
CS 747 (Autumn 2019): Mid-semester Examination

Instructor: Shivaram Kalyanakrishnan

8.30 a.m. – 10.30 a.m., September 19, 2019, LA 201/202

Total marks: 15

Note. Provide justifications and/or calculations along with each answer to illustrate how you ar-
rived at the answer.

Question 1. An n-armed bandit instance I, where n ≥ 2, has p1, p2, . . . , pn ∈ (0, 1) as the mean
rewards of its arms. Each arm implements a Bernoulli distribution (that is, returns 0-1 rewards).
Let r0, r1, . . . , rT−1 be the rewards obtained in the first T pulls, where T ≥ 1. Let

xT = r0 + r1 + · · ·+ rT−1.

1a. Consider an algorithm that picks an arm uniformly at random at each round and pulls it (you
may think of it as ǫ-greedy sampling with ǫ = 1). If this algorithm is executed, what is the
variance of xT ?—in other words E[(xT )2]− (E[xT ])2? [2 marks]

Let
yT = (1− r0) + (1− r1) + · · ·+ (1− rT−1) = T − xT .

While xT is the total number of 1-rewards in the first T pulls, yT is the total number of 0-rewards
in the first T pulls. Let

zT = max(xT , yT );

that is, zT counts the total number of the more-frequent reward value in the first T pulls. Suppose
we are interested in maximising E[zT ].

As an analogy, recall the coin-tossing game played in the first class. When we actually played it,
the instructor promised you as many Rupees as the number of heads you could gather in T tosses.
Now we consider what to do if you were instead promised as many Rupees as either the number of
heads or the number of tails, whichever you demanded upon completion (and you would naturally
choose to maximise your profit).

1b. Suppose one has knowledge of I: that is, one knows p1, p2, . . . , pn. What algorithm L⋆ must
one apply in order to maximise E[zT ]? [1 mark]

1c. Let Z⋆(T ) denote the maximum value of E[zT ] that can be attained on I—that is, by playing
L⋆. Let ZL(T ) denote the value of E[zT ] achieved by some algorithm L.

Describe an algorithm L that achieves Z⋆(T ) − ZL(T ) ≤ C(I) ln(T ) for sufficiently large T

and for all bandit instances I, where C(I) is a constant depending only on I. You might find
it convenient to view (Z⋆(T ) − ZL(T )) as the “Z-regret” of L. Provide a proof to back up
your claim. You can use results derived in class. [3 marks]



Question 2. An ant is inside a tunnel with n chambers, n ≥ 2. As shown in the figure below, the
chambers are numbered 1, 2, . . . , n. The ant seeks your help in exiting the tunnel quickly.
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The ant can either take action L (going left) or action R (going right). Due to the winds blowing
inside the tunnel, neither action guarantees success; rather, there is an associated probability of
making progress.

• From chamber i ∈ {1, 2, 3, . . . , n}, action L takes the ant to chamber i − 1 with probability
pL, and retains the ant in chamber i with probability 1− pL, where pL ∈ (0, 1).

• From chamber i ∈ {1, 2, 3, . . . , n}, action R takes the ant to chamber i + 1 with probability
pR, and retains the ant in chamber i with probability 1− pR, where pR ∈ (0, 1).

Chambers 0 and n+1, which are not shown in the figure, are outside the tunnel. Upon reaching
them the ant is free!

Let π⋆ : {1, 2, . . . , n} → {L,R} be a policy that minimises the expected number of steps taken
by the ant to exit the tunnel, whatever be the starting chamber i.

2a. Show that for i ∈ {1, 2, . . . , n − 1}, if π⋆(i) = R, then π⋆(i + 1) = R. In other words, π⋆

must take L for chambers 1, 2, . . . ,m, and R for chambers m + 1,m + 2, . . . , n, for some
m ∈ {0, 1, . . . , n}. [2 marks]

2b. Using the result from 2a, compute π⋆: that is, express it in terms of n, pL, and pR. [2 marks]

Question 3. This question asks you to establish that an approximation of the optimal value
function of an MDP induces an approximately-optimal policy. You can use results derived in class
as a part of your answer.

Consider an MDP (S,A, T,R, γ). Let Π be the set of all policies for this MDP.
Suppose that the optimal value function V ⋆ is approximated by V : S → R. Concretely, we

have ‖V − V ⋆‖∞ ≤ ǫ for some ǫ > 0. Recall that for F : S → R, ‖F‖∞ = maxs∈S |F (s)|.
A policy π ∈ Π is said to be greedy with respect to a function X : S → R if for all π′ ∈ Π,

Bπ(X) � Bπ′

(X). Let π ∈ Π be greedy with respect to V .
Show that

‖V π − V ⋆‖∞ ≤
2γǫ

1− γ
. [5 marks]



Solutions

1a. Sampling uniformly at random results in a probability p̄ = p1+p2+···+pn
n

of rt being 1 and a
probability 1− p̄ of rt being 0 for t ∈ {0, 1, . . . , T − 1}. Hence,

E[xT ] =
T
∑

i=0

P{xT = i}i

=
T
∑

i=0

(

T

i

)

p̄i(1− p̄)T−ii

=
T
∑

i=1

(

T

i

)

p̄i(1− p̄)T−ii

= p̄T

T
∑

i=1

(

T − 1

i− 1

)

p̄i−1(1− p̄)T−i

= p̄T

T
∑

j=0

(

T − 1

j

)

p̄j(1− p̄)T−1−j

= p̄T.

E[(xT )2] =
T
∑
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P{xT = i}i2

=
T
∑
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i

)

p̄i(1− p̄)T−ii2

=
T
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T

i

)

p̄i(1− p̄)T−ii2

=

T
∑

i=1

(

T

i

)

p̄i(1− p̄)T−ii(i− 1) +

T
∑

i=1

(

T

i

)

p̄i(1− p̄)T−ii

=
T
∑

i=2

(

T

i

)

p̄i(1− p̄)T−ii(i− 1) +
T
∑

i=1

(

T

i

)

p̄i(1− p̄)T−ii

=
T
∑

i=2

T (T − 1)

(

T − 2

i− 2

)

p̄i−2(1− p̄)T−i + E[xT ]

=
T
∑

i=2

T (T − 1)p̄2
(

T − 2

i− 2

)

p̄i−2(1− p̄)T−i + E[xT ]

= p̄2T 2 − p̄2T + p̄T.

Hence, V ar[xT ] = E[(xT )2]− (E[xT ])2 = p̄(1− p̄)T .
The easier way to solve the problem is to use the fact that if X and Y are independent, then

V ar[X + Y ] = V ar[X] + V ar[Y ]. Note that indeed r0 and r1 and . . . and rT−1 are independent
and identically distributed; each having variance p̄− p̄2. The answer immediately follows.



1b. One must always play an arm a that maximises max(pa, 1− pa).

1c. Given an n-armed instance I, we simulate a 2n-armed instance I ′. Each arm a in I is also
present in I ′; also included in I ′ is a corresponding arm a′ with mean 1− pa. Although we do not
know the means of the arms, we can still implement pulls legitimately on I ′. If an arm a ∈ A is
pulled, it is pulled in I and the corresponding reward r noted. If an arm a′ ∈ A′ is pulled, the
corresponding arm a ∈ A is pulled on I; if r is the reward received on I, then 1 − r is recorded
as the reward on I ′. It is easy to see that the expected reward from arm a is pa and that of a′ is
1− pa.

We run UCB on I ′. On I ′, we know that UCB will play each non-optimal arm at most
C1(I

′) ln(T ) times up to horizon T . In turn, this means that the number of pulls of non-optimal arms
in I (with respect to Z-regret) is at most C2(I

′) ln(T ), and the Z-regret itself at most C3(I
′) ln(T ).

Since I ′ is fully defined by I, this regret upper bound is of the form C(I) ln(T ).

2a. If π⋆(i) and π⋆(i+ 1) are both R, then the only states that can ever be visited starting from i

or i+1 are i and i+1. Clearly the ant cannot exit the tunnel if this is the case. Hence, if π⋆(i) = R,
we must have π⋆(i+ 1) = R.

2b. We have established in 2a that either “always take L” or “always take R” will be an optimal
control strategy starting from each chamber. For i ∈ {1, 2, . . . , n}, let XL(i) denote the expected
number of steps, if starting from chamber i, to exit, by always taking L. Similarly, let XR(i) denote
the expected number of steps, if starting from chamber i, to exit, by always taking R.

We have XL(1) = pL(1) + (1− pL)(1 +XL(1)), which gives XL(1) =
1

pL
. Using the recurrence

for i ∈ {2, 3, . . . , n} that XL(i) = pL(1 +XL(i− 1)) + (1− pL)(1 +XL(i)), we get XL(i) =
i
pL

. A

similar working shows XR(i) =
n−i+1

pR
.

Observe that XL(i) ≤ XR(i) ⇐⇒ i ≤ pL
pL+pR

(n+ 1). Thus, we get (giving ties to L):

π⋆(i) =

{

L, if i ≤ pL
pL+pR

(n+ 1)

R, otherwise.



3. First we bound ‖Bπ(V ⋆)− V ⋆‖∞. For s ∈ S, we have

Bπ(V ⋆)(s) = Q⋆(s, π(s))

=
∑

s′∈S

T (s, π(s), s′){R(s, π(s), s′) + γV ⋆(s′)}

≥
∑

s′∈S

T (s, π(s), s′){R(s, π(s), s′) + γ(V (s′)− ǫ)}

=
∑

s′∈S

T (s, π(s), s′){R(s, π(s), s′) + γV (s′)} − γǫ

= Bπ(V )(s)− γǫ

≥ B⋆(V )(s)− γǫ

=
∑

s′∈S

T (s, π⋆(s), s′){R(s, π⋆(s), s′) + γV (s′)} − γǫ

≥
∑

s′∈S

T (s, π⋆(s), s′){R(s, π⋆(s), s′) + γ(V ⋆(s′)− ǫ)} − γǫ

=
∑

s′∈S

T (s, π⋆(s), s′){R(s, π⋆(s), s′) + γV ⋆((s′)} − 2γǫ

= V ⋆(s)− 2γǫ.

It is also a fact that Bπ(V ⋆)(s) ≤ V ⋆(s), since V ⋆ is the optimal value function. In short,

0 ≤ V ⋆(s)−Bπ(V ⋆)(s) ≤ 2γǫ,

which means ‖Bπ(V ⋆) − V ⋆‖∞ ≤ 2γǫ. By the repeated application of Banach’s Fixed Point
Theorem, we get for all l ≥ 1 that ‖(Bπ)l(V ⋆)− (Bπ)l−1(V ⋆)‖∞ ≤ 2γlǫ, which implies

‖(Bπ)l(V ⋆)− V ⋆‖∞ ≤
l−1
∑

i=0

‖(Bπ)i+1(V ⋆)− (Bπ)i(V ⋆)‖∞ ≤ 2ǫ(γ + γ2 + · · ·+ γl).

As we take l → ∞, we get

‖V π − V ⋆‖∞ ≤
2γǫ

1− γ
.


