Markov Decision Problems (MDPs)

Elements of an MDP

States (S) Actions (A) Transition probabilities (T) Rewards (R) Discount factor (γ)

Behaviour is encoded as a **Policy** π , which maps states to actions. What is a "good" policy? One that maximises expected long-term reward.

 V^{π} is the Value Function of π . For $s \in S$,

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots | \text{start state} = s
ight].$$

Optimal Policies

 V^{π} satisfies a recursive equation: $V^{\pi} = R_{\pi} + \gamma T_{\pi} V^{\pi}$, which gives $V^{\pi} = (I - \gamma T_{\pi})^{-1} R_{\pi}$.

π	$V^{\pi}(s_1)$	$V^{\pi}(s_2)$	$V^{\pi}(s_3)$	
RRR	4.45	6.55	10.82	
RRB	-5.61	-5.75	-4.05	
RBR	2.76	4.48	9.12	
RBB	2.76	4.48	3.48	
BRR	10.0	9.34	13.10	
BRB	10.0	7.25	10.0	
BBR	10.0	11.0	14.45	← Optimal policy
BBB	10.0	11.0	10.0	

Every MDP is guaranteed to have an optimal policy π^* , such that

$$\forall \pi \in \Pi, \forall s \in S : V^{\pi^{\star}}(s) \geq V^{\pi}(s).$$