusing the 2-action MDP analysis).

Bound: k0.7207n iterations.
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Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?
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� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

� Is there a super-linear lower bound on the iterations taken by Howard’s PI on

2-action MDPs?

� Is (Howard’s) PI strongly polynomial on deterministic MDPs?

� Does PI admit a smoothed analysis similar to the Simplex algorithm for Linear

Programming [ST04]?

� Is there a strongly polynomial algorithm for MDP planning?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 29 / 31
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Conclusion

� Policy Iteration is an elegant family of algorithms for MDP Planning.

� Under the infinite precision arithmetic computation model, it naturally yields strong

running time bounds, which depend only on the number of states and actions.

� This tutorial is prompted by some recent progress that has resulted in exponential

improvements in upper bounds.

� The main tool of analysis remains basic: the well-known Policy Improvement

Theorem.

� Both theory and experiments suggest that Howard’s Policy Iteration could be more

efficient than it has formally been proven.

� The vast gap between the upper and lower bounds motivates several interesting

questions for future research.
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Theorem.
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efficient than it has formally been proven.

� The vast gap between the upper and lower bounds motivates several interesting
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Thank you!
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