Algorithms for MDP Planning

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay shivaram@cse.iitb.ac.in

August 2019

Overview

- 1. Value Iteration
- 2. Linear Programming
- 3. Policy Iteration Policy Improvement Theorem

Overview

- 1. Value Iteration
- 2. Linear Programming
- 3. Policy Iteration Policy Improvement Theorem

Value Iteration

 $V_0 \leftarrow$ Arbitrary, element-wise bounded, *n*-length vector. $t \leftarrow 0$. **Repeat: For** $s \in S$: $V_{t+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') (R(s, a, s') + \gamma V_t(s')).$ $t \leftarrow t + 1.$ **Until** $V_t \approx V_{t-1}$ (up to machine precision).

Value Iteration

 $\begin{array}{l} V_0 \leftarrow \text{Arbitrary, element-wise bounded, } n\text{-length vector. } t \leftarrow 0.\\ \textbf{Repeat:}\\ \textbf{For } s \in S\text{:}\\ V_{t+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left(R(s, a, s') + \gamma V_t(s')\right)\text{.}\\ t \leftarrow t+1.\\ \textbf{Until } V_t \approx V_{t-1} \text{ (up to machine precision).} \end{array}$

Convergence to V^* guaranteed using a max-norm contraction argument.

Overview

- 1. Value Iteration
- 2. Linear Programming
- 3. Policy Iteration Policy Improvement Theorem

$$\begin{array}{ll} \text{Minimise} & \sum_{s \in S} V(s) \\ \text{subject to} & V(s) \geq \sum_{s' \in S} T(s, a, s') \left(R(s, a, s') + \gamma V(s') \right), \forall s \in S, \forall a \in A. \end{array}$$

$$\begin{array}{ll} \text{Minimise} & \sum_{s \in S} V(s) \\ \text{subject to} & V(s) \geq \sum_{s' \in S} T(s, a, s') \left(R(s, a, s') + \gamma V(s') \right), \forall s \in S, \forall a \in A. \end{array}$$

Let |S| = n and |A| = k.

$$\begin{array}{ll} \text{Minimise} & \sum_{s \in \mathcal{S}} V(s) \\ \text{subject to} & V(s) \geq \sum_{s' \in \mathcal{S}} T(s, a, s') \left(R(s, a, s') + \gamma V(s') \right), \forall s \in \mathcal{S}, \forall a \in \mathcal{A}. \end{array}$$

Let |S| = n and |A| = k. *n* variables, *nk* constraints.

$$\begin{array}{ll} \text{Minimise} & \sum_{s \in \mathcal{S}} V(s) \\ \text{subject to} & V(s) \geq \sum_{s' \in \mathcal{S}} T(s, a, s') \left(R(s, a, s') + \gamma V(s') \right), \forall s \in \mathcal{S}, \forall a \in \mathcal{A}. \end{array}$$

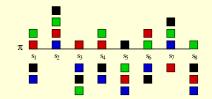
Let
$$|S| = n$$
 and $|A| = k$.

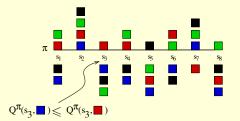
n variables, *nk* constraints.

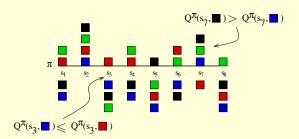
Can also be posed as *dual* with *nk* variables and *n* constraints.

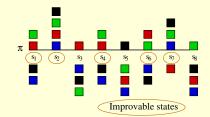
Overview

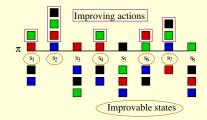
- 1. Value Iteration
- 2. Linear Programming
- 3. Policy Iteration Policy Improvement Theorem







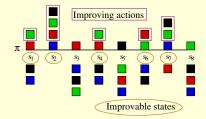




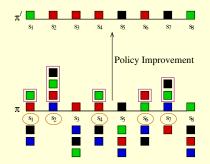
Given π ,

Pick one or more improvable states, and in them, Switch to an arbitrary improving action.

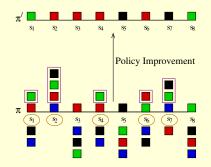
Let the resulting policy be π' .



Given π , Pick one or more improvable states, and in them, Switch to an arbitrary improving action. Let the resulting policy be π' .



Given π , Pick one or more improvable states, and in them, Switch to an arbitrary improving action. Let the resulting policy be π' .



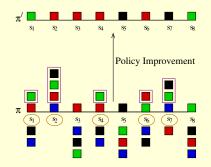
Policy Improvement Theorem:

(1) If π has no improvable states, then it is optimal, else

(2) if π' is obtained as above, then

$$\forall s \in \mathcal{S} : V^{\pi'}(s) \geq V^{\pi}(s) ext{ and } \exists s \in \mathcal{S} : V^{\pi'}(s) > V^{\pi}(s).$$

Given π , Pick one or more improvable states, and in them, Switch to an arbitrary improving action. Let the resulting policy be π' .



Policy Improvement Theorem:

(1) If π has no improvable states, then it is optimal, else

(2) if π' is obtained as above, then

 $orall s \in S: V^{\pi'}(s) \geq V^{\pi}(s) ext{ and } \exists s \in S: V^{\pi'}(s) > V^{\pi}(s).$

For $X : S \to \mathbb{R}$ and $Y : S \to \mathbb{R}$, we define $X \succeq Y$ if $\forall s \in S : X(s) \ge Y(s)$, and we define $X \succ Y$ if $X \succeq Y$ and $\exists s \in S : X(s) > Y(s)$.

■ For $X : S \to \mathbb{R}$ and $Y : S \to \mathbb{R}$, we define $X \succeq Y$ if $\forall s \in S : X(s) \ge Y(s)$, and we define $X \succ Y$ if $X \succeq Y$ and $\exists s \in S : X(s) > Y(s)$.

For policies $\pi_1, \pi_2 \in \Pi$, we define $\pi_1 \succeq \pi_2$ if $V^{\pi_1} \succeq V^{\pi_2}$, and we define $\pi_1 \succ \pi_2$ if $V^{\pi_1} \succ V^{\pi_2}$.

■ For $X : S \to \mathbb{R}$ and $Y : S \to \mathbb{R}$, we define $X \succeq Y$ if $\forall s \in S : X(s) \ge Y(s)$, and we define $X \succ Y$ if $X \succeq Y$ and $\exists s \in S : X(s) > Y(s)$.

For policies $\pi_1, \pi_2 \in \Pi$, we define $\pi_1 \succeq \pi_2$ if $V^{\pi_1} \succeq V^{\pi_2}$, and we define $\pi_1 \succ \pi_2$ if $V^{\pi_1} \succ V^{\pi_2}$.

Bellman Operator. For $\pi \in \Pi$, we define $B^{\pi} : (S \to \mathbb{R}) \to (S \to \mathbb{R})$ as follows: for $X : S \to \mathbb{R}$ and $\forall s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{\tiny def}}{=} \sum_{s' \in S} T(s, \pi(s), s') \left(R(s, \pi(s), s') + \gamma X(s') \right)$$

■ For $X : S \to \mathbb{R}$ and $Y : S \to \mathbb{R}$, we define $X \succeq Y$ if $\forall s \in S : X(s) \ge Y(s)$, and we define $X \succ Y$ if $X \succeq Y$ and $\exists s \in S : X(s) > Y(s)$.

For policies $\pi_1, \pi_2 \in \Pi$, we define $\pi_1 \succeq \pi_2$ if $V^{\pi_1} \succeq V^{\pi_2}$, and we define $\pi_1 \succ \pi_2$ if $V^{\pi_1} \succ V^{\pi_2}$.

Bellman Operator. For $\pi \in \Pi$, we define $B^{\pi} : (S \to \mathbb{R}) \to (S \to \mathbb{R})$ as follows: for $X : S \to \mathbb{R}$ and $\forall s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{def}}{=} \sum_{s' \in S} T(s, \pi(s), s') \left(R(s, \pi(s), s') + \gamma X(s') \right).$$

Fact 1. For $\pi \in \Pi$, $X : S \to \mathbb{R}$, and $Y : S \to \mathbb{R}$:

if $X \succeq Y$, then $B^{\pi}(X) \succeq B^{\pi}(Y)$.

■ For $X : S \to \mathbb{R}$ and $Y : S \to \mathbb{R}$, we define $X \succeq Y$ if $\forall s \in S : X(s) \ge Y(s)$, and we define $X \succ Y$ if $X \succeq Y$ and $\exists s \in S : X(s) > Y(s)$.

For policies $\pi_1, \pi_2 \in \Pi$, we define $\pi_1 \succeq \pi_2$ if $V^{\pi_1} \succeq V^{\pi_2}$, and we define $\pi_1 \succ \pi_2$ if $V^{\pi_1} \succ V^{\pi_2}$.

Bellman Operator. For $\pi \in \Pi$, we define $B^{\pi} : (S \to \mathbb{R}) \to (S \to \mathbb{R})$ as follows: for $X : S \to \mathbb{R}$ and $\forall s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{def}}{=} \sum_{s' \in S} T(s, \pi(s), s') \left(R(s, \pi(s), s') + \gamma X(s') \right).$$

Fact 1. For $\pi \in \Pi$, $X : S \to \mathbb{R}$, and $Y : S \to \mathbb{R}$:

if $X \succeq Y$, then $B^{\pi}(X) \succeq B^{\pi}(Y)$.

Fact 2. For $\pi \in \Pi$ and $X : S \to \mathbb{R}$:

 $\lim_{l\to\infty} (B^{\pi})^l(X) = V^{\pi}.$ (from Banach's FP Theorem)

Observe that for $\pi, \pi' \in \Pi, \forall s \in S: B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$

Observe that for $\pi, \pi' \in \Pi, \forall s \in S: B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

Observe that for $\pi, \pi' \in \Pi, \forall s \in S: B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \\ \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2(V^{\pi})$$

Observe that for $\pi, \pi' \in \Pi, \forall s \in S: B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi}) \Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi}) \succeq \dots \succeq \lim_{l \to \infty} (B^{\pi'})^l (V^{\pi})$$

Observe that for $\pi, \pi' \in \Pi, \forall s \in S: B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^l (V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

Observe that for $\pi, \pi' \in \Pi, \forall s \in S: B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$

 π has no improvable states

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi}) \Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^l (V^{\pi}) \Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

Observe that for $\pi, \pi' \in \Pi, \forall s \in S: B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$

 π has no improvable states

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^l (V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

 π has improvable states and policy improvement yields π'

 $\implies B^{\pi'}(V^{\pi}) \succ V^{\pi}$

Observe that for $\pi, \pi' \in \Pi, \forall s \in S: B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$

 π has no improvable states

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^l (V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

$$\implies B^{\pi'}(V^{\pi}) \succ V^{\pi}$$
$$\implies (B^{\pi'})^2(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

Observe that for $\pi, \pi' \in \Pi, \forall s \in S: B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$

 π has no improvable states

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^l (V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

$$\implies B^{\pi'}(V^{\pi}) \succ V^{\pi} \implies (B^{\pi'})^2(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi} \implies \lim_{l \to \infty} (B^{\pi'})^l(V^{\pi}) \succeq \cdots \succeq (B^{\pi'})^2(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

Observe that for $\pi, \pi' \in \Pi, \forall s \in S: B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$

 π has no improvable states

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi})$$

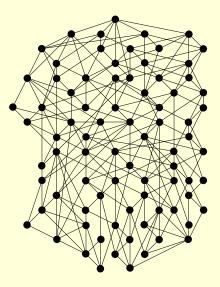
$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2 (V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^l (V^{\pi})$$

$$\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

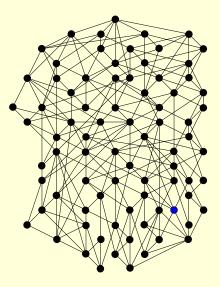
$$\Rightarrow B^{\pi'}(V^{\pi}) \succ V^{\pi} \Rightarrow (B^{\pi'})^2(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi} \Rightarrow \lim_{l \to \infty} (B^{\pi'})^l(V^{\pi}) \succeq \cdots \succeq (B^{\pi'})^2(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi} \Rightarrow V^{\pi'} \succ V^{\pi}.$$

 $\pi \leftarrow$ Arbitrary policy. **While** π has improvable states: $\pi \leftarrow$ PolicyImprovement(π).

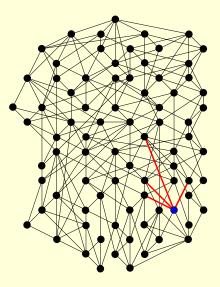
 $\begin{aligned} \pi &\leftarrow \text{Arbitrary policy.} \\ \text{While } \pi \text{ has improvable states:} \\ \pi &\leftarrow \text{PolicyImprovement}(\pi). \end{aligned}$



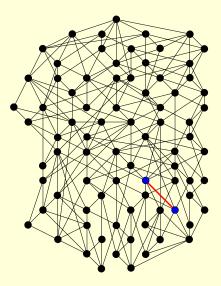
 $\begin{aligned} \pi &\leftarrow \text{Arbitrary policy.} \\ \text{While } \pi \text{ has improvable states:} \\ \pi &\leftarrow \text{PolicyImprovement}(\pi). \end{aligned}$



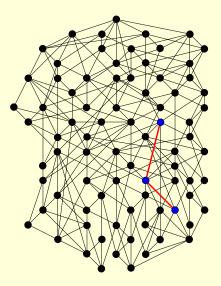
 $\begin{aligned} \pi &\leftarrow \text{Arbitrary policy.} \\ \text{While } \pi \text{ has improvable states:} \\ \pi &\leftarrow \text{PolicyImprovement}(\pi). \end{aligned}$



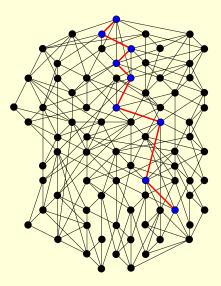
 $\pi \leftarrow$ Arbitrary policy. **While** π has improvable states: $\pi \leftarrow$ PolicyImprovement(π).



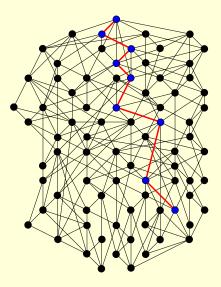
 $\pi \leftarrow$ Arbitrary policy. **While** π has improvable states: $\pi \leftarrow$ PolicyImprovement(π).



 $\pi \leftarrow$ Arbitrary policy. **While** π has improvable states: $\pi \leftarrow$ PolicyImprovement(π).



 $\pi \leftarrow$ Arbitrary policy. **While** π has improvable states: $\pi \leftarrow$ PolicyImprovement(π).



Number of iterations depends on switching strategy. Current bounds quite loose.