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Value Iteration

V0 ← Arbitrary, element-wise bounded, n-length vector. t ← 0.
Repeat:

For s ∈ S:
Vt+1(s)← maxa∈A

∑
s′∈S T (s, a, s′) (R(s, a, s′) + γVt (s′)).

t ← t + 1.
Until Vt ≈ Vt−1 (up to machine precision).

Convergence to V ? guaranteed using a max-norm contraction argument.
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Linear Programming

Minimise
∑
s∈S

V (s)

subject to V (s) ≥
∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + γV (s′)

)
,∀s ∈ S, ∀a ∈ A.

Let |S| = n and |A| = k .

n variables, nk constraints.

Can also be posed as dual with nk variables and n constraints.
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Policy Improvement

Given π,
Pick one or more improvable states, and in them,
Switch to an arbitrary improving action.

Let the resulting policy be π′.

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement Theorem:
(1) If π has no improvable states, then it is optimal, else
(2) if π′ is obtained as above, then

∀s ∈ S : Vπ′
(s) ≥ Vπ(s) and ∃s ∈ S : Vπ′

(s) > Vπ(s).
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Definitions and Basic Facts
� For X : S → R and Y : S → R, we define X � Y if ∀s ∈ S : X (s) ≥ Y (s),

and we define X � Y if X � Y and ∃s ∈ S : X (s) > Y (s).

For policies π1, π2 ∈ Π, we define π1 � π2 if Vπ1 � Vπ2 ,
and we define π1 � π2 if Vπ1 � Vπ2 .

� Bellman Operator. For π ∈ Π, we define Bπ : (S → R)→ (S → R) as follows:
for X : S → R and ∀s ∈ S,

(Bπ(X ))(s)
def
=
∑
s′∈S

T (s, π(s), s′)
(
R(s, π(s), s′) + γX (s′)

)
.

� Fact 1. For π ∈ Π, X : S → R, and Y : S → R:

if X � Y , then Bπ(X ) � Bπ(Y ).

� Fact 2. For π ∈ Π and X : S → R:

lim
l→∞

(Bπ)l (X ) = Vπ. (from Banach’s FP Theorem)
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Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ
′
(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ) � · · · � lim

l→∞
(Bπ

′
)l (Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Vπ′
.

π has improvable states and policy improvement yields π′

=⇒ Bπ
′
(Vπ) � Vπ

=⇒ (Bπ
′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ lim
l→∞

(Bπ
′
)l (Vπ) � · · · � (Bπ

′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ Vπ′
� Vπ.

Shivaram Kalyanakrishnan (2019) Algorithms for MDP Planning 9 / 10



9/10

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ
′
(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ) � · · · � lim

l→∞
(Bπ

′
)l (Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Vπ′
.

π has improvable states and policy improvement yields π′

=⇒ Bπ
′
(Vπ) � Vπ

=⇒ (Bπ
′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ lim
l→∞

(Bπ
′
)l (Vπ) � · · · � (Bπ

′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ Vπ′
� Vπ.

Shivaram Kalyanakrishnan (2019) Algorithms for MDP Planning 9 / 10



9/10

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ
′
(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ) � · · · � lim

l→∞
(Bπ

′
)l (Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Vπ′
.

π has improvable states and policy improvement yields π′

=⇒ Bπ
′
(Vπ) � Vπ

=⇒ (Bπ
′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ lim
l→∞

(Bπ
′
)l (Vπ) � · · · � (Bπ

′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ Vπ′
� Vπ.

Shivaram Kalyanakrishnan (2019) Algorithms for MDP Planning 9 / 10



9/10

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ
′
(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ) � · · · � lim

l→∞
(Bπ

′
)l (Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Vπ′
.

π has improvable states and policy improvement yields π′

=⇒ Bπ
′
(Vπ) � Vπ

=⇒ (Bπ
′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ lim
l→∞

(Bπ
′
)l (Vπ) � · · · � (Bπ

′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ Vπ′
� Vπ.

Shivaram Kalyanakrishnan (2019) Algorithms for MDP Planning 9 / 10



9/10

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ
′
(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ) � · · · � lim

l→∞
(Bπ

′
)l (Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Vπ′
.

π has improvable states and policy improvement yields π′

=⇒ Bπ
′
(Vπ) � Vπ

=⇒ (Bπ
′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ lim
l→∞

(Bπ
′
)l (Vπ) � · · · � (Bπ

′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ Vπ′
� Vπ.

Shivaram Kalyanakrishnan (2019) Algorithms for MDP Planning 9 / 10



9/10

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ
′
(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ) � · · · � lim

l→∞
(Bπ

′
)l (Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Vπ′
.

π has improvable states and policy improvement yields π′

=⇒ Bπ
′
(Vπ) � Vπ

=⇒ (Bπ
′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ lim
l→∞

(Bπ
′
)l (Vπ) � · · · � (Bπ

′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ Vπ′
� Vπ.

Shivaram Kalyanakrishnan (2019) Algorithms for MDP Planning 9 / 10



9/10

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ
′
(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ) � · · · � lim

l→∞
(Bπ

′
)l (Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Vπ′
.

π has improvable states and policy improvement yields π′

=⇒ Bπ
′
(Vπ) � Vπ

=⇒ (Bπ
′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ lim
l→∞

(Bπ
′
)l (Vπ) � · · · � (Bπ

′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ Vπ′
� Vπ.

Shivaram Kalyanakrishnan (2019) Algorithms for MDP Planning 9 / 10



9/10

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ
′
(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ) � · · · � lim

l→∞
(Bπ

′
)l (Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Vπ′
.

π has improvable states and policy improvement yields π′

=⇒ Bπ
′
(Vπ) � Vπ

=⇒ (Bπ
′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ lim
l→∞

(Bπ
′
)l (Vπ) � · · · � (Bπ

′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ Vπ′
� Vπ.

Shivaram Kalyanakrishnan (2019) Algorithms for MDP Planning 9 / 10



9/10

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ
′
(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ) � · · · � lim

l→∞
(Bπ

′
)l (Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Vπ′
.

π has improvable states and policy improvement yields π′

=⇒ Bπ
′
(Vπ) � Vπ

=⇒ (Bπ
′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ lim
l→∞

(Bπ
′
)l (Vπ) � · · · � (Bπ

′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ Vπ′
� Vπ.

Shivaram Kalyanakrishnan (2019) Algorithms for MDP Planning 9 / 10



9/10

Proof of Policy Improvement Theorem

Observe that for π, π′ ∈ Π, ∀s ∈ S: Bπ
′
(Vπ)(s) = Qπ(s, π′(s)).

π has no improvable states

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Bπ
′
(Vπ) � (Bπ

′
)2(Vπ) � · · · � lim

l→∞
(Bπ

′
)l (Vπ)

=⇒ ∀π′ ∈ Π : Vπ � Vπ′
.

π has improvable states and policy improvement yields π′

=⇒ Bπ
′
(Vπ) � Vπ

=⇒ (Bπ
′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ lim
l→∞

(Bπ
′
)l (Vπ) � · · · � (Bπ

′
)2(Vπ) � Bπ

′
(Vπ) � Vπ

=⇒ Vπ′
� Vπ.

Shivaram Kalyanakrishnan (2019) Algorithms for MDP Planning 9 / 10



10/10

Policy Iteration Algorithm

π ← Arbitrary policy.
While π has improvable states:

π ← PolicyImprovement(π).

Number of iterations depends on switching strategy. Current bounds quite loose.
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