
PAC Monte Carlo Prediction with Restart Access

Shivaram Kalyanakrishnan

November 2, 2019

Abstract

We present a simple Probably Approximately Correct (PAC) algorithm for learning the
value function of an MDP with which an agent interacts by sequentially taking actions. The
MDP may be either continuing or episodic. To ease the burden of exploration, we assume
that at any point, the agent may choose to terminate its current trajectory. If it does so,
it is restarted from a state picked in a round-robin fashion. This sort of restart access is
slightly different from the common assumption of exploring starts in episodic MDPs, under
which the agent cannot choose to terminate an episode, but once an episode does terminate,
it can decide from which state to restart.

In order to estimate the value of a state, our learning algorithm generates a large number,
say N , of trajectories starting from that state. Each trajectory is run either until episode
termination, or untilM steps are completed, whichever happens first. The idea is to (1) make
N large enough that the empirical average of the truncated returns from the trajectories will
lie close to their true mean with high probability, and to (2) make M large enough that the
contribution to the long-term reward beyond M transitions is small. The obtained estimate
is the average M -step reward from the N trajectories. We provide a proof of correctness.

1 Problem Definition

We consider a Markov Decision Problem (MDP) M = (S,A,R, T, γ), which has a set of states
S in which an agent can be, and the set of actions A that the agent can execute. Upon taking
action a ∈ A from state s ∈ S, the agent is transported to a state s′, selected from S at random
with probability T (s, a, s′). The transition also yields the agent an immediate reward R(s, a, s′),
which we shall assume lies in the range [−Rmax, Rmax], with Rmax being a known non-negative
quantity (thus, Rmax can be used by an algorithm). We also assume that S is finite, with
|S| = n ≥ 1.

Given a policy π : S → A, the value of state s ∈ S under π is defined as

V π(s)
def
= Eπ

[ ∞∑
t=0

γtrt|s0 = s

]
,

where γ ∈ [0, 1) is a discount factor. Here r0, r1, . . . is the sequence of rewards obtained by the
agent over time.

For a given tolerance ε > 0, a function X : S → R is said to be an ε-approximation of V π if
for every s ∈ S,

|X(s)− V π(s)| ≤ ε.

Given δ ∈ (0, 1], our aim is to write down a procedure for the agent to interact with the
MDP and produce an output V̂ π : S → R such that with probability at least 1 − δ, V̂ π is an
ε-approximation of V π.

Observe that there is no need for such a PAC algorithm in the planning setting: when T and
R are known to the agent, it can simply solve Bellman’s Equations to compute V π exactly. On

1



the other hand, it is due to the unavailability of T and R—except indirectly through sampling—
that there arises a need to reconstruct reality as accurately as desired, in a PAC sense, based
on a finite number of samples.

2 Algorithm

Given π, we compute V̂ π, a “close-enough” approximation of V π, by generating for every state
s ∈ S

N
def
=

⌈
8R2

max

ε2(1− γ)2
ln

(
2n

δ

)⌉
trajectories, each with at most

M
def
=

⌈(
1

1− γ

)
ln

(
2Rmax
ε(1− γ)

)⌉
actions taken, wherein the first state is s, and every action is taken according to π. Observe
that the total number of transitions generated by our procedure is therefore at most nNM .

Let us consider the N trajectories obtained from a particular state s. For trajectory 1 ≤
j ≤ N , let the rewards obtained be r0j , r

1
j , . . . , rM−1j . If the episode has naturally terminated

in T < M steps, take rTj = rT+1
j = · · · = rM−1j = 0. Note that if M steps have been reached,

or the episode has ended earlier, the agent starts a new trajectory. Let VM
j be the M -step

discounted reward for trajectory j:

VM
j =

M−1∑
t=0

γtrtj .

After the N trajectories have been obtained from s, the agent computes its estimate V̂ π(s)
as the average of these N M -step discounted rewards:

V̂ π(s) =
1

N

N∑
j=1

VM
j .

We have set M and N such that our PAC analysis will go through. M is large enough that
the M -step discounted return is close enough to the corresponding infinite-discounted return.
N is large enough to ensure that our estimate of the expected M -step discounted return is
sufficiently accurate.

3 Analysis

The following lemma shows that our algorithm enjoys the desired PAC guarantee.

Lemma 1. With probability at least 1− δ, for every s ∈ S:

|V̂ π(s)− V π(s)| < ε.

Proof. Our proof is in three steps: the first and second steps apply to every given state s; the
third step aggregates the mistake probabilities over the set of states.

Step 1. Consider a fixed state s from which we have applied the estimation procedure. First
we consider VM (s), which denotes the M -step expected discounted reward:

VM (s) = E

[
M−1∑
t=0

γtrt|s0 = s

]
.

2



Thus, VM
1 , VM

2 , . . . , VM
N are i.i.d. samples of VM (s). By Hoeffding’s Inequality, we get that the

probability of their empirical average—which is our estimate V̂ π(s)—deviating from the true

mean VM (s) is small. Note that VM (s) must lie in the interval
[
−Rmax

1−γ ,
Rmax
1−γ

]
.

P
{
V̂ π(s) > VM (s) +

ε

2

}
≤ e−2N( ε2)

2 (1−γ)2

4R2
max ≤ δ

2n
.

Similarly, we get

P
{
V̂ π(s) < VM (s)− ε

2

}
≤ e−2N( ε2)

2 (1−γ)2

4R2
max ≤ δ

2n
.

Putting these results together, we obtain that with probability at least 1− δ
n ,

VM (s)− ε

2
≤ V̂ π(s) ≤ VM (s) +

ε

2
. (1)

Step 2. Our second step is to show that for every state s ∈ S, VM (s) is itself within ε
2 of the

(true) value V π(s).

∣∣V π(s)− VM (s)
∣∣ =

∣∣∣∣∣Eπ
[ ∞∑
t=0

γtrt|s0 = s

]
− Eπ

[
M−1∑
t=0

γtrt|s0 = s

]∣∣∣∣∣
=

∣∣∣∣∣Eπ
[ ∞∑
t=M

γtrt|s0 = s

]∣∣∣∣∣
≤
∞∑
t=M

γtRmax

=
γMRmax

1− γ
≤ γM ε

2
e(1−γ)M

≤ ε

2

since γe1−γ is at most 1 for γ ∈ [0, 1). Thus:

V π(s)− ε

2
≤ VM (s) ≤ V π(s) +

ε

2
. (2)

Step 3. We put together (1) and (2) to conclude that for a given state s ∈ S, the probability
that |V̂ π(s) − V π(s)| ≥ ε is at most δ

n . Hence, by way of a union bound, with probability at

least 1− δ: ∀s ∈ S : |V̂ π(s)− V π(s)| < ε. In other words, with probability at least 1− δ, V̂ π is
an ε-approximation of V π.

The sample complexity incurred by our algorithm is upper-bounded by

nNM = O

(
nR2

max

ε2(1− γ)3
log
(n
δ

)
log

(
Rmax
ε(1− γ)

))
.

Does the dependence on n, ε, δ, γ, and Rmax agree with your intuition?

3


