
1/15

Algorithms for MDP Planning

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

shivaram@cse.iitb.ac.in

August 2018

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 1 / 15

2/15

Overview

1. Value Iteration

2. Linear Programming

3. Policy Iteration

Policy Improvement Theorem

4. Complexity of algorithms

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 2 / 15

2/15

Overview

1. Value Iteration

2. Linear Programming

3. Policy Iteration

Policy Improvement Theorem

4. Complexity of algorithms

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 2 / 15

3/15

Value Iteration

V0 ← Arbitrary, element-wise bounded, n-length vector. t ← 0.

Repeat:
For s ∈ S:

Vt+1(s)← maxa∈A

∑

s′∈S T (s, a, s′) (R(s, a, s′) + γVt (s
′)).

t ← t + 1.

Until Vt ≈ Vt−1 (up to machine precision).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 3 / 15

3/15

Value Iteration

V0 ← Arbitrary, element-wise bounded, n-length vector. t ← 0.

Repeat:
For s ∈ S:

Vt+1(s)← maxa∈A

∑

s′∈S T (s, a, s′) (R(s, a, s′) + γVt (s
′)).

t ← t + 1.

Until Vt ≈ Vt−1 (up to machine precision).

Convergence to V ⋆ guaranteed using a max-norm contraction argument.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 3 / 15

4/15

Overview

1. Value Iteration

2. Linear Programming

3. Policy Iteration

Policy Improvement Theorem

4. Complexity of algorithms

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 4 / 15

5/15

Linear Programming

Minimise
∑

s∈S

V (s)

subject to V (s) ≥
∑

s′∈S

T (s, a, s′)
(

R(s, a, s′) + γV (s′)
)

, ∀s ∈ S,∀a ∈ A.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 5 / 15

5/15

Linear Programming

Minimise
∑

s∈S

V (s)

subject to V (s) ≥
∑

s′∈S

T (s, a, s′)
(

R(s, a, s′) + γV (s′)
)

, ∀s ∈ S,∀a ∈ A.

Let |S| = n and |A| = k .

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 5 / 15

5/15

Linear Programming

Minimise
∑

s∈S

V (s)

subject to V (s) ≥
∑

s′∈S

T (s, a, s′)
(

R(s, a, s′) + γV (s′)
)

, ∀s ∈ S,∀a ∈ A.

Let |S| = n and |A| = k .

n variables, nk constraints.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 5 / 15

5/15

Linear Programming

Minimise
∑

s∈S

V (s)

subject to V (s) ≥
∑

s′∈S

T (s, a, s′)
(

R(s, a, s′) + γV (s′)
)

, ∀s ∈ S,∀a ∈ A.

Let |S| = n and |A| = k .

n variables, nk constraints.

Can also be posed as dual with nk variables and n constraints.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 5 / 15

6/15

Overview

1. Value Iteration

2. Linear Programming

3. Policy Iteration

Policy Improvement Theorem

4. Complexity of algorithms

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 6 / 15

7/15

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 7 / 15

7/15

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 7 / 15

7/15

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Q (s ,) π
3Q (s ,) π

3

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 7 / 15

7/15

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Q (s ,) π Q (s ,) π
7 7

Q (s ,) π
3Q (s ,) π

3

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 7 / 15

7/15

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Improvable states

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 7 / 15

7/15

Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Improvable states

Improving actions

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 7 / 15

7/15

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π
′.

s s s s s s ss1 2 3 4 5 6 7 8

π

Improvable states

Improving actions

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 7 / 15

7/15

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π
′.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 7 / 15

7/15

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π
′.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

Policy Improvement Theorem:

(1) If π has no improvable states, then it is optimal, else

(2) if π′ is obtained as above, then

∀s ∈ S : Vπ′

(s) ≥ Vπ(s) and ∃s ∈ S : Vπ′

(s) > Vπ(s).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 7 / 15

7/15

Policy Improvement

Given π,

Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.

Let the resulting policy be π
′.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

Policy Improvement Theorem:

(1) If π has no improvable states, then it is optimal, else

(2) if π′ is obtained as above, then

∀s ∈ S : Vπ′

(s) ≥ Vπ(s) and ∃s ∈ S : Vπ′

(s) > Vπ(s).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 7 / 15

8/15

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 8 / 15

8/15

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).

For policies π1, π2 ∈ Π, we define π1 � π2 if Vπ1 � Vπ2 ,

and we define π1 ≻ π2 if Vπ1 ≻ Vπ2 .

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 8 / 15

8/15

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).

For policies π1, π2 ∈ Π, we define π1 � π2 if Vπ1 � Vπ2 ,

and we define π1 ≻ π2 if Vπ1 ≻ Vπ2 .

� Bellman Operator. For π ∈ Π, we define Bπ : (S → R)→ (S → R) as follows:

for X : S → R and ∀s ∈ S,

(Bπ(X))(s)
def
=

∑

s′∈S

T (s, π(s), s′)
(

R(s, π(s), s′) + γX (s′)
)

.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 8 / 15

8/15

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).

For policies π1, π2 ∈ Π, we define π1 � π2 if Vπ1 � Vπ2 ,

and we define π1 ≻ π2 if Vπ1 ≻ Vπ2 .

� Bellman Operator. For π ∈ Π, we define Bπ : (S → R)→ (S → R) as follows:

for X : S → R and ∀s ∈ S,

(Bπ(X))(s)
def
=

∑

s′∈S

T (s, π(s), s′)
(

R(s, π(s), s′) + γX (s′)
)

.

� Fact 1. For π ∈ Π, X : S → R, and Y : S → R:

if X � Y , then B
π(X) � B

π(Y).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 8 / 15

8/15

Definitions and Basic Facts

� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X ≻ Y if X � Y and ∃s ∈ S : X (s) > Y (s).

For policies π1, π2 ∈ Π, we define π1 � π2 if Vπ1 � Vπ2 ,

and we define π1 ≻ π2 if Vπ1 ≻ Vπ2 .

� Bellman Operator. For π ∈ Π, we define Bπ : (S → R)→ (S → R) as follows:

for X : S → R and ∀s ∈ S,

(Bπ(X))(s)
def
=

∑

s′∈S

T (s, π(s), s′)
(

R(s, π(s), s′) + γX (s′)
)

.

� Fact 1. For π ∈ Π, X : S → R, and Y : S → R:

if X � Y , then B
π(X) � B

π(Y).

� Fact 2. For π ∈ Π and X : S → R:

lim
l→∞

(Bπ)l(X) = V
π
. (from Banach’s FP Theorem)

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 8 / 15

9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15

9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15

9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15

9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15

9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15

9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π
′

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15

9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π
′

=⇒ B
π′

(Vπ) ≻ V
π

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15

9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π
′

=⇒ B
π′

(Vπ) ≻ V
π

=⇒ (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15

9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π
′

=⇒ B
π′

(Vπ) ≻ V
π

=⇒ (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

=⇒ lim
l→∞

(Bπ′

)l(Vπ) � · · · � (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15

9/15

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ′

(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ)

=⇒ ∀π′ ∈ Π : V
π � B

π′

(Vπ) � (Bπ′

)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ′

(Vπ) � (Bπ′

)2(Vπ) � · · · � lim
l→∞

(Bπ′

)l(Vπ)

=⇒ ∀π′ ∈ Π : V
π � V

π′

.

π has improvable states and policy improvement yields π
′

=⇒ B
π′

(Vπ) ≻ V
π

=⇒ (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

=⇒ lim
l→∞

(Bπ′

)l(Vπ) � · · · � (Bπ′

)2(Vπ) � B
π′

(Vπ) ≻ V
π

=⇒ V
π′

≻ V
π
.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 9 / 15

10/15

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 10 / 15

10/15

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 10 / 15

10/15

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 10 / 15

10/15

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 10 / 15

10/15

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 10 / 15

10/15

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 10 / 15

10/15

Policy Iteration Algorithm

π ← Arbitrary policy.

While π has improvable states:

π ← PolicyImprovement(π).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 10 / 15

11/15

Overview

1. Value Iteration

2. Linear Programming

3. Policy Iteration

Policy Improvement Theorem

4. Complexity of algorithms

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 11 / 15

11/15

Overview

1. Value Iteration

2. Linear Programming

3. Policy Iteration

Policy Improvement Theorem

4. Complexity of algorithms (not a part of course syllabus!)

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 11 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Not a strong bound.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation?

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning?

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning? poly(n, k) · kn.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning? poly(n, k) · kn.

� Bounds for Linear Programming-type approaches to MDP planning:

poly(n, k ,B) [K80, K84].

poly(n, k) · exp(O(
√

n log(n))) (Expected) [MSW96].

poly(n, k) · k0.6834n [GK17].

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning? poly(n, k) · kn.

� Bounds for Linear Programming-type approaches to MDP planning:

poly(n, k ,B) [K80, K84].

poly(n, k) · exp(O(
√

n log(n))) (Expected) [MSW96].

poly(n, k) · k0.6834n [GK17].

poly(n, k) for deterministic MDPs [MTZ10, PY13].

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning? poly(n, k) · kn.

� Bounds for Linear Programming-type approaches to MDP planning:

poly(n, k ,B) [K80, K84].

poly(n, k) · exp(O(
√

n log(n))) (Expected) [MSW96].

poly(n, k) · k0.6834n [GK17].

poly(n, k) for deterministic MDPs [MTZ10, PY13].

� Complexity of Policy Iteration trivially upper-bounded by poly(n, k) · kn.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

12/15

Weak and Strong Running-time Bounds

� Computation model: Infinite precision arithmetic (or Real RAM) model.

� Upper Bound for Value Iteration [LDK95]:

poly(n, k ,B,
1

1−γ
), where B is the number of bits used to represent the MDP.

Not a strong bound.

� Strong bounds depend solely on n and k (no dependence on B, γ, etc.).

Is there a strong upper bound on the complexity of policy evaluation? O(n2k + n3).

Can you give a strong bound on the running time of MDP planning? poly(n, k) · kn.

� Bounds for Linear Programming-type approaches to MDP planning:

poly(n, k ,B) [K80, K84].

poly(n, k) · exp(O(
√

n log(n))) (Expected) [MSW96].

poly(n, k) · k0.6834n [GK17].

poly(n, k) for deterministic MDPs [MTZ10, PY13].

� Complexity of Policy Iteration trivially upper-bounded by poly(n, k) · kn.

Is it more efficient than that?

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 12 / 15

13/15

Switching Strategies and Bounds for Policy Iteration

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s (“all switch”) PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 13 / 15

13/15

Switching Strategies and Bounds for Policy Iteration

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s (“all switch”) PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]

Batch-switching PI
Deterministic 1.6479n –

(BSPI) [KMG16a]

Recursive BSPI
Deterministic – k0.7207n

[GK17]

Recursive Simple PI
Randomised – (2 + ln(k − 1))n

[KMG16b]

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 13 / 15

13/15

Switching Strategies and Bounds for Policy Iteration

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s (“all switch”) PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]

Batch-switching PI
Deterministic 1.6479n –

(BSPI) [KMG16a]

Recursive BSPI
Deterministic – k0.7207n

[GK17]

Recursive Simple PI
Randomised – (2 + ln(k − 1))n

[KMG16b]

Lower bounds on number of iterations

Ω(2n/7) Howard’s PI on n-state MDPs with Θ(n) actions per state [F10, HGD12].

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 13 / 15

13/15

Switching Strategies and Bounds for Policy Iteration

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s (“all switch”) PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]

Batch-switching PI
Deterministic 1.6479n –

(BSPI) [KMG16a]

Recursive BSPI
Deterministic – k0.7207n

[GK17]

Recursive Simple PI
Randomised – (2 + ln(k − 1))n

[KMG16b]

Lower bounds on number of iterations

Ω(2n/7) Howard’s PI on n-state MDPs with Θ(n) actions per state [F10, HGD12].

Ω(2n/2) Simple PI on n-state, 2-action MDPs [MC94].

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 13 / 15

13/15

Switching Strategies and Bounds for Policy Iteration

Upper bounds on number of iterations

PI Variant Type k = 2 General k

Howard’s (“all switch”) PI
Deterministic O

(

2n

n

)

O
(

kn

n

)

[H60, MS99]

Mansour and Singh’s
Randomised 1.7172n ≈ O

(

(

k
2

)n
)

Randomised PI [MS99]

Batch-switching PI
Deterministic 1.6479n –

(BSPI) [KMG16a]

Recursive BSPI
Deterministic – k0.7207n

[GK17]

Recursive Simple PI
Randomised – (2 + ln(k − 1))n

[KMG16b]

Lower bounds on number of iterations

Ω(2n/7) Howard’s PI on n-state MDPs with Θ(n) actions per state [F10, HGD12].

Ω(2n/2) Simple PI on n-state, 2-action MDPs [MC94].

Ω(n) Howard’s PI on n-state, 2-action MDPs [HZ10].

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 13 / 15

14/15

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 14 / 15

14/15

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 14 / 15

14/15

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

� Is there a super-linear lower bound on the iterations taken by Howard’s PI on

2-action MDPs?

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 14 / 15

14/15

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

� Is there a super-linear lower bound on the iterations taken by Howard’s PI on

2-action MDPs?

� Is (Howard’s) PI strongly polynomial on deterministic MDPs?

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 14 / 15

14/15

Open Problems

� Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the

Fibonacci sequence (≈ 1.6181n)?

� Is Howard’s PI the most efficient among deterministic PI algorithms (worst case

over all MDPs)?

� Is there a super-linear lower bound on the iterations taken by Howard’s PI on

2-action MDPs?

� Is (Howard’s) PI strongly polynomial on deterministic MDPs?

� Is there a strongly polynomial algorithm for MDP planning?

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 14 / 15

15/15

References and Additional Reading
R. A. Howard, 1960. Dynamic Programming and Markov Processes. MIT Press, 1960.

L. G. Khachiyan, 1980. Polynomial algorithms in linear programming. USSR Computational Mathematics and
Mathematical Physics, 20(1):53–72.

N. Karmarkar, 1984. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):373–396, 1984.

Mary Melekopoglou and Anne Condon, 1994. On the complexity of the policy improvement algorithm for Markov decision
processes. INFORMS Journal on Computing, 6(2):188–192, 1994.

Martin L. Puterman, 1994. Markov Decision Processes. Wiley, 1994.

Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling, 1995. On the complexity of solving Markov decision
problems. In Proc. UAI 1995, pp. 394–402, Morgan Kaufmann, 1995.

Jiří Matoušek, Micha Sharir, and Emo Welzl, 1996. A Subexponential Bound for Linear Programming. Algorithmica,
16(4/5):498–516, 1996.

Yishay Mansour and Satinder Singh, 1999. On the Complexity of Policy Iteration. In Proc. UAI 1999, pp. 401–408, AUAI,
1999.

Daniel A. Spielman and Shang-Hua Teng, 2004. Journal of the ACM, 51(3):385–463, 2004.

John Fearnley, 2010. Exponential Lower Bounds for Policy Iteration. In Proc. ICALP 2010, pp. 551–562, Springer, 2010.

Thomas Dueholm Hansen and Uri Zwick, 2010. Lower bounds for Howard’s algorithm for finding minimum mean-cost
cycles. In Proc. ISAAC 2010, pp. 415–426, Springer 2010.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 15 / 15

15/15

References and Additional Reading
Omid Madani, Mikkel Thorup, and Uri Zwick, 2010. Discounted deterministic Markov decision processes and discounted
all-pairs shortest paths. ACM Transactions on Algorithms, 6(2):33:1–33:25, 2010.

Thomas Dueholm Hansen, 2012. Worst-case Analysis of Strategy Iteration and the Simplex Method. PhD thesis,
Department of Computer Science, Aarhus University, July 2012.

Romain Hollanders, Balázs Gerencsér, Jean-Charles Delvenne, 2012. The complexity of policy iteration is exponential
for discounted Markov decision processes. In Proc. CDC 2012, pp. 5997–6002, IEEE, 2012.

Ian Post and Yinyu Ye. The Simplex Method is Strongly Polynomial for Deterministic Markov Decision Processes. In Proc.
SODA 2013, pp.1465–1473, SIAM, 2013.

Romain Hollanders, Balázs Gerencsér, Jean-Charles Delvenne, and Raphaël M. Jungers, 2014. Improved bound on
the worst case complexity of policy iteration. http://arxiv.org/pdf/1410.7583v1.pdf.

Balázs Gerencsér, Romain Hollanders, Jean-Charles Delvenne, and Raphaël M. Jungers, 2015. A complexity analysis
of policy iteration through combinatorial matrices arising from unique sink
orientations.http://arxiv.org/pdf/1407.4293v2.pdf.

Shivaram Kalyanakrishnan, Utkarsh Mall, and Ritish Goyal, 2016a. Batch-Switching Policy Iteration. In Proc. IJCAI
2016, pp. 3147–3153, AAAI Press, 2016.

Shivaram Kalyanakrishnan, Neeldhara Misra, and Aditya Gopalan, 2016b. Randomised Procedures for Initialising and
Switching Actions in Policy Iteration. In Proc. AAAI 2016, pp. 3145–3151, AAAI Press, 2016.

Anchit Gupta and Shivaram Kalyanakrishnan, 2017. Improved Strong Worst-case Upper Bounds for MDP Planning. In
Proc. IJCAI 2017, pp. 1788–1794, IJCAI, 2017.

Shivaram Kalyanakrishnan (2018) Algorithms for MDP Planning 15 / 15

http://arxiv.org/pdf/1410.7583v1.pdf
http://arxiv.org/pdf/1407.4293v2.pdf

