
CS 747 (Autumn 2019): End-semester Examination

Instructor: Shivaram Kalyanakrishnan

9.30 a.m. – 12.30 p.m., November 13, 2019, LA 201/202

Total marks: 25

Note. Provide justifications and/or calculations along with each answer to illustrate how you ar-
rived at the answer.

Question 1. A learning agent A1 interacts with an MDP with the aim of eventually converging to
optimal behaviour. Assume that every state in the MDP (S,A, T,R, γ) is reachable with positive
probability from every other state under every policy; otherwise the MDP is arbitrary.

The agent implements Q-learning and exercises the discipline in its learning and exploration
rates required for convergence (take ǫt = αt = 1/(t + 1) for t ≥ 0). However, the agent adopts a
relatively unusual method to update Q-values.

In particular, the agent keeps two Q-tables, QX and QY , which are initialised arbitrarily (and
possibly differently). As it goes through its life gathering experience, the agent dynamically binds
each time step with either QX or QY , making this decision uniformly at random. The binding at
time step t is used for action-selection at t, and also for the TD update to the state at t once the
state at t+ 1 becomes known. Here is a precise description of the procedure followed by A1.

Initialise QX and QY .
Be born in state s.

Qnow ←

{

QX with probability 1/2,

QY with probability 1/2.

For t = 0, 1, . . . :
a→ ǫt-greedy(Qnow, s).
Take action a, get reward r and next state s′.

Qnext ←

{

QX with probability 1/2,

QY with probability 1/2.

Qnow(s, a)← Qnow(s, a)(1−αt)+αt{r+γmaxa′∈AQnext(s
′, a′)}.

s← s′.
Qnow ← Qnext.

By following the learning strategy described above, is A1 guaranteed to eventually start acting
optimally? Explain why or why not. A proof sketch will suffice. [4 marks]

Question 2. This question is about an agent A2 that interacts with an MDP (S,A, T,R, γ), which
is also such that every state is reachable from every state under every policy.

In class we showed that an agent Aclass that uses ǫt-greedy exploration, where t = 0, 1, 2, . . .
denotes the number of interactions with the MDP and ǫt =

1
t+1 , can be made to eventually learn

optimal action values. For instance, one could do so by applying Q-learning with a suitably-designed
learning rate.

The agent in this question, A2 uses a different action selection strategy. If t is a power of 2 (that
is, 1, 2, 4, 8, . . .), A2 picks an action uniformly at random. If not, A2 selects an action greedily with
respect to action value function Q, which is updated using Q-learning with harmonic annealing of
the learning rate. Assume that Q is initially 0 for all state action pairs, and any ties encountered
are broken uniformly at random.

2a. Is Q guaranteed to converge to the optimal action value function Q⋆ based on the learning
algorithm of A2? Justify your answer. [3 marks]

2b. Observe that the algorithm implemented by A2 above is randomised. In general, is there
a deterministic learning algorithm that guarantees Q will converge to Q⋆? Provide a brief
justification. [1 mark]

Question 3. This question considers the expressive power of 1-dimensional tile coding: that is,
tile coding that uses a separate set of tilings for each dimension. We examine the complexity of
functions over two variables that can be represented using 1-dimensional tile coding.

Let (x1, y1), (x2, y2), . . . , (xm, ym) be m ≥ 1 distinct point(s) in R
2, and let these points be

associated with function values f(x1, y1), f(x2, y2), . . . , f(xm, ym) ∈ R, respectively. In short, we
have described a function f : R× R→ R defined on m points.

We say that f can be 1-tile-coded if there exists a 1-dimensional tile coding scheme T : R×R→ R

such that for all i ∈ {1, 2, . . . ,m}, T (xi, yi) = f(xi, yi). Recall that for point (x, y) ∈ R
2, T (x, y)

is the sum of the weights of the tiles that are active for (x, y) in each dimension. Along each
dimension, T may employ any number of regularly-spaced tilings, with any tile width (common
to all the tiles in that dimension), and any origin. The real-valued weights assigned by T to the
individual tiles in the x and y dimensions can be arbitrary.

Consider the following statement:

For every set of m distinct point(s), every function f over the points can be 1-tile-coded.

For which values of m ∈ {1, 2, . . . } is this statement true, and for which ones is it false? Justify
your answer. [4 marks]

Question 4. Which factors combine into the “deadly triad” presented by Sutton and Barto (2018)?
What is the phenomenon associated with this triad? [2 marks]

Question 5. An agent gets advice from a group of m experts on the action it should take at each
state. Assume the agent interacts with MDP (S,A, T,R, γ). Each expert i ∈ {1, 2, . . . ,m} advises
action-selection according to a policy πi that can either be deterministic or stochastic. The agent
associates a parameter wi with each expert i ∈ {1, 2, . . . ,m}, and takes action a ∈ A from state
s ∈ S with probability

πw(s, a) =

∑m
i=1 e

wiπi(s, a)
∑m

j=1 e
wj

,

where w = (w1, w2, . . . , wm) is the vector of parameters for combining the experts’ advice. The
agent intends to tune these parameters by applying REINFORCE.

5a. What is ∇wπw(s, a)? Give the formula for its i-th element. [3 marks]

5b. In order for ∇wπw(s, a) to be well-defined for all s ∈ S, a ∈ A, do we need to make any
assumption regarding the experts’ policies? [1 mark]

5c. How is ∇wπw(s, a) used in the REINFORCE update? [1 mark]

Question 6. Write down pseudocode to describe how an agent uses tree search with Monte Carlo
roll-outs for action selection. Assume the task is episodic, and also assume access to a sample model
that stochastically returns a next state s′ (possibly terminal) and reward r when passed state s
and action a.

The tree is built up to depth d ≥ 1. Transition probabilities at internal nodes are estimated
by making M ≥ 1 calls to the sample model. Each leaf is evaluated based on N ≥ 1 Monte Carlo
roll-outs using a policy π. Thus d, M , N , and π are the parameters to your code.

Assume that the set of actions is small and enumerable, but the set of states might be too large
to enumerate (although only a small number of states will be reachable in one step from any given
state). [4 marks]

Question 7. The AlphaGo program employs a value function vθ and policies pσ, pρ, and pπ in
its construction. Briefly describe the role of each of these four components in the working of the
program. [2 marks]

Solutions

1. We observe that the learning process on the given MDP M = (S,A, T,R, γ) is identical to
the application of the usual form of Q-learning (with a single table!) on an induced MDP M̄ =
(S̄, Ā, T̄ , R̄, γ̄).

Our construction of M̄ is as follows. For every state s in M , the MDP M̄ has a corresponding
pair of states (s,X) and (s, Y). When the agent is in state s in M , we let it be in either (s,X) or
(s, Y) in M̄ , with equal probability. When a transition happens from s to s′ in M , it happens both
from (s,X) and (s, Y) to one of (s′, X) and (s′, Y) in M̄ , again with equal probability. Rewards
are identical, as is the discount factor. Here is a full specification of M̄ = (S̄, Ā, T̄ , R̄, γ̄).

• S̄ = S × {X,Y }.

• Ā = A.

• For all s, s′ ∈ S, a ∈ A:

T̄ ((s,X), a, (s′, X)) = T̄ ((s,X), a, (s′, Y)) = T̄ ((s, Y), a, (s′, X)) = T̄ ((s′, Y), a, (s, Y)) =
T (s, a, s′)

2
.

• For all s, s′ ∈ S, a ∈ A:

R̄((s,X), a, (s′, X)) = R̄((s,X), a, (s′, Y)) = R̄((s, Y), a, (s′, X)) = R̄((s′, Y), a, (s, Y)) = R(s, a, s′).

• γ̄ = γ.

By writing down Bellman’s Optimality Equations, we can verify that for all s ∈ S, a ∈ A,
Q̄⋆((s,X), a) = Q̄⋆((s, Y), a) = Q⋆(s, a), where Q̄⋆ is the optimal action value function for M̄ .

Now consider the learning process described in the question. Take a moment to convince yourself
that every run of learning on M , with the initialisation of QX and QY simulates a valid, random
run of regular Q-learning on M̄ with a single table Q̄, provided we initialise action-values for states
of the form sX with corresponding ones in QX and for states of the form sY with corresponding
ones in QY . It is easily verified that at every point of time, for all states s ∈ S, a ∈ A,

QX(s, a) = Q̄(sX , a) and QY (s, a) = Q̄(sY , a).

Since learning and exploration rates are annealed harmonically, we know that Q̄ will eventually
converge to Q̄⋆. The implication is that QX and QY both converge to Q⋆, which induces optimal
action selection in the limit.

2a. Consider an MDP with two states s1 and s2 and in which the transitions are deterministic.
Every action from s1 leads to s2, and every action from s2 leads to s1. There are a sufficiently large
number of actions. Transitions all have different rewards.

Suppose we start at s1 at t = 0, it is easy to see by our construction that s1 will be visited at
t = 0, 2, 4, . . . , and s2 will be visited at t = 1, 3, 5, Since we only explore when t is a power of
2, we only explore actions from s1 infinitely often. As for s2, one action gets explored at t = 1;
thereafter only an action with the highest Q estimate is picked. Hence, it is possible that some
actions, including optimal ones, will never get picked from s2.

In general, a successful algorithm must ensure that every state-action pair gets picked infinitely
often in the limit. The algorithm in this question does not do so, and so will not converge to Q⋆

on some MDPs.

2b. Yes, there do exist deterministic algorithms that can converge to Q⋆. Such algorithms could,
for instance, take exploratory actions at each state in a round-robin manner, and decide whether to
explore or exploit on a particular visit to the state depending on the number of times the state has
been visited thus far. Exploring if the visit number is a power of 2 and exploiting otherwise would
be one way to proceed. Note that deterministic algorithms must use a deterministic tie-breaking
strategy.

3. We show that the claim is true for m = 1, 2, 3 and false for m ≥ 4.
First we present our argument below for m = 1, 2, 3, taking the set of points and f to be

arbitrary and showing that f can be 1-tile-coded.
If m = 1—that is, there is only a single point (x1, y1)—we can make do with any tile coding

scheme. T simply gives any one tile activated by (x1, y1) the weight f(x1, y1), and gives every other
tile zero weight. Clearly T (x1, y1) = f(x1, y1).

If we have m = 2 distinct points (x1, y1) and (x2, y2), they must differ in at least one coordinate.
Let us assume, without loss of generality, that x1 6= x2. In T , we use sufficiently “thin” tiles along
the x dimension such that there is one tile t1 activated by (x1, y1) and not by (x2, y2), and one
tile t2 activated by (x2, y2) and not by (x1, y1). We give t1 a weight of f(x1, y1) and t2 a weight
of f(x2, y2). All other tiles receive zero weight. This scheme ensures T (x1, y1) = f(x1, y1) and
T (x2, y2) = f(x2, y2).

If we have m = 3 distinct points, there must exist at least one point either whose x or y
coordinate is unique: that is, not shared with the other points. Without loss of generality, assume
the points are (x1, y1), (x2, y2), and (x3, y3) with x1 6= x2 and x1 6= x3. We can use the construction
given above for m = 2 to first match the f values of (x2, y2) and (x3, y3). In so doing, let us assume
that the tile coding scheme gives (x1, y1) a value of α. Now, since x1 is different from both x2
and y2, we can identify a tile in the x-dimension that is activated by (x1, y1) and not by the other
points. We set the weight of this tile to f(x1, y1) − α, thereby matching values for (x1, y1). Note
that this tile in not active for the other points, and has no effect on their tile-coded value. Thus,
f is 1-tile-coded.

Now, we provide a set of m = 4 points and a function f on them that cannot be 1-tile-coded.
Naturally this negative result can be extended to larger values of m by adding more points to the
set provided in the proof. Hence, the statement in the question is true for m = 1, 2, 3 and false for
m = 4, 5,

The m = 4 points we consider are (x1, y1), (x1, y2), (x2, y1), and (x2, y2), with x1 6= x2 and
y1 6= y2—these points are the four corners of a rectangle. Consider an arbitrary tile coding scheme
T . For each point P let Tx(P) denote the set of tiles in the x dimension activated by P , and let
Ty(P) denote the set of tiles in the y dimension activated by P . For a given tile t, let weight(t)
denote the weight assigned by T to t. If, indeed, f is tile-coded by T , we have

f(x1, y1) + f(x2, y2)

=

∑

t∈Tx(x1,y1)

weight(t) +
∑

t∈Ty(x1,y1)

weight(t)

+

∑

t∈Tx(x2,y2)

weight(t) +
∑

t∈Ty(x2,y2)

weight(t)

=

∑

t∈Tx(x1,y1)

weight(t) +
∑

t∈Ty(x2,y2)

weight(t)

+

∑

t∈Tx(x2,y2)

weight(t) +
∑

t∈Ty(x1,y1)

weight(t)

=

∑

t∈Tx(x1,y2)

weight(t) +
∑

t∈Ty(x1,y2)

weight(t)

+

∑

t∈Tx(x2,y1)

weight(t) +
∑

t∈Ty(x2,y1)

weight(t)

=f(x1, y2) + f(x2, y1).

For any choice of f such that f(x1, y1) + f(x2, y2) 6= f(x1, y2) + f(x2, y1), 1-tile-coding is not
possible. Our proof is done.

4. When function approximation (factor 1) is used in reinforcement learning with bootstrapping
(factor 2) and off-policy updates (factor 3), it often leads to an unstable learning process—there
are even examples of divergence. Any two of these factors alone are usually not enough to create
instability; the triad is particularly disruptive.

5a.

∂

∂wi
(πw(s, a)) =

∂

∂wi

(

∑m
k=1 e

wkπk(s, a)
∑m

j=1 e
wj

)

=
ewiπi(s, a)
∑m

j=1 e
wj
−

ewi
∑m

k=1 e
wkπk(s, a)

(
∑m

j=1 e
wj)2

=
ewi

∑m
j=1 e

wj
(πi(s, a)− πw(s, a)).

5b. There is no requirement on the individual expert policies; in particular, they need not be
stochastic. This fact does not contradict the requirement we specified out in class that policy
gradient methods must have a positive probability of taking every action from every state. Here
the agent is constrained to combine the expert policies rather than the atomic actions. From a
particular state s, notice that if none of the expert policies takes some action a, there is no way
the combined policy will take a. In such an event, we see from 5a that ∇wπw(s, a) will be 0. The
only requirement is that the expert policies be combined “softly”, as it is in this soft-max approach.

5c. Under REINFORCE, an episode s0, a0, r0, s1, a1, r1, . . . , rT−1, sT is generated by following
πw, where sT is a terminal state. Using this data, w is incremented (in expectation) along the
direction given by ∇wV

πw(s0). For each (s, a)-pair visited during the episode, a term depending
on ∇wπw(s, a) arises in the calculation of the gradient of V πw(s0).

6. The crux of this code is the expectimax calculation of values, which is best coded up recursively.
At each internal node, the action selected is one with the largest Q-value; Q-values themselves are
calculated by taking an expectation over state values (V). The sample model is used to generate
next states. At leaf nodes, values are calculated by taking an average of multiple roll-outs using
the given policy. Below is a typical implementation of the tree search procedure.

SelectionAction(s, d,M,N, π)
Return argmaxa∈AActionV alue(s, a, d− 1,M,N, π).

ActionV alue(s, a, d,M,N, π)

Call Model(s, a) M times and generate samples (s′i, ri)
M
i=1.

- Let state[] contain the names of the states visited;
- Let probability[] contain the empirical fraction of the visits;
- Let reward[] contain the corresponding empirical average reward.
Q← 0.
For i ∈ {1, 2, . . . , length(state)}:

Q← Q+ probability[i]× (reward[i] + γ × StateV alue(state[i], d,M,N, π)).
Return Q.

StateV alue(s, d,M,N, π)
If s is terminal:

Return 0.
If d = 0:

Return Roll-outV alueEstimate(s,N, π).
V ← −∞.
For each a ∈ A:

Q← ActionV alue(s, a, d− 1,M,N, π).
If Q > V :

V ← Q.
Return V .

Roll-outV alueEstimate(s,N, π)
V ← 0.
Repeat N times:

R← 0; snow ← s; discount← 1.
While snow is not terminal:

(s′, r)←Model(snow, π(snow)).
R← R+ discount× r; discount← discount× γ.; snow ← s′.

V ← V +R.
V ← V/N .
Return V .

7. pσ is a policy network trained using supervised learning to mimic human expert moves. It
is used as the initialisation for pρ, a policy trained using REINFORCE and self-play to achieve
much higher performance. vθ is an approximation of the value function of pρ, and is used in part
to evaluate leaves during tree search while playing. The other part of leaf-evaluation comes from
doing roll-outs. pπ, which is based on a linear architecture also trained on human expert moves, is
the roll-out policy used; it is much quicker to execute than neural network-based policies.

