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Value lteration

Vo < Arbitrary, element-wise bounded, n-length vector. t < 0.

Repeat:
Forse S:
Vii1(8) < maxacad s T(S,a,8") (R(s, a,8") + vy Vi(s')).
t« t+1.

Until V; = V;_1 (up to machine precision).
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Forse S:
Vii1(8) < maxacad s T(S,a,8") (R(s, a,8") + vy Vi(s')).
t« t+1.

Until V; = V;_1 (up to machine precision).

Convergence to V* guaranteed using a max-norm contraction argument.
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Linear Programming

Minimise " V(s)
seS
subjectto  V(s) > Z T(s,a ') (R(s,a,s)+~vV(s)),Vs € S,vac A

s'eS
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Let |S| = nand |A| = k.
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subjectto  V(s) > Z T(s,a ') (R(s,a,s)+~vV(s)),Vs € S,vac A

s'eS

Let |S| = nand |A| = k.
n variables, nk constraints.

Can also be posed as dual with nk variables and n constraints.
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Policy Improvement
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Policy Improvement
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Policy Improvement
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Policy Improvement

Improving actions
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Policy Improvement

Given T,
Pick one or more improvable states, and in them,

Switch to an arbitrary improving action.
Let the resulting policy be 7'.
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Policy Improvement

Given ,
Pick one or more improvable states, and in them,
Switch to an arbitrary improving action.

Let the resulting policy be 7'.

N NG () 5 (%) (%) %
] HE B B B BN
| H B B B |

[ | | |

Policy Improvement Theorem:
(1) If = has no improvable states, then it is optimal, else
(2) if " is obtained as above, then
Vse S: V"l(s) >V™(s)and3Is e S: V"/(s) > V7 (s).
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Policy Improvement Theorem:
(1) If = has no improvable states, then it is optimal, else
(2) if 7’ is obtained as above, then
Vse S: V"l(s) > V7™(s)and3s <€ S: V”’(s) > V7(s).
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Definitions and Basic Facts

B ForX:S—RandY:S— R,wedefine X = Yifvse S: X(s) > Y(s),
and we define X - Yif X = Yand3s € S: X(s) > Y(s).
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B Bellman Operator. For 7 € I, we define B™ : (S — R) — (S — R) as follows:
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B ForX:S—RandY:S— R, wedefine X = YifVse S: X(s) > Y(s),
and we define X - Yif X = Yand3s € S: X(s) > Y(s).

For policies w1, w2 € N, we define my = m if V™ = V72,
and we define m = m if V™1 = V72,

B Bellman Operator. For 7 € I, we define B™ : (S — R) — (S — R) as follows:
forX:S—RandVse S,

B™( )E> " T(s,7( (R(s,m(s),s") +7X(s).

s'eS

B Fact1.FormreM, X:S—R,andY :S — R:
if X =Y, then B"(X) = B"(Y).

B Fact2. FormreMand X: S — R:
lim (B™)'(X) = V™. (from Banach’s FP Theorem)

|— o0
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Proof of Policy Improvement Theorem
Observe that for r, 7/ € M,Vs € S: B™ (V™)(s) = Q" (s, 7'(8)).
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Observe that for r, 7/ € M,Vs € S: B™ (V™)(s) = Q" (s, 7'(8)).

« has no improvable states
= Va' eN: V™ = B (V")
= Vr' eM: V™ = B (V™) = (B" )’(V™)
— vr' €M VT = BT (V7)) = (BY)X(VT) = - = fim (B")'(VT)

:VW'EH:V”EV”,.

= has improvable states and policy improvement yields 7’
— BT(VT) - VT
= (B P(V) = BT (V) - v
— Jim (B7)/(V7) = - = (B (V) = BT (VT) - VT
— 00
= V7 -V
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Policy lteration Algorithm

7 < Arbitrary policy.
While 7 has improvable states:
7 < Policylmprovement(r).
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7 < Arbitrary policy.

While = has improvable states:

(7).

7 < Policylmprovement
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Policy lteration Algorithm
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7 < Arbitrary policy.

While = has improvable states:

().

7 < Policylmprovement
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7 < Arbitrary policy.

While = has improvable states:

().

7 < Policylmprovement

Number of iterations depends on switching strategy. Current bounds quite loose.
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