
CS 747 (Autumn 2018): Mid-semester Examination

Instructor: Shivaram Kalyanakrishnan

1.30 p.m. – 3.30 p.m., September 12, 2018, LA 301/302

Total marks: 15

Note. Provide justifications and/or calculations along with each answer to illustrate how you ar-
rived at the answer.

Question 1. Consider a 2-armed bandit instance whose arms a1 and a2 have means p1 and p2,
respectively, with 1 > p1 > p2 > 0. Each arm yields i.i.d. Bernoulli rewards with the corresponding
mean. Hence, each reward obtained is either 0 or 1.

An algorithm L is applied to this bandit instance. At every step, L pulls whichever arm has
obtained the least number of 0-rewards up to then, breaking ties uniformly at random. Thus, the
very first pull is equally likely to come from a1 and a2. Suppose a2 was pulled and it gives a
1-reward, then again both arms are equally likely to be picked. If a1 is now pulled, and it gives a
0-reward, then a2 will be pulled next, and repeatedly until it gives a 0-reward. At this point, both
arms will again have an equal number of 0-rewards, and therefore be equally likely to be pulled,
and so on.

For T ≥ 1, let zT denote the number of 0-rewards obtained in the first T pulls. Answer
the following questions, providing calculations in terms of the mean rewards p1 and p2. If it is
convenient, you can also use q1 = 1− p1 and q2 = 1− p2.

1a. What is E[z2]? [2 marks]

1b. What is lim
T→∞

E[zT ]

T
? [4 marks]

1c. Let RT denote the cumulative regret after T pulls. What is lim
T→∞

E[RT ]

T
? You might find it

useful to first express RT in terms of zT , and then use your answer from 1b. [2 marks]

Question 2. Fix an MDP (S,A, T,R, γ). For fixed ǫ ∈ [0, 1], let Πǫ be the set of all stochastic
policies πǫ such that ∀s ∈ S, ∀a ∈ A: πǫ(s, a) ≥

ǫ
|A| . Here πǫ(s, a) denotes the probability with which

πǫ takes action a from state s. You may view the elements of Πǫ as policies that are constrained
to take actions uniformly at random with with probability ǫ, and with the remaining probability,
can pick actions arbitrarily (deterministically or stochastically) from each state. We refer to such
policies as ǫ-soft policies. (Note that Π0 does contain deterministic policies.)

2a. Prove Πǫ contains an optimal ǫ-soft policy π⋆
ǫ , such that ∀s ∈ S, ∀πǫ ∈ Πǫ: V

π⋆
ǫ (s) ≥ V πǫ(s).

Recall that we proved this statement in class for ǫ = 0. Your easiest way to answer the
question might be to follow a similar approach. [5 marks]

2b. Consider ǫ, ǫ′ ∈ [0, 1] such that ǫ < ǫ′. Let π⋆
ǫ be an optimal ǫ-soft policy, and π⋆

ǫ′ an optimal

ǫ′-soft policy. Show that ∀s ∈ S: V π⋆
ǫ (s) ≥ V π⋆

ǫ′ (s). [2 marks]



Solutions

1a. The probability that the first pull is given to a1 is 1
2 ; the probability that the second pull is

given to a1 is 1
2 +

1
2 · p1 ·

1
2 +

1
2 · p2 ·

1
2 +

1
2 · q2. Hence, the expected number of pulls of a1 in the first

two pulls is 1
2(1 +

p1
2 + p2

2 + q2). Similarly, the expected number of pulls of a2 among the first two
pulls is 1

2(1 +
p1
2 + p2

2 + q1). The expected number of 0-rewards is

1

2
(1 +

p1

2
+

p2

2
+ q2) · q1 +

1

2
(1 +

p1

2
+

p2

2
+ q1) · q2,

which simplifies to 2− (p1 + p2)− (p1−p2
2 )2.

1b. We observe from the definition of the algorithm that it performs a series of “compound pulls”,
wherein in each compound pull, either (1) arm a1 is pulled until it returns a 0-reward, and thereafter
arm a2 pulled until it yields a 0-reward, or (2) arm a2 is pulled until it returns a 0-reward, and
thereafter arm a1 pulled until it yields a 0-reward. The cases are equally likely, since each compound
pull begins when the arms have both registered the same number of 0-rewards.

Let nT denote the number of compound pulls that have been completed within T (atomic) pulls.
Clearly each completed compound pull has exactly two 0-rewards, while a compound pull that is
underway might have either a single 0-reward or none at all. Thus, if T exactly coincides with the
completion of a compound pull, then zT is exactly 2nT ; otherwise zT is either 2nT or 2nT + 1.

Regardless, notice that limT→∞
E[zT ]
T

= 2 limT→∞
E[nT ]
T

. We calculate lim
T→∞

E[nt]

T
by accounting for

the length (the number of atomic pulls) of each compound pull.
The expected number of pulls of a1 in a compound pull is 1(q1)+2(p1q1)+3(p1p1q1)+ · · · = 1

q1
,

and similarly the expected number of pulls of a2 in a compound pull is 1
q2
. Hence, the expected

length of a compound pull is 1
q1
+ 1

q2
. As T → ∞, the law of large numbers implies that the empirical

mean length of compound pulls converges to 1
q1

+ 1
q2
, and therefore E[nT ]

T
to 1

1

q1
+ 1

q2

. It follows that

lim
T→∞

E[zT ]

T
=

2q1q2
q1 + q2

.

1c. The cumulative reward from T pulls is exactly T −zT , and so RT = Tp1− (T −zT ). Therefore,

lim
T→∞

E[RT ]

T
= p1 − 1 + lim

T→∞

E[zT ]

T
=

q1(q2 − q1)

q1 + q2
=

(1− p1)(p1 − p2)

2− p1 − p2
.

2a. There are at least two distinct ways to prove the result, both of which shed light on the nature
of the problem. The first solution, which is more comprehensive, involves generalising the proof of
the policy improvement theorem. The second approach is to reduce the given problem to a known
one (the case of ǫ = 0) and use existing results. We present both solutions.

Below we consider ǫ to be a fixed element of (0, 1): the case of ǫ = 0 was already solved in class,
and the case of ǫ = 1 is trivial since Π1 contains only one policy.



Solution 1. Define “extremal” ǫ-soft policies to be those that allocate, for each state, exactly ǫ
|A|

probability to some |A|−1 actions, and 1− ǫ+ ǫ
|A| probability to the remaining action (which could

vary from state to state). Our first step is to show that every ǫ-soft policy πǫ ∈ Πǫ, there is an
extremal ǫ-soft policy π′

ǫ ∈ Πǫ such that V π′

ǫ � V πǫ . In fact, for each state s ∈ S, let

ā = argmax
a∈A

Qπǫ(s, a), breaking ties arbitrarily, and take

π′
ǫ(s, a) =

{

1− ǫ+ ǫ
|A| , if a = ā,

ǫ
|A| , otherwise.

With this definition, it can be verified that Bπ′

ǫ(V πǫ) � V πǫ ; for s ∈ S:

Bπ′

ǫ(V πǫ)(s) =
∑

a∈A

π′
ǫ(s, a)Q

πǫ(s, a) ≥
∑

a∈A

πǫ(s, a)Q
πǫ(s, a) = V πǫ(s).

As we have already seen in the proof of the policy improvement theorem, the result implies π′
ǫ � πǫ.

Also notice that if πǫ allocates more than ǫ
|A| probability from some state to any action that does

not maximise its action value function, then π′
ǫ ≻ πǫ. In fact, even if πǫ was itself extremal, but not

ǫ-greedy with respect to it action value function, we see from the same working that there exists
an extremal ǫ-soft policy π′

ǫ such that π′
ǫ ≻ πǫ.

Observe that the set of extremal ǫ-soft policies is finite. Hence, it now suffices for us to show
that if there is an extremal ǫ-soft policy π

g
ǫ that is ǫ-greedy with respect to its action value function,

then it is at least as rewarding from each state as every other ǫ-soft policy πǫ. This is immediately
apparent when we expand Bπǫ(V π

g
ǫ ): we verify that V π

g
ǫ � Bπǫ(V π

g
ǫ ), which, in turn, yields πg

ǫ � πǫ.
Our proof is curiously similar to the one for ǫ = 0; what exactly is the difference? In the ǫ = 0

case, we test a state s under policy π for improvability by checking if there is an action a such that
Qπ(s,a) > V π(s).

For ǫ > 0 and ǫ-soft policy πǫ, the test is not if there is an action a such that Qπǫ(s,a) > V πǫ(s),
but rather, if there is a policy πǫ such that Bπ′

ǫ(V πǫ)(s) > V πǫ(s). In general, we ask: is there a
different policy, which we follow for one step before adopting the original policy, which will increase
expected long-term return? If the policy in question is deterministic (as we conveniently take when
ǫ = 0), the question incidentally reduces to a comparison of action values. In general it does not
when the improving policy is stochastic, as it is here.

Solution 2. Let M = (S,A, T,R, γ) be the given MDP, and πǫ an arbitrary ǫ-soft policy. For
s ∈ S, a ∈ A, we may view πǫ(s, a) as the sum of two probabilities: ǫ

|A| , which it is mandatory for

πǫ to allocate each action, and ρ(s, a) ∈ [0, 1− ǫ], which is the portion “deliberately” allocated by
πǫ. If we remove the constraint of ǫ-softness, a natural way to change πǫ would be to take action
a from state s solely with the “deliberate” portion of the probability, scaled appropriately. Indeed
let the policy π0 do exactly that: for s ∈ S, a ∈ A:

π0(s, a) =
ρ(s, a)

1− ǫ
=

πǫ(s, a)−
ǫ
|A|

1− ǫ
.

In essence we have a 1-to-1 correspondence between elements of Πǫ and Π0. Our strategy is to
define a new MDP M̄ = (S,A, T̄ , R̄, γ) such that for every πǫ ∈ Πǫ and π0 ∈ Π0 that map to each
other, the value function of πǫ on M is identical to the value function of π0 on M̄ . We already know
that Π0 must contain an optimal policy for every MDP with state space S and action space A; let
π⋆0 ∈ Π0 be an optimal policy for M̄ . It follows that the corresponding ǫ-soft policy π⋆ǫ ∈ Πǫ must
be an optimal ǫ-soft policy for M .

We define M̄ = (S,A, T̄ , R̄, γ) by essentially transferring the ǫ-fraction of uniform action se-
lection from the agent to the environment. Hence, it will be as though the environment (T̄ , R̄)



implements uniform transitions with probability ǫ, accounting appropriately for the expected re-
wards. We define ∀s, s′ ∈ S, a ∈ A:

T̄ (s, a, s′) = (1− ǫ)T (s, a, s′) +
ǫ

|A|

∑

b∈A

T (s, b, s′), and

R̄(s, a, s′) =
∑

x∈S

(

(1− ǫ)T (s, a, x)R(s, a, x) +
ǫ

|A|

∑

b∈A

T (s, b, x)R(s, b, x)

)

.

It is easily verified that T̄ is a genuine transition function: that is, each element is non-negative,
and the elements corresponding to every state-action pair sum to 1. Observe that R̄(s, a, s′) does
not depend on s′. This choice simplifies our calculaitons; in general we can also construct consistent
reward functions that do depend on the next states of transitions.

It remains to be shown that the value function of πǫ on M is the same as that of π0 on M̄ . To
do so, we use the fact that the value function is the unique solution of Bellman’s Equations, and
show that π0 has the same set of equations on M̄ as πǫ on M . For s ∈ S:

V π0

M̄
(s) =

∑

a∈A

π0(s, a)
∑

s′∈S

T̄ (s, a, s′)
(

R̄(s, a, s′) + γV π0

M̄
(s′)
)

=
∑

a∈A

πǫ(s, a)−
ǫ
|A|

1− ǫ

∑

s′∈S

T̄ (s, a, s′)
(

R̄(s, a, s′) + γV π0

M̄
(s′)
)

= G1 +G2, where

G1 =
∑

a∈A

πǫ(s, a)−
ǫ
|A|

1− ǫ

∑

s′∈S

T̄ (s, a, s′)R̄(s, a, s′)

=
∑

a∈A

πǫ(s, a)−
ǫ
|A|

1− ǫ

∑

x∈S

(

(1− ǫ)T (s, a, x)R(s, a, x) +
ǫ

|A|

∑

b∈A

T (s, b, x)R(s, b, x)

)

=
∑

a∈A

(

πǫ(s, a)−
ǫ

|A|

)

∑

x∈S

(

T (s, a, x)R(s, a, x) +
ǫ

(1− ǫ)|A|

∑

b∈A

T (s, b, x)R(s, b, x)

)

=
∑

a∈A

πǫ(s, a)
∑

x∈S

T (s, a, x)R(s, a, x)−
ǫ

|A|

∑

a∈A

∑

x∈S

T (s, a, x)R(s, a, x)+

ǫ

(1− ǫ)|A|

(

∑

a∈A

(

πǫ(s, a)−
ǫ

|A|

)

)(

∑

x∈S

∑

b∈A

T (s, b, x)R(s, b, x)

)

=
∑

a∈A

πǫ(s, a)
∑

x∈S

T (s, a, x)R(s, a, x), and
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G2 = γ
∑

a∈A

πǫ(s, a)−
ǫ
|A|

1− ǫ

∑

s′∈S

T̄ (s, a, s′)V π0

M̄
(s′)

= γ
∑

a∈A

(

πǫ(s, a)−
ǫ

|A|

)

∑

s′∈S

(

T (s, a, s′) +
ǫ

(1− ǫ)|A|

∑

b∈A

T (s, b, s′)

)

V π0

M̄
(s′)

= γ
∑

a∈A

πǫ(s, a)
∑

s′∈S

T (s, a, s′)V π0

M̄
(s′)−

γǫ

|A|

∑

a∈A

∑

s′∈S

T (s, a, s′)V π0

M̄
(s′)+

γǫ

(1− ǫ)|A|

(

∑

a∈A

(

πǫ(s, a)−
ǫ

|A|

)

)(

∑

s′∈S

∑

b∈A

T (s, b, s′)V π0

M̄
(s′)

)

= γ
∑

a∈A

πǫ(s, a)
∑

s′∈S

T (s, a, s′)V π0

M̄
(s′), which gives

V π0

M̄
(s) =

∑

a∈A

πǫ(s, a)
∑

s′∈S

T (s, a, s′)
(

R(s, a, s′) + γV π0

M̄
(s′)
)

.

Since we know that V πǫ

M is the unique solution of this set of equations, it is clear that V π0

M̄
and V πǫ

M

are identical.

2b. Note that ǫ < ǫ′. It follows from the definition that since π⋆
ǫ′ is an ǫ′-soft policy, it is also an

ǫ-soft policy. And since π⋆
ǫ is an optimal ǫ-soft policy, we get from 2a that π⋆

ǫ � π⋆
ǫ′ .
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