Reinforcement Learning for the real world

Harshad Khadilkar Tata Consultancy Services Ltd.

TATA CONSULTANCY SERVICES

This is about letting an ecosystem of machines teach itself superhuman capabilities

Why?

"Because it's there"

- George Mallory (1923), when asked why he wanted to climb Mt. Everest

$2^{\text{Motivation}}$ RL in the optimization space

	Easy	Hard	
Slow	How many eggs for breakfast	How much down-payment on car loan	Pressure increases
Fast Thinking,	Which lane to choose at the toll booth	Packing irregular boxes arriving on a conveyor belt	creases
Fast and Slow	Difficulty increases		' +
Daniel Kahneman Winner of the Nobel Prize			

$2^{\text{Motivation}}$ RL in the optimization space

	Easy	Hard	
Slow	Linear programming and its variants	Meta-heuristics	Pressure increases
Fast Thinking,	Rule-based planning Supervised deep learning	Reinforcement learning	creases
Fast and Slow	↓ Difficulty increases		+
Daniel Kahneman Winner of the Nobel Prize			

Necessary conditions: Answer YES to all of the following

Use for tasks that humans find hard to do (or to do well) \rightarrow No ideal reference

When time is short \rightarrow Can't search or solve in real-time

When the system is hard to define, or complex \rightarrow No analytical relationships

"The most important training in Unseen University [for wizards] wasn't how to do magic, but to know when not to use it" - Terry Pratchett

This is about letting an ecosystem of machines teach itself superhuman capabilities

Why?

"Because it's there"

- George Mallory (1923), when asked why he wanted to climb Mt. Everest

How?

Let the algorithm explore the environment on its own, while learning from experience

Reinforcement learning

TATA CONSULTANCY SERVICES

Learning to maximise long-term reward through interaction with the environment

Strictly speaking, must be a Markov Decision Process defined by

(States, Actions, Rewards, Transitions, Discount factor)

The bad news These ideas work brilliantly in games, but not in real life

Why not?

Large scale
Variable scale

3. Complexity

4. Limited compute

5. Explainability requirement

TATA CONSULTANCY SERVICES

4 RL in the real world One-slide summary of past work

- 1. Operate in real-time (online)
- 2. Work without human-labelled historical data
- 3. Adapt automatically to changes in the environment

1. Use domain knowledge

- to divide the problem into a sequence of tasks
- to define how system performance is measured
- 2. Define tasks that can be repeatedly performed to achieve goals (constant I/O size)
- 3. Build the right fidelity of simulation to compute the effect of actions on the system
- 4. Use RL only for decisions where the 'correct' ones are not obvious
- 5. Wherever feasible, speed up RL training by seeding with existing heuristics

4 RL in the real world **Concrete example: Railway scheduling**

Goal: Minimise knock-on effects along the railway line, when recovering from a delayed state

Solution: Divide the problem into a sequence of moves

TATA CONSULTANCY SERVICES

5 Supply chain replenishment

Generalisation of Markov Decision Processes to Stochastic Games

Can this set of participants in a system of systems collaborate effectively?

Reinforcement learning = Use of machine learning for decision-making problems

Should be used when it is the best tool for the job: 1. Fast response 2. Systems *simulatable* but not analytically describable 3. Unknown 'optimal' decisions 4. Sequence-dependent rewards

Making RL work for you in real life:

Make sure you can simulate your problem, for training
Divide large problems into a sequence of repeated tasks
Use domain expertise rather than throw it away
Build solutions with explanations, not black boxes