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Value Iteration

V0 ← Arbitrary, element-wise bounded, n-length vector. t ← 0.

Repeat:
For s ∈ S:

Vt+1(s)← maxa∈A

∑

s′∈S T (s, a, s′) (R(s, a, s′) + γVt (s
′)).

t ← t + 1.

Until Vt ≈ Vt−1 (up to machine precision).
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′)).

t ← t + 1.

Until Vt ≈ Vt−1 (up to machine precision).

Convergence to V ⋆ guaranteed using a max-norm contraction argument.
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Linear Programming

Minimise
∑

s∈S

V (s)

subject to V (s) ≥
∑

s′∈S

T (s, a, s′)
(

R(s, a, s′) + γV (s′)
)

, ∀s ∈ S,∀a ∈ A.
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(

R(s, a, s′) + γV (s′)
)

, ∀s ∈ S,∀a ∈ A.

Let |S| = n and |A| = k .

n variables, nk constraints.

Can also be posed as dual with nk variables and n constraints.
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Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π
′.
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Policy Improvement

Policy Improvement Theorem:

(1) If π has no improvable states, then it is optimal, else

(2) if π′ is obtained as above, then
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Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).
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def
=

∑

s′∈S

T (s, π(s), s′)
(

R(s, π(s), s′) + γX (s′)
)

.

� Fact 1. For π ∈ Π, X : S → R, and Y : S → R:

if X � Y , then B
π(X ) � B

π(Y ).

� Fact 2. For π ∈ Π and X : S → R:

lim
l→∞

(Bπ)l(X ) = V
π
. (from Banach’s FP Theorem)
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Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15



9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15



9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15



9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15



9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15



9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π
′

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15



9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π
′

=⇒ B
π′

(Vπ) ≻ V
π

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15



9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π
′

=⇒ B
π′

(Vπ) ≻ V
π

=⇒ (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15



9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π
′

=⇒ B
π′

(Vπ) ≻ V
π

=⇒ (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

=⇒ lim
l→∞

(Bπ′

)l(Vπ) � · · · � (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15



9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π
′

=⇒ B
π′

(Vπ) ≻ V
π

=⇒ (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

=⇒ lim
l→∞

(Bπ′

)l(Vπ) � · · · � (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

=⇒ V
π′

≻ V
π
.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15



10/15

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).
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Overview

1. Value Iteration

2. Linear Programming

3. Policy Iteration

Policy Improvement Theorem

4. Complexity of algorithms (not a part of course syllabus!)
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Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.
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poly(n, k ,B) [K80, K84].

poly(n, k) · exp(O(
√

n log(n))) (Expected) [MSW96].

poly(n, k) · k0.6834n [GK17].

poly(n, k) for deterministic MDPs [MTZ10, PY13].
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Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning? poly(n, k) · kn.

� Bounds for Linear Programming-type approaches to MDP planning:

poly(n, k ,B) [K80, K84].

poly(n, k) · exp(O(
√

n log(n))) (Expected) [MSW96].

poly(n, k) · k0.6834n [GK17].

poly(n, k) for deterministic MDPs [MTZ10, PY13].

� Complexity of Policy Iteration trivially upper-bounded by poly(n, k) · kn.

Is it more efficient than that?
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Switching Strategies and Bounds for Policy Iteration

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s (“all switch”) PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]
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)

Randomised PI [MS99]

Batch-switching PI
Deterministic 1.6479n –

(BSPI) [KMG16a]

Recursive BSPI
Deterministic – k0.7207n

[GK17]

Recursive Simple PI
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Recursive Simple PI
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[KMG16b]

Lower bounds on number of iterations

Ω(2n/7) Howard’s PI on n-state MDPs with Θ(n) actions per state [F10, HGD12].
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Recursive Simple PI
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[KMG16b]

Lower bounds on number of iterations

Ω(2n/7) Howard’s PI on n-state MDPs with Θ(n) actions per state [F10, HGD12].

Ω(2n/2) Simple PI on n-state, 2-action MDPs [MC94].

Ω(n) Howard’s PI on n-state, 2-action MDPs [HZ10].
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Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?
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� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

� Is there a super-linear lower bound on the iterations taken by Howard’s PI on

2-action MDPs?

� Is (Howard’s) PI strongly polynomial on deterministic MDPs?

� Is there a strongly polynomial algorithm for MDP planning?
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