
1/31

Theoretical Analysis of Policy Iteration

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

shivaram@cse.iitb.ac.in

August 2017

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 1 / 31

2/31

Overview

1. Background

MDP Planning
Bellman’s Equations and Bellman’s Optimality Equations
Solution strategies
Strong Running-time Bounds

2. Policy Iteration

Policy Improvement
Proof of Policy Improvement Theorem
Policy Iteration algorithm
Switching strategies and bounds

3. Analysis of Policy Iteration on 2-action MDPs

Basic Tools and Results
Howard’s Policy Iteration
Mansour and Singh’s Randomised Policy Iteration
Batch-Switching Policy Iteration

4. Summary and Outlook
Results for k -action MDPs
Open problems
References
Conclusion

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 2 / 31

2/31

Overview

1. Background

MDP Planning
Bellman’s Equations and Bellman’s Optimality Equations
Solution strategies
Strong Running-time Bounds

2. Policy Iteration

Policy Improvement
Proof of Policy Improvement Theorem
Policy Iteration algorithm
Switching strategies and bounds

3. Analysis of Policy Iteration on 2-action MDPs

Basic Tools and Results
Howard’s Policy Iteration
Mansour and Singh’s Randomised Policy Iteration
Batch-Switching Policy Iteration

4. Summary and Outlook
Results for k -action MDPs
Open problems
References
Conclusion

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 2 / 31

3/31

MDP Planning

� Markov Decision Problem: general abstraction of sequential decision making.

� An MDP comprises a tuple (S,A,R,T , γ), where

S is a set of states (with |S| = n),

A is a set of actions (with |A| = k),

R(s, a) is a bounded real number, ∀s ∈ S,∀a ∈ A, and

T (s, a) is a probability distribution over S, ∀s ∈ S,∀a ∈ A.

� A policy π : S → A specifies an action from each state, and yields trajectory

s
0, a0 = π(s0), r0, s1, a1 = π(s1), r1, s2,

� The value of a policy π from state s is:

V
π(s) = E

[

∞
∑

t=0

γ t
r

t | s0 = s, at = π(st), t = 0, 1,2, . . .

]

,where

γ ∈ [0, 1) is a discount factor.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 3 / 31

3/31

MDP Planning

� Markov Decision Problem: general abstraction of sequential decision making.

� An MDP comprises a tuple (S,A,R,T , γ), where

S is a set of states (with |S| = n),

A is a set of actions (with |A| = k),

R(s, a) is a bounded real number, ∀s ∈ S,∀a ∈ A, and

T (s, a) is a probability distribution over S, ∀s ∈ S,∀a ∈ A.

� A policy π : S → A specifies an action from each state, and yields trajectory

s
0, a0 = π(s0), r0, s1, a1 = π(s1), r1, s2,

� The value of a policy π from state s is:

V
π(s) = E

[

∞
∑

t=0

γ t
r

t | s0 = s, at = π(st), t = 0, 1,2, . . .

]

,where

γ ∈ [0, 1) is a discount factor.

Planning problem: Given S, A, R, T , γ, find a policy π⋆ from the set of all

policies Π such that ∀s ∈ S,∀π ∈ Π: Vπ⋆

(s) ≥ Vπ(s).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 3 / 31

3/31

MDP Planning

� Markov Decision Problem: general abstraction of sequential decision making.

� An MDP comprises a tuple (S,A,R,T , γ), where

S is a set of states (with |S| = n),

A is a set of actions (with |A| = k),

R(s, a) is a bounded real number, ∀s ∈ S,∀a ∈ A, and

T (s, a) is a probability distribution over S, ∀s ∈ S,∀a ∈ A.

� A policy π : S → A specifies an action from each state, and yields trajectory

s
0, a0 = π(s0), r0, s1, a1 = π(s1), r1, s2,

� The value of a policy π from state s is:

V
π(s) = E

[

∞
∑

t=0

γ t
r

t | s0 = s, at = π(st), t = 0, 1,2, . . .

]

,where

γ ∈ [0, 1) is a discount factor.

Planning problem: Given S, A, R, T , γ, find a policy π⋆ from the set of all

policies Π such that ∀s ∈ S,∀π ∈ Π: Vπ⋆

(s) ≥ Vπ(s).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 3 / 31

3/31

MDP Planning

� Markov Decision Problem: general abstraction of sequential decision making.

� An MDP comprises a tuple (S,A,R,T , γ), where

S is a set of states (with |S| = n),

A is a set of actions (with |A| = k),←− (We’ll specially consider k = 2.)

R(s, a) is a bounded real number, ∀s ∈ S,∀a ∈ A, and

T (s, a) is a probability distribution over S, ∀s ∈ S,∀a ∈ A.

� A policy π : S → A specifies an action from each state, and yields trajectory

s
0, a0 = π(s0), r0, s1, a1 = π(s1), r1, s2,

� The value of a policy π from state s is:

V
π(s) = E

[

∞
∑

t=0

γ t
r

t | s0 = s, at = π(st), t = 0, 1,2, . . .

]

,where

γ ∈ [0, 1) is a discount factor.

Planning problem: Given S, A, R, T , γ, find a policy π⋆ from the set of all

policies Π such that ∀s ∈ S,∀π ∈ Π: Vπ⋆

(s) ≥ Vπ(s).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 3 / 31

4/31

Illustration: MDPs as State Transition Diagrams

s s

s s

1 2

34

Notation: "transition probability, reward" marked on each arrow

0.2, 0

0.8, 1

0.2, 1

0.8, −1

0.2, −1

0.8, 2

0.2, 2

0.8, 0

0.5, 1

0.5, −1

0.5, −1

0.5, 2

0.5, 2

0.5, 0

0.5, 0

0.5, 1

States: s1, s2, s3, and s4.

Actions: Red (solid lines) and blue (dotted lines).

Transitions: Red action leads to same state with 20% chance, to next-clockwise state with 80% chance.
Blue action leads to next-clockwise state or 2-removed-clockwise state with equal (50%) probability.

Rewards: R(∗, ∗, s1) = 0, R(∗, ∗, s2) = 1, R(∗, ∗, s3) = −1, R(∗, ∗, s4) = 2.

Discount factor: γ = 0.9.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 4 / 31

5/31

Bellman’s Equations

� Recall: Vπ(s) = E[r0 + γr1 + γ2r2 + . . . |s0 = s, at = π(st) for t = 0, 1, . . .].

Bellman’s Equations: ∀s ∈ S,

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S T (s, π(s), s′)Vπ(s′).

Vπ : S → R is called the value function of π.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 5 / 31

5/31

Bellman’s Equations

� Recall: Vπ(s) = E[r0 + γr1 + γ2r2 + . . . |s0 = s, at = π(st) for t = 0, 1, . . .].

Bellman’s Equations: ∀s ∈ S,

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S T (s, π(s), s′)Vπ(s′).

Vπ : S → R is called the value function of π.

� Define: ∀s ∈ S,∀a ∈ A,

Qπ(s, a) = R(s, a) + γ
∑

s′∈S T (s, a, s′)Vπ(s′).

Qπ is called the action value function of π.

Observe that Vπ(s) = Qπ(s, π(s)).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 5 / 31

5/31

Bellman’s Equations

� Recall: Vπ(s) = E[r0 + γr1 + γ2r2 + . . . |s0 = s, at = π(st) for t = 0, 1, . . .].

Bellman’s Equations: ∀s ∈ S,

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S T (s, π(s), s′)Vπ(s′).

Vπ : S → R is called the value function of π.

� Define: ∀s ∈ S,∀a ∈ A,

Qπ(s, a) = R(s, a) + γ
∑

s′∈S T (s, a, s′)Vπ(s′).

Qπ is called the action value function of π.

Observe that Vπ(s) = Qπ(s, π(s)).

� The variables in Bellman’s Equations are the elements of Vπ.

n linear equations in n unknowns.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 5 / 31

5/31

Bellman’s Equations

� Recall: Vπ(s) = E[r0 + γr1 + γ2r2 + . . . |s0 = s, at = π(st) for t = 0, 1, . . .].

Bellman’s Equations: ∀s ∈ S,

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S T (s, π(s), s′)Vπ(s′).

Vπ : S → R is called the value function of π.

� Define: ∀s ∈ S,∀a ∈ A,

Qπ(s, a) = R(s, a) + γ
∑

s′∈S T (s, a, s′)Vπ(s′).

Qπ is called the action value function of π.

Observe that Vπ(s) = Qπ(s, π(s)).

� The variables in Bellman’s Equations are the elements of Vπ.

n linear equations in n unknowns.

Given S, A, T , R, γ, and a fixed policy π, we can solve Bellman’s Equations

to obtain Vπ and Qπ. This step is called Policy Evaluation.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 5 / 31

6/31

Bellman’s Optimality Equations

� The Optimal Value Function V ⋆ def
=Vπ⋆

is unique solution of: ∀s ∈ S,

V
⋆(s) = max

a∈A

(

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ⋆(s′)

)

.

These are Bellman’s Optimality Equations.

� The Optimal Action Value Function Q⋆ def
=Qπ⋆

is given by: ∀s ∈ S,∀a ∈ A,

Q⋆(s, a) = R(s, a) + γ
∑

s′∈S T (s, a, s′)V ⋆(s′).

� Given Q⋆, we may obtain π⋆ by setting, ∀s ∈ S:

π⋆(s)← argmaxa∈A Q⋆(s, a).

Given π⋆, how can we obtain V ⋆ and Q⋆?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 6 / 31

6/31

Bellman’s Optimality Equations

� The Optimal Value Function V ⋆ def
=Vπ⋆

is unique solution of: ∀s ∈ S,

V
⋆(s) = max

a∈A

(

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ⋆(s′)

)

.

These are Bellman’s Optimality Equations.

� The Optimal Action Value Function Q⋆ def
=Qπ⋆

is given by: ∀s ∈ S,∀a ∈ A,

Q⋆(s, a) = R(s, a) + γ
∑

s′∈S T (s, a, s′)V ⋆(s′).

� Given Q⋆, we may obtain π⋆ by setting, ∀s ∈ S:

π⋆(s)← argmaxa∈A Q⋆(s, a).

Given π⋆, how can we obtain V ⋆ and Q⋆? By policy evaluation (previous slide).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 6 / 31

7/31

Solution Strategies

� Value Iteration

V0 ← Arbitrary, element-wise bounded, n-length vector. t ← 0.
Repeat:

For s ∈ S:
Vt+1(s)← maxa∈A

(

R(s, a) + γ
∑

s′∈S T (s, a, s′)Vt(s
′)
)

.

t ← t + 1.

Until Vt ≈ Vt−1 (up to machine precision).

Convergence to V ⋆ guaranteed using a max-norm contraction argument.

� Linear Programming

Minimise
∑

s∈S

V (s)

subject to V (s) ≥
(

R(s, a) + γ
∑

s′

T (s, a, s′)V (s′)

)

,∀s ∈ S,∀a ∈ A.

n variables, nk constraints (or dual with nk variables, n constraints).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 7 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B, 1
1−γ

), where B is the number of bits used to represent the MDP.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B, 1
1−γ

), where B is the number of bits used to represent the MDP.

Not a strong bound.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B, 1
1−γ

), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B, 1
1−γ

), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B, 1
1−γ

), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B, 1
1−γ

), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B, 1
1−γ

), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning? poly(n, k) · kn.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B, 1
1−γ

), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning? poly(n, k) · kn.

� Bounds for Linear Programming-type approaches to MDP planning:

poly(n, k ,B) [K80, K84].

poly(n, k) · exp(O(
√

n log(n))) (Expected) [MSW96].

poly(n, k) · k0.6834n [GK17].

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B, 1
1−γ

), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning? poly(n, k) · kn.

� Bounds for Linear Programming-type approaches to MDP planning:

poly(n, k ,B) [K80, K84].

poly(n, k) · exp(O(
√

n log(n))) (Expected) [MSW96].

poly(n, k) · k0.6834n [GK17].

poly(n, k) for deterministic MDPs [MTZ10, PY13].

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

8/31

Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B, 1
1−γ

), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning? poly(n, k) · kn.

� Bounds for Linear Programming-type approaches to MDP planning:

poly(n, k ,B) [K80, K84].

poly(n, k) · exp(O(
√

n log(n))) (Expected) [MSW96].

poly(n, k) · k0.6834n [GK17].

poly(n, k) for deterministic MDPs [MTZ10, PY13].

� Appeal of Policy Iteration:

Theoretical: naturally yields strong bounds (also enjoys good weak bounds [P94]).

Practical: very fast on MDPs encountered in typical applications.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 8 / 31

9/31

Overview

1. Background

MDP Planning
Bellman’s Equations and Bellman’s Optimality Equations
Solution strategies
Strong Running-time Bounds

2. Policy Iteration

Policy Improvement
Proof of Policy Improvement Theorem
Policy Iteration algorithm
Switching strategies and bounds

3. Analysis of Policy Iteration on 2-action MDPs

Basic Tools and Results
Howard’s Policy Iteration
Mansour and Singh’s Randomised Policy Iteration
Batch-Switching Policy Iteration

4. Summary and Outlook
Results for k -action MDPs
Open problems
References
Conclusion

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 9 / 31

10/31

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31

10/31

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31

10/31

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Q (s ,) π
3

Q (s ,) π
3

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31

10/31

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Q (s ,) π Q (s ,) π
7 7

Q (s ,) π
3

Q (s ,) π
3

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31

10/31

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Improvable states

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31

10/31

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Improvable states

Improving actions

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31

10/31

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π′.

s s s s s s ss1 2 3 4 5 6 7 8

π

Improvable states

Improving actions

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31

10/31

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π′.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31

10/31

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π′.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

Policy Improvement Theorem:

(1) If π has no improvable states, then it is optimal, else

(2) if π′ is obtained as above, then

∀s ∈ S : Vπ′

(s) ≥ Vπ(s) and ∃s ∈ S : Vπ′

(s) > Vπ(s).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31

10/31

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π′.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

Policy Improvement Theorem:

(1) If π has no improvable states, then it is optimal, else

(2) if π′ is obtained as above, then

∀s ∈ S : Vπ′

(s) ≥ Vπ(s) and ∃s ∈ S : Vπ′

(s) > Vπ(s).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 10 / 31

11/31

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 11 / 31

11/31

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).

For policies π1, π2 ∈ Π, we define π1 � π2 if Vπ1 � Vπ2 ,

and we define π1 ≻ π2 if Vπ1 ≻ Vπ2 .

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 11 / 31

11/31

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).

For policies π1, π2 ∈ Π, we define π1 � π2 if Vπ1 � Vπ2 ,

and we define π1 ≻ π2 if Vπ1 ≻ Vπ2 .

� Bellman Operator. For π ∈ Π, we define Bπ : (S → R)→ (S → R) as follows:

for X : S → R and ∀s ∈ S,

(Bπ(X))(s)
def
=R(s, π(s)) + γ

∑

s′∈S

T (s, π(s), s′)X (s′).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 11 / 31

11/31

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).

For policies π1, π2 ∈ Π, we define π1 � π2 if Vπ1 � Vπ2 ,

and we define π1 ≻ π2 if Vπ1 ≻ Vπ2 .

� Bellman Operator. For π ∈ Π, we define Bπ : (S → R)→ (S → R) as follows:

for X : S → R and ∀s ∈ S,

(Bπ(X))(s)
def
=R(s, π(s)) + γ

∑

s′∈S

T (s, π(s), s′)X (s′).

� Fact 1. For π ∈ Π, X : S → R, and Y : S → R:

if X � Y , then B
π(X) � B

π(Y).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 11 / 31

11/31

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).

For policies π1, π2 ∈ Π, we define π1 � π2 if Vπ1 � Vπ2 ,

and we define π1 ≻ π2 if Vπ1 ≻ Vπ2 .

� Bellman Operator. For π ∈ Π, we define Bπ : (S → R)→ (S → R) as follows:

for X : S → R and ∀s ∈ S,

(Bπ(X))(s)
def
=R(s, π(s)) + γ

∑

s′∈S

T (s, π(s), s′)X (s′).

� Fact 1. For π ∈ Π, X : S → R, and Y : S → R:

if X � Y , then B
π(X) � B

π(Y).

� Fact 2. For π ∈ Π and X : S → R:

lim
l→∞

(Bπ)l(X) = V
π.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 11 / 31

12/31

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 12 / 31

12/31

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 12 / 31

12/31

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 12 / 31

12/31

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 12 / 31

12/31

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 12 / 31

12/31

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π′

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 12 / 31

12/31

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π′

=⇒ B
π′

(Vπ) ≻ V
π

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 12 / 31

12/31

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π′

=⇒ B
π′

(Vπ) ≻ V
π

=⇒ (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 12 / 31

12/31

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π′

=⇒ B
π′

(Vπ) ≻ V
π

=⇒ (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

=⇒ lim
l→∞

(Bπ′

)l(Vπ) � · · · � (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 12 / 31

12/31

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π′

=⇒ B
π′

(Vπ) ≻ V
π

=⇒ (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

=⇒ lim
l→∞

(Bπ′

)l(Vπ) � · · · � (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

=⇒ V
π′ ≻ V

π.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 12 / 31

13/31

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 13 / 31

13/31

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 13 / 31

13/31

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 13 / 31

13/31

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 13 / 31

13/31

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 13 / 31

13/31

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 13 / 31

13/31

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 13 / 31

14/31

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 14 / 31

14/31

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]

Batch-switching PI
Deterministic 1.6479n –

(BSPI) [KMG16a]

Recursive BSPI
Deterministic – k0.7207n

[GK17]

Recursive Simple PI
Randomised – (2 + ln(k − 1))n

[KMG16b]

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 14 / 31

14/31

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]

Batch-switching PI
Deterministic 1.6479n –

(BSPI) [KMG16a]

Recursive BSPI
Deterministic – k0.7207n

[GK17]

Recursive Simple PI
Randomised – (2 + ln(k − 1))n

[KMG16b]

Lower bounds on number of iterations

Ω(2n/7) Howard’s PI on n-state MDPs with Θ(n) actions per state [F10, HGD12].

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 14 / 31

14/31

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]

Batch-switching PI
Deterministic 1.6479n –

(BSPI) [KMG16a]

Recursive BSPI
Deterministic – k0.7207n

[GK17]

Recursive Simple PI
Randomised – (2 + ln(k − 1))n

[KMG16b]

Lower bounds on number of iterations

Ω(2n/7) Howard’s PI on n-state MDPs with Θ(n) actions per state [F10, HGD12].

Ω(2n/2) Simple PI on n-state, 2-action MDPs [MC94].

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 14 / 31

14/31

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]

Batch-switching PI
Deterministic 1.6479n –

(BSPI) [KMG16a]

Recursive BSPI
Deterministic – k0.7207n

[GK17]

Recursive Simple PI
Randomised – (2 + ln(k − 1))n

[KMG16b]

Lower bounds on number of iterations

Ω(2n/7) Howard’s PI on n-state MDPs with Θ(n) actions per state [F10, HGD12].

Ω(2n/2) Simple PI on n-state, 2-action MDPs [MC94].

Ω(n) Howard’s PI on n-state, 2-action MDPs [HZ10].

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 14 / 31

15/31

Overview

1. Background

MDP Planning
Bellman’s Equations and Bellman’s Optimality Equations
Solution strategies
Strong Running-time Bounds

2. Policy Iteration

Policy Improvement
Proof of Policy Improvement Theorem
Policy Iteration algorithm
Switching strategies and bounds

3. Analysis of Policy Iteration on 2-action MDPs

Basic Tools and Results
Howard’s Policy Iteration
Mansour and Singh’s Randomised Policy Iteration
Batch-Switching Policy Iteration

4. Summary and Outlook
Results for k -action MDPs
Open problems
References
Conclusion

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 15 / 31

16/31

Basic Tool: Policy Improvement and Policy Deprovement

π′ ≻ π.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 16 / 31

16/31

Basic Tool: Policy Improvement and Policy Deprovement

π′ ≻ π.

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Deprovement

s s s s s s ss1 2 3 4 5 6 7 8

π

π � π′′.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 16 / 31

17/31

Basic Tool: Property of Improvement sets in 2-action MDPs

Consider π, π′ ∈ Π. If Vπ 6= Vπ′

, then π and π′ cannot

have the same set of improvable states.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 17 / 31

17/31

Basic Tool: Property of Improvement sets in 2-action MDPs

Consider π, π′ ∈ Π. If Vπ 6= Vπ′

, then π and π′ cannot

have the same set of improvable states.

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 17 / 31

17/31

Basic Tool: Property of Improvement sets in 2-action MDPs

Consider π, π′ ∈ Π. If Vπ 6= Vπ′

, then π and π′ cannot

have the same set of improvable states.

1 1 0 0 0 1 1 0
≻

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 17 / 31

17/31

Basic Tool: Property of Improvement sets in 2-action MDPs

Consider π, π′ ∈ Π. If Vπ 6= Vπ′

, then π and π′ cannot

have the same set of improvable states.

1 1 0 0 0 1 1 0
≻

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1

�

1 0 1 1 1 1 0 1

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 17 / 31

17/31

Basic Tool: Property of Improvement sets in 2-action MDPs

Consider π, π′ ∈ Π. If Vπ 6= Vπ′

, then π and π′ cannot

have the same set of improvable states.

1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1
≻ ≻

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1

�

1 0 1 1 1 1 0 1

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 17 / 31

17/31

Basic Tool: Property of Improvement sets in 2-action MDPs

Consider π, π′ ∈ Π. If Vπ 6= Vπ′

, then π and π′ cannot

have the same set of improvable states.

1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1
≻ ≻

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1

� �

1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 17 / 31

17/31

Basic Tool: Property of Improvement sets in 2-action MDPs

Consider π, π′ ∈ Π. If Vπ 6= Vπ′

, then π and π′ cannot

have the same set of improvable states.

1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1
≻ ≻

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1

� �

1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0

Contradiction!

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 17 / 31

17/31

Basic Tool: Property of Improvement sets in 2-action MDPs

Consider π, π′ ∈ Π. If Vπ 6= Vπ′

, then π and π′ cannot

have the same set of improvable states.

1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1
≻ ≻

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1

� �

1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0

Contradiction!

1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 17 / 31

17/31

Basic Tool: Property of Improvement sets in 2-action MDPs

Consider π, π′ ∈ Π. If Vπ 6= Vπ′

, then π and π′ cannot

have the same set of improvable states.

1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1
≻ ≻

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1

� �

1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0

Contradiction!

1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1

Equal value functions.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 17 / 31

18/31

Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 18 / 31

18/31

Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 18 / 31

18/31

Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π′ 0 0 0 0 0 0 0 1 1 1 1 1

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 18 / 31

18/31

Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

Possible?

π′ 0 0 0 0 0 0 0 1 1 1 1 1

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 18 / 31

18/31

Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π′ 0 0 0 0 0 0 0 1 1 1 1 1

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 18 / 31

18/31

Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π′ 0 0 0 0 0 0 0 1 1 1 1 1

π1 0 0 0 0 0 0 0 1 1 1 1 0

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 18 / 31

18/31

Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π′ 0 0 0 0 0 0 0 1 1 1 1 1

π1 0 0 0 0 0 0 0 1 1 1 1 0

π2 0 0 0 0 0 0 0 1 1 1 0 0

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 18 / 31

18/31

Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π′ 0 0 0 0 0 0 0 1 1 1 1 1

π1 0 0 0 0 0 0 0 1 1 1 1 0

π2 0 0 0 0 0 0 0 1 1 1 0 0

π3 0 0 0 0 0 0 0 1 1 0 0 0

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 18 / 31

18/31

Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π′ 0 0 0 0 0 0 0 1 1 1 1 1

π1 0 0 0 0 0 0 0 1 1 1 1 0

π2 0 0 0 0 0 0 0 1 1 1 0 0

π3 0 0 0 0 0 0 0 1 1 0 0 0

π4 0 0 0 0 0 0 0 1 0 0 0 0

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 18 / 31

18/31

Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π′ 0 0 0 0 0 0 0 1 1 1 1 1

π1 0 0 0 0 0 0 0 1 1 1 1 0

π2 0 0 0 0 0 0 0 1 1 1 0 0

π3 0 0 0 0 0 0 0 1 1 0 0 0

π4 0 0 0 0 0 0 0 1 0 0 0 0

π 0 0 0 0 0 0 0 0 0 0 0 0

If π has m improvable states and π
Howard’s PI−−−−−−→ π′, then

there exist m policies π′′ such that π′ � π′′ ≻ π.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 18 / 31

19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31

19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31

19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31

19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

� Number of policies with fewer than m⋆ improvable states visited

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31

19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

� Number of policies with fewer than m⋆ improvable states visited

≤
(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ · · ·+
(

n

m⋆ − 1

)

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31

19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

� Number of policies with fewer than m⋆ improvable states visited

≤
(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ · · ·+
(

n

m⋆ − 1

)

≤ 3
2n

n
.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31

19/31

Howard’s Policy Iteration (2-action MDPs)

� Take m⋆ = n
3
.

� Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

� Number of policies with fewer than m⋆ improvable states visited

≤
(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ · · ·+
(

n

m⋆ − 1

)

≤ 3
2n

n
.

Number of iterations taken by Howard’s PI: O
(

2n

n

)

[MS99, HGDJ14].

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 19 / 31

20/31

Randomised Policy Iteration (2-action MDPs)

From the set of improving states, pick a

non-empty subset SI uniformly at random.

Switch actions of all states in SI .

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 20 / 31

20/31

Randomised Policy Iteration (2-action MDPs)

From the set of improving states, pick a

non-empty subset SI uniformly at random.

Switch actions of all states in SI .

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 20 / 31

20/31

Randomised Policy Iteration (2-action MDPs)

From the set of improving states, pick a

non-empty subset SI uniformly at random.

Switch actions of all states in SI .

π7 0 0 0 0 0 0 0 0 0 1 1 1 1/7

π6 0 0 0 0 0 0 0 0 0 1 1 0 1/7

π5 0 0 0 0 0 0 0 0 0 1 0 1 1/7

π4 0 0 0 0 0 0 0 0 0 1 0 0 1/7

π3 0 0 0 0 0 0 0 0 0 0 1 1 1/7

π2 0 0 0 0 0 0 0 0 0 0 1 0 1/7

π1 0 0 0 0 0 0 0 0 0 0 0 1 1/7

π 0 0 0 0 0 0 0 0 0 0 0 0 Probability

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 20 / 31

20/31

Randomised Policy Iteration (2-action MDPs)

From the set of improving states, pick a

non-empty subset SI uniformly at random.

Switch actions of all states in SI .

π7 0 0 0 0 0 0 0 0 0 1 1 1 1/7

π6 0 0 0 0 0 0 0 0 0 1 1 0 1/7

π5 0 0 0 0 0 0 0 0 0 1 0 1 1/7

π4 0 0 0 0 0 0 0 0 0 1 0 0 1/7

π3 0 0 0 0 0 0 0 0 0 0 1 1 1/7

π2 0 0 0 0 0 0 0 0 0 0 1 0 1/7

π1 0 0 0 0 0 0 0 0 0 0 0 1 1/7

π 0 0 0 0 0 0 0 0 0 0 0 0 Probability

If π has m improvable states and π
Randomised PI−−−−−−−−→ π′, then with

probability 1/2, there exist 2m−1 policies π′′ such that

π′′ ≻ π and ¬(π′′ ≻ π′).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 20 / 31

20/31

Randomised Policy Iteration (2-action MDPs)

From the set of improving states, pick a

non-empty subset SI uniformly at random.

Switch actions of all states in SI .

π7 0 0 0 0 0 0 0 0 0 1 1 1 1/7

π6 0 0 0 0 0 0 0 0 0 1 1 0 1/7

π5 0 0 0 0 0 0 0 0 0 1 0 1 1/7

π4 0 0 0 0 0 0 0 0 0 1 0 0 1/7

π3 0 0 0 0 0 0 0 0 0 0 1 1 1/7

π2 0 0 0 0 0 0 0 0 0 0 1 0 1/7

π1 0 0 0 0 0 0 0 0 0 0 0 1 1/7

π 0 0 0 0 0 0 0 0 0 0 0 0 Probability

If π has m improvable states and π
Randomised PI−−−−−−−−→ π′, then with

probability 1/2, there exist 2m−1 policies π′′ such that

π′′ ≻ π and ¬(π′′ ≻ π′).

Number of policies eliminated is exponential in m. As before,

m⋆ can be tuned such that the expected number of iterations

taken by Randomised PI = O(1.7172n) [MS99].

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 20 / 31

21/31

Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most ___ iterations on a 2-state MDP!

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 21 / 31

21/31

Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most _3_ iterations on a 2-state MDP!

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 21 / 31

21/31

Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most _3_ iterations on a 2-state MDP!

00 00

01

11

01

00

10

11

10

00

11

10

11

01

11

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 21 / 31

22/31

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 22 / 31

22/31

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 22 / 31

22/31

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

π2 0 1 1 0 0 0 1 0 1 0
x





π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 22 / 31

22/31

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

π3 0 1 1 0 1 1 1 0 1 0
x





x





π2 0 1 1 0 0 0 1 0 1 0
x





π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 22 / 31

22/31

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

π4 0 1 1 0 1 1 1 1 1 0
x





π3 0 1 1 0 1 1 1 0 1 0
x





x





π2 0 1 1 0 0 0 1 0 1 0
x





π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 22 / 31

22/31

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

π4 0 1 1 0 1 1 1 1 1 0
x





π3 0 1 1 0 1 1 1 0 1 0
x





x





π2 0 1 1 0 0 0 1 0 1 0
x





π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

� Left-most batch can change only when all other columns are non-improvable.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 22 / 31

22/31

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

π4 0 1 1 0 1 1 1 1 1 0
x





π3 0 1 1 0 1 1 1 0 1 0
x





x





π2 0 1 1 0 0 0 1 0 1 0
x





π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

� Left-most batch can change only when all other columns are non-improvable.

� Left-most batch can change at most 3 times (following previous result).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 22 / 31

22/31

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.

Given a policy, improve the rightmost set containing an improvable state.

π4 0 1 1 0 1 1 1 1 1 0
x





π3 0 1 1 0 1 1 1 0 1 0
x





x





π2 0 1 1 0 0 0 1 0 1 0
x





π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

� Left-most batch can change only when all other columns are non-improvable.

� Left-most batch can change at most 3 times (following previous result).

� T (n) ≤ 3× T (n− 2) ≤
√

3
n
.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 22 / 31

23/31

Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most 5 iterations on a 3-state MDP!

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 23 / 31

23/31

Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most 5 iterations on a 3-state MDP!

000 000

001

111

101

001

011

111

011

001

000

011

110

010

110

111

101

111

110

011

111

110

010

110

111

011

010

110

010

011

000

111

100

101

001

101

100

111

110

100

110

111

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 23 / 31

23/31

Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most 5 iterations on a 3-state MDP!

000 000

001

111

101

001

011

111

011

001

000

011

110

010

110

111

101

111

110

011

111

110

010

110

111

011

010

110

010

011

000

111

100

101

001

101

100

111

110

100

110

111

The structures drawn above are called Trajectory-bounding Trees (TBTs) [KMG16a]

(and correspond to the Order Regularity Problem [H12, GHDJ15]).

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 23 / 31

23/31

Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most 5 iterations on a 3-state MDP!

000 000

001

111

101

001

011

111

011

001

000

011

110

010

110

111

101

111

110

011

111

110

010

110

111

011

010

110

010

011

000

111

100

101

001

101

100

111

110

100

110

111

The structures drawn above are called Trajectory-bounding Trees (TBTs) [KMG16a]

(and correspond to the Order Regularity Problem [H12, GHDJ15]).

BSPI with 3-sized batches gives T (n) ≤ 5× T (n − 3) ≤ 1.71n.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 23 / 31

24/31

Batch-Switching Policy Iteration (BSPI)

Principle of constructing TBTs:

L+
π,IS

def
={π′ ∈ Π : ∃s ∈ IS(π′(s) 6= π(s)) ∧ ∀s ∈ (S \ IS)(π′(s) = π(s))};

L−

π,IS

def
={π′ ∈ Π : ∀s ∈ IS(π′(s) = π(s))}.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 24 / 31

24/31

Batch-Switching Policy Iteration (BSPI)

Principle of constructing TBTs:

L+
π,IS

def
={π′ ∈ Π : ∃s ∈ IS(π′(s) 6= π(s)) ∧ ∀s ∈ (S \ IS)(π′(s) = π(s))};

L−

π,IS

def
={π′ ∈ Π : ∀s ∈ IS(π′(s) = π(s))}.

L+
π,IS

1 1 1 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0

L−

π,IS

π, IS: 0 0 0 0 0

0 0 0 0 1
0 0 0 1 0
0 0 0 1 1

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 24 / 31

24/31

Batch-Switching Policy Iteration (BSPI)

Principle of constructing TBTs:

L+
π,IS

def
={π′ ∈ Π : ∃s ∈ IS(π′(s) 6= π(s)) ∧ ∀s ∈ (S \ IS)(π′(s) = π(s))};

L−

π,IS

def
={π′ ∈ Π : ∀s ∈ IS(π′(s) = π(s))}.

L+
π,IS

1 1 1 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0

L−

π,IS

π, IS: 0 0 0 0 0

0 0 0 0 1
0 0 0 1 0
0 0 0 1 1

If (π1, IS1), (π2, IS2), . . . , (πt , ISt) is a trajectory encountered

by PI, it must satisfy, for 1 ≤ i < j ≤ t :

L
−

πi ,ISi
∩ L

+
πj ,ISj

= ∅.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 24 / 31

25/31

BSPI: Bounds

Batch size Depth of TBT Bound on number of iterations

1 2 2n

2 3 1.7321n

3 5 1.7100n

4 8 1.6818n

5 13 1.6703n

6 21 1.6611n

7 33 1.6479n

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 25 / 31

25/31

BSPI: Bounds

Batch size Depth of TBT Bound on number of iterations

1 2 2n

2 3 1.7321n

3 5 1.7100n

4 8 1.6818n

5 13 1.6703n

6 21 1.6611n

7 33 1.6479n

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 25 / 31

25/31

BSPI: Bounds

Batch size Depth of TBT Bound on number of iterations

1 2 2n

2 3 1.7321n

3 5 1.7100n

4 8 1.6818n

5 13 1.6703n

6 21 1.6611n

7 33 1.6479n

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].

Will the bound continue to be non-increasing in the batch size?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 25 / 31

25/31

BSPI: Bounds

Batch size Depth of TBT Bound on number of iterations

1 2 2n

2 3 1.7321n

3 5 1.7100n

4 8 1.6818n

5 13 1.6703n

6 21 1.6611n

7 33 1.6479n

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].

Will the bound continue to be non-increasing in the batch size?

If so, 1.6479n would be a bound for Howard’s Policy Iteration!

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 25 / 31

26/31

BSPI: Effect of Batch Size b

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10

b

Iterations

 0

 100

 200

 300

 400

 500

 600

 700

1 200 400 600 800 1000

b

Iterations

n = 10 n = 1000

Averaged over n-state, 2-action MDPs with randomly generated transition and reward

functions. Each point is an average over 100 randomly-generated MDP instances and

initial policies [KMG16a].

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 26 / 31

27/31

Overview

1. Background

MDP Planning
Bellman’s Equations and Bellman’s Optimality Equations
Solution strategies
Strong Running-time Bounds

2. Policy Iteration

Policy Improvement
Proof of Policy Improvement Theorem
Policy Iteration algorithm
Switching strategies and bounds

3. Analysis of Policy Iteration on 2-action MDPs

Basic Tools and Results
Howard’s Policy Iteration
Mansour and Singh’s Randomised Policy Iteration
Batch-Switching Policy Iteration

4. Summary and Outlook
Results for k -action MDPs
Open problems
References
Conclusion

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 27 / 31

28/31

Policy Iteration on k-action MDPs

� What are the main differences between 2-action and k -action MDPs (k > 2)?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 28 / 31

28/31

Policy Iteration on k-action MDPs

� What are the main differences between 2-action and k -action MDPs (k > 2)?

In k -action MDPs, states can be both improvable and deprovable.
In k -action MDPs, there can be more than one improving action.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 28 / 31

28/31

Policy Iteration on k-action MDPs

� What are the main differences between 2-action and k -action MDPs (k > 2)?

In k -action MDPs, states can be both improvable and deprovable.
In k -action MDPs, there can be more than one improving action.

� Mansour and Singh’s analysis makes no assumption on which improving action is
picked, only that one is picked at all, in the states selected to be switched.

Bound for Howard’s PI: O
(

kn

n

)

iterations [MS99, HGDJ14].

Bound for Randomised PI: O
(((

1 + 2
log(k)

)

k
2

)n)

expected iterations [MS99].

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 28 / 31

28/31

Policy Iteration on k-action MDPs

� What are the main differences between 2-action and k -action MDPs (k > 2)?

In k -action MDPs, states can be both improvable and deprovable.
In k -action MDPs, there can be more than one improving action.

� Mansour and Singh’s analysis makes no assumption on which improving action is
picked, only that one is picked at all, in the states selected to be switched.

Bound for Howard’s PI: O
(

kn

n

)

iterations [MS99, HGDJ14].

Bound for Randomised PI: O
(((

1 + 2
log(k)

)

k
2

)n)

expected iterations [MS99].

� Randomised Simple PI [KMG16b]: Switch only the “rightmost” improvable state;
switch to an improving action picked uniformly at random.

Bound: (2 + ln(k − 1))n expected iterations.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 28 / 31

28/31

Policy Iteration on k-action MDPs

� What are the main differences between 2-action and k -action MDPs (k > 2)?

In k -action MDPs, states can be both improvable and deprovable.
In k -action MDPs, there can be more than one improving action.

� Mansour and Singh’s analysis makes no assumption on which improving action is
picked, only that one is picked at all, in the states selected to be switched.

Bound for Howard’s PI: O
(

kn

n

)

iterations [MS99, HGDJ14].

Bound for Randomised PI: O
(((

1 + 2
log(k)

)

k
2

)n)

expected iterations [MS99].

� Randomised Simple PI [KMG16b]: Switch only the “rightmost” improvable state;
switch to an improving action picked uniformly at random.

Bound: (2 + ln(k − 1))n expected iterations.

� Recursive BSPI [GK17]: Deterministic switching strategy based on a binary
hierarchy of actions (that facilitates reusing the 2-action MDP analysis).

Bound: k0.7207n iterations.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 28 / 31

29/31

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 29 / 31

29/31

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 29 / 31

29/31

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

� Is there a super-linear lower bound on the iterations taken by Howard’s PI on

2-action MDPs?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 29 / 31

29/31

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

� Is there a super-linear lower bound on the iterations taken by Howard’s PI on

2-action MDPs?

� Is (Howard’s) PI strongly polynomial on deterministic MDPs?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 29 / 31

29/31

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

� Is there a super-linear lower bound on the iterations taken by Howard’s PI on

2-action MDPs?

� Is (Howard’s) PI strongly polynomial on deterministic MDPs?

� Does PI admit a smoothed analysis similar to the Simplex algorithm for Linear

Programming [ST04]?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 29 / 31

29/31

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

� Is there a super-linear lower bound on the iterations taken by Howard’s PI on

2-action MDPs?

� Is (Howard’s) PI strongly polynomial on deterministic MDPs?

� Does PI admit a smoothed analysis similar to the Simplex algorithm for Linear

Programming [ST04]?

� Is there a strongly polynomial algorithm for MDP planning?

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 29 / 31

30/31

References
R. A. Howard, 1960. Dynamic Programming and Markov Processes. MIT Press, 1960.

L. G. Khachiyan, 1980. Polynomial algorithms in linear programming. USSR Computational Mathematics and
Mathematical Physics, 20(1):53–72.

N. Karmarkar, 1984. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):373–396, 1984.

Mary Melekopoglou and Anne Condon, 1994. On the complexity of the policy improvement algorithm for Markov decision
processes. INFORMS Journal on Computing, 6(2):188–192, 1994.

Martin L. Puterman, 1994. Markov Decision Processes. Wiley, 1994.

Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling, 1995. On the complexity of solving Markov decision
problems. In Proc. UAI 1995, pp. 394–402, Morgan Kaufmann, 1995.

Jiří Matoušek, Micha Sharir, and Emo Welzl, 1996. A Subexponential Bound for Linear Programming. Algorithmica,
16(4/5):498–516, 1996.

Yishay Mansour and Satinder Singh, 1999. On the Complexity of Policy Iteration. In Proc. UAI 1999, pp. 401–408, AUAI,
1999.

Daniel A. Spielman and Shang-Hua Teng, 2004. Journal of the ACM, 51(3):385–463, 2004.

John Fearnley, 2010. Exponential Lower Bounds for Policy Iteration. In Proc. ICALP 2010, pp. 551–562, Springer, 2010.

Thomas Dueholm Hansen and Uri Zwick, 2010. Lower bounds for Howard’s algorithm for finding minimum mean-cost
cycles. In Proc. ISAAC 2010, pp. 415–426, Springer 2010.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 30 / 31

30/31

References
Omid Madani, Mikkel Thorup, and Uri Zwick, 2010. Discounted deterministic Markov decision processes and discounted
all-pairs shortest paths. ACM Transactions on Algorithms, 6(2):33:1–33:25, 2010.

Thomas Dueholm Hansen, 2012. Worst-case Analysis of Strategy Iteration and the Simplex Method. PhD thesis,
Department of Computer Science, Aarhus University, July 2012.

Romain Hollanders, Balázs Gerencsér, Jean-Charles Delvenne, 2012. The complexity of policy iteration is exponential
for discounted Markov decision processes. In Proc. CDC 2012, pp. 5997–6002, IEEE, 2012.

Ian Post and Yinyu Ye. The Simplex Method is Strongly Polynomial for Deterministic Markov Decision Processes. In Proc.
SODA 2013, pp.1465–1473, SIAM, 2013.

Romain Hollanders, Balázs Gerencsér, Jean-Charles Delvenne, and Raphaël M. Jungers, 2014. Improved bound on
the worst case complexity of policy iteration. http://arxiv.org/pdf/1410.7583v1.pdf.

Balázs Gerencsér, Romain Hollanders, Jean-Charles Delvenne, and Raphaël M. Jungers, 2015. A complexity analysis
of policy iteration through combinatorial matrices arising from unique sink
orientations.http://arxiv.org/pdf/1407.4293v2.pdf.

Shivaram Kalyanakrishnan, Utkarsh Mall, and Ritish Goyal, 2016a. Batch-Switching Policy Iteration. In Proc. IJCAI
2016, pp. 3147–3153, AAAI Press, 2016.

Shivaram Kalyanakrishnan, Neeldhara Misra, and Aditya Gopalan, 2016b. Randomised Procedures for Initialising and
Switching Actions in Policy Iteration. In Proc. AAAI 2016, pp. 3145–3151, AAAI Press, 2016.

Anchit Gupta and Shivaram Kalyanakrishnan, 2017. Improved Strong Worst-case Upper Bounds for MDP Planning. In
Proc. IJCAI 2017, pp. 1788–1794, IJCAI, 2017.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 30 / 31

http://arxiv.org/pdf/1410.7583v1.pdf
http://arxiv.org/pdf/1407.4293v2.pdf

31/31

Conclusion

� Policy Iteration is an elegant family of algorithms for MDP Planning.

� Under the infinite precision arithmetic computation model, it naturally yields strong

running time bounds, which depend only on the number of states and actions.

� This tutorial is prompted by some recent progress that has resulted in exponential

improvements in upper bounds.

� The main tool of analysis remains basic: the well-known Policy Improvement

Theorem.

� Both theory and experiments suggest that Howard’s Policy Iteration could be more

efficient than it has formally been proven.

� The vast gap between the upper and lower bounds motivates several interesting

questions for future research.

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 31 / 31

31/31

Conclusion

� Policy Iteration is an elegant family of algorithms for MDP Planning.

� Under the infinite precision arithmetic computation model, it naturally yields strong

running time bounds, which depend only on the number of states and actions.

� This tutorial is prompted by some recent progress that has resulted in exponential

improvements in upper bounds.

� The main tool of analysis remains basic: the well-known Policy Improvement

Theorem.

� Both theory and experiments suggest that Howard’s Policy Iteration could be more

efficient than it has formally been proven.

� The vast gap between the upper and lower bounds motivates several interesting

questions for future research.

Thank you!

Shivaram Kalyanakrishnan (2017) Theoretical Analysis of Policy Iteration 31 / 31

	MDP Planning
	Policy Iteration
	Analysis
	Summary

