
CS 747 (Autumn 2018): End-semester Examination

Instructor: Shivaram Kalyanakrishnan

2.00 p.m. – 5.00 p.m., November 14, 2018, SOM IC3/IC4

Total marks: 25

Note. Provide justifications and/or calculations along with each answer to illustrate how you ar-
rived at the answer.

Question 1. The episodic MDP shown below as a state diagram has a set of non-terminal states
S = {s1, s2, s3} and a set of actions A = {U,D} (U for “up”, D for “down”, as in the figure). All
transitions are deterministic. Each episode starts at s1 and reaches a terminal state after exactly
two transitions. Rewards are shown in the diagram. No discounting is used.
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Terminal
state

(D, 5)

(U, 4)

(U, 11)

(U, 12)

(D, 9)

(D, 0)
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Consider an agent that is learning an action value function Q while following an ǫ-greedy policy,
with ǫ = 1

2
(hence, a suboptimal action will be picked with probability 25%.). The agent goes along

a trajectory s0, a0, r0, s1, a1, r1, s2, . . . , and uses a learning rate of 1

t+1
for the t-th learning update,

t ≥ 0. You do not have to substitute numbers from the MDP for 1a, but you must for 1b and 1c.

1a. Write down the formula for updating Q after each transition (i) if the agent applies Q-learning
and (ii) if the agent applies Sarsa. [1 mark]

1b. If the agent performs Q-learning updates, what will be the entries of Q at convergence? To
what policy will behaviour converge? [3 marks]

1c. If the agent performs Sarsa updates, what will be the entries of Q at convergence? To what
policy will behaviour converge? [3 marks]

Question 2. Suppose, on the MDP from Question 1, an agent takes actions uniformly at random
from each state. It uses Monte Carlo policy evaluation to estimate the value function of this random
policy—but is constrained to use just a single parameter, V , to serve as the estimate of each state’s
value. It is as though each state has a feature value of 1, which gets multiplied by the learned
parameter V to approximate the state’s value.

What is V at convergence? [2 marks]



Question 3. This question relates to the implementation of transition functions for MDPs.

3a. Assume the states of the MDP to implement are 1, 2, . . . , n and the actions are 1, 2, . . . , k. You
are given the transition function as a real-valued array T [ ][ ][ ], wherein the first index gives
the start state, the second index the action, and the third index the next state. The entry
contains the corresponding transition probability. Your only access to random numbers is
through the function random(0, 1), which returns a real number drawn uniformly at random
from [0, 1). You can only make a single call to this function.

Provide pseudocode for getNextState(), which should take in state s and action a as input,
and return next state s′ as output. The probability that s′ ∈ {1, 2, . . . , n} is the output must
be exactly T [s][a][s′]. [2 marks]

3b. For fixed s and a, what is the expected number of times that getNextState(s, a) will be called
before a particular state s′ is returned as the output? Your answer can be in terms of the
entries of T [ ][ ][ ]. [2 marks]

Question 4. The following code snippet prints a sequence (wt)
∞

t=0. Recall that random(0, 1)
returns a real number drawn uniformly at random from [0, 1).

w0 ← 0.
For t = 1, 2, . . .

Print wt−1.
xt ← random(0, 1).
yt ← random(0, 1).
zt ← 0.
If ((xt)

2 + (yt)
2 < 1)

zt ← 1.
wt ← wt−1 +

1

t
(zt − wt−1).

What is the logic being implemented by the code? Does the sequence (wt)
∞

t=0 converge (if so,
to what value)? If it does not converge, what behaviour does the sequence exhibit? [4 marks]

Question 5. We studied REINFORCE and other policy gradient algorithms in class in the context
of learning. Recall that we derived an expression for the gradient of the objective (such as the value
of the start state) with respect to the parameters of the policy, and showed how an unbiased estimate
of the gradient can be obtained by sequentially sampling the MDP. The idea was to then perform
stochastic gradient ascent.

Now consider the planning setting, which we considered in the first half of the course. With ac-
cess to the MDP’s transition and reward functions in a compact form, it is conceivable to compute
the gradient described above exactly. Why, then, are policy gradient methods typically not used in
place of planning methods such as value iteration, policy iteration, and linear programming? Can
you think of any use that policy gradient methods might still have in the planning setting? [2 marks]



Question 6. Describe the main advances over AlphaGo that were demonstrated in the AlphaGo
Zero program. (Recall that both of these programs were designed to play Go. Do not confuse
AlphaGo Zero with AlphaZero, which was a general-purpose game-playing program also applied to
games other than Go.) [2 marks]

Question 7. MDPs M1 = (S,A, T,R1, γ) and M2 = (S,A, T,R2, γ) are identical except for their
reward functions (notations are as usual). It so happens that there is a policy π : S → A that is
optimal both for M1 and for M2.

Now consider the MDP M3 = (S,A, T,R1 + R2, γ). In other words, M3 is identical to M1 and
M2 except for its reward function. The reward for each transition under M3 is the sum of the re-
wards obtained for the same transition under M1 and M2. Is π guaranteed to be an optimal policy
for M3? Prove that your answer is correct. Assume that all three MDPs implement continuing
tasks, with γ < 1. [4 marks]



Solutions

1a. If the agent goes along trajectory s0, a0, r0, s1, a1, r1, s2, . . . , then the t-th update under Q-
learning is:

Q(st, at)← Q(st, at) +
1

t
(rt +max

a∈A

Q(st+1, a)−Q(st, at)).

The update under Sarsa is:

Q(st, at)← Q(st, at) +
1

t
(rt +Q(st+1, at+1)−Q(st, at)).

1b. Q-learning converges to the optimal action value function:

Q(s1, U) = 15, Q(s1, D) = 17, Q(s2, U) = 11, Q(s2, D) = 9, Q(s3, U) = 12, Q(s3, D) = 0.

The policy π followed at convergence is ǫ-greedy with respect to Q.

π(s1, U) = 0.25, π(s1, D) = 0.75, π(s2, U) = 0.75, π(s2, D) = 0.25, π(s3, U) = 0.75, π(s3, D) = 0.25.

1c. Sarsa converges such that Q is the action value function of the policy being followed, which is
itself ǫ-greedy with respect to Q.

Q(s1, U) = 14.5, Q(s1, D) = 14, Q(s2, U) = 11, Q(s2, D) = 9, Q(s3, U) = 12, Q(s3, D) = 0.

π(s1, U) = 0.75, π(s1, D) = 0.25, π(s2, U) = 0.75, π(s2, D) = 0.25, π(s3, U) = 0.75, π(s3, D) = 0.25.

2. The stationary distribution Dπ of the random policy π evaluates to:

Dπ(s1) =
1

2
, Dπ(s2) =

1

4
, Dπ(s3) =

1

4
.

We also have
V π(s1) = 12.5, V π(s2) = 10, V π(s3) = 6.

Thus,

V = argmin
x

(

1

2
(x− 12.5)2 +

1

4
(x− 10)2 +

1

4
(x− 6)2

)

= 10.25.

3a. Here is one possible implementation.

getNextState(s, a):
r ← random(0, 1).
For i = 1, 2, . . . , n− 1

r ← r − T [s][a][i].
If r ≤ 0

Return i.
Return n.

3b. If T [s][a][s′] = 0, then naturally s′ will never get returned. If not, the expected number of calls
is given by

(T [s][a][s′])(1) + (1− T [s][a][s′])(T [s][a][s′])(2) + (1− T [s][a][s′])2(T [s][a][s′])(3) + · · · =
1

T [s][a][s′]
.



4. Observe that wt for t ≥ 1 is merely the arithmetic mean of z1, z2, . . . , zt. Also observe that
z1, z2, , z3, . . . are generated i.i.d. from the same process, which can be thought of as implementing
a Bernoulli distribution. Hence, the sequence (wt)

∞

t=0 will converge to the mean of this Bernoulli
distribution. It is seen that the mean of the distribution (equal to the probability of emitting 1)
is the probability that a point picked uniformly at random from the area of a square with vertices
(0, 0), (0, 1), (1, 0), (1, 1) falls within the circle x2 + y2 = 1. This probability is π

4
.

5. Planning methods such as value iteration, policy iteration, and linear programming are usually
applied when it is feasible to compute an optimal policy for the MDP exactly (or to arbitrary
precision). And indeed the computation time is polynomial in associated parameters such as the
number of states and actions and the horizon. By contrast, policy gradient methods only assure
convergence to a local optimum. Note that they necessarily operate on stochastic policies, although,
in general, MDPs need not have stochastic policies that are optimal. In short: policy gradient
methods are not the method choice when exact solution is feasible.

Naturally, in the planning setting too one could encounter problems which are intractable to
solve exactly, such as when the state space is extremely large. One can imagine creating a param-
eterised policy and optimising it in such a scenario. In fact policy gradient methods are often used
in conjunction with POMDP planning, in which exact computation can be prohibitively expensive
even for small state spaces.

6. Unlike AlphaGo, which was bootstrapped using supervised learning on a human expert database,
AlphaGo Zero was trained completely based on self-play, starting with a random policy. The latter
program (1) only used a raw encoding of the board; (2) shared weights between the value and
policy networks; and (3) used the learned values during game play with no Monte Carlo rollouts.
By contrast, AlphaGo used processed features; employed separate value and policy networks; and
performed rollouts while playing the game.

7. For every policy π′, we have, for each state s ∈ S,

V π′

M3
(s) = Eπ′ [r0M3

+ γr1M3
+ γ2r2M3

+ . . . |s0 = s]

= Eπ′ [(r0M1
+ r0M2

) + γ(r1M1
+ r1M2

) + γ2(r2M1
+ r2M2

) + . . . |s0 = s]

= Eπ′ [r0M1
+ γr1M1

+ γ2r2M1
+ . . . |s0 = s] + Eπ′ [r0M2

+ γr1M2
+ γ2r2M2

+ . . . |s0 = s]

= V π′

M1
(s) + V π′

M2
(s).

Now, suppose that there is a policy πx such that for some state s ∈ S, V πx

M3
(s) > V π

M3
(s). Hence,

V πx

M1
(s) + V πx

M2
(s) > V π

M1
(s) + V π

M2
(s), which implies V πx

M1
(s) > V π

M1
(s) or V πx

M2
(s) > V π

M2
(s)—neither

of which is possible since π is optimal both for M1 and for M2. Thus, π must be an optimal policy
for M3.

5


