
CS 747 (Autumn 2020): Weekly Quizzes

Instructor: Shivaram Kalyanakrishnan

December 3, 2020

Note. Provide justifications/calculations/steps along with each answer to illustrate how you ar-
rived at the answer. You will not receive credit for giving an answer without sufficient explanation.

Submission. Write down your answer by hand, then scan and upload to Moodle. Write clearly
and legibly. Be sure to mention your roll number.

Week 12

Question. In general, Experience Replay is used on large tasks, when function approximation is
needed. Nonetheless, in this question, we consider applying it on a finite MDP with a small number
of states and actions—say 10 states and 2 actions. In this case, Q̂ can be represented as a table.

Suppose we have gathered a data set D with L = 10, 000 transitions of the form (s, a, r, s′). In
the form described in the week’s lecture, Experience Replay requires drawing a large number of
random samples from D and performing “Q-learning”-type updates. Say this number of updates
is M = 106—implying roughly 100 visits to each sample in D. Assume that the combination of
M and a small learning rate α ensures that Q̂ converges (in a practical sense) at the end of the
Experience Replay phase. Denote the converged value Q̂output.

Can you think of a faster way to compute Q̂output from D—taking time in the order of θ(L)
rather than θ(M)? Use the fact that the MDP is finite and small. No need for pseudocode or
precise calculations; a high-level sketch will do.

Solution. The answer is essentially the model-based algorithm presented in Week 8 and in Class
Note 3. We build an empirical model, associating with each state-action-state pair a transition
probability and a reward, both estimated empirically from D. The time taken to populate this
model is linear in L. Thereafter we solve for the optimal action value function on the model. This
function is going to be the same as Q̂output (recall that we had established a similar equivalence in
the context of prediction with Batch TD(0)). The time taken to plan is expected to be negligible
with only 10 states and 2 actions, leading to a faster computation in aggregate compared to M
Experience Replay updates.

On realistic tasks that require function approximation, it is not always possible to learn/represent
sufficiently good models. It is also not straightforward (as it is in the tabular case) to plan with
generalisation over a a large state space.



Week 11

Question. In this week’s lecture, we observed Tsitsiklis and Van Roy’s counterexample. We
claimed that its demonstration crucially depended on the conjunction of three factors: off-policy
updating, bootstrapping, and generalisation. In this question, we consider the effect of removing
one of these factors: specifically we replace the off-policy update with an on-policy update. Refer
to the MDP in the counterexample on Slide 9 of the lecture. Suppose that episodes always start
at state s1. Since there is a deterministic transition to s2, the number of time steps per episode in
s1 is exactly T (s1) = 1. Similarly, what is T (s2), the expected number of time steps per episode in
s2? Naturally T (s2) must depend on ε; assume ε ∈ (0, 1). We use the same linear architecture as
described in the lecture.

For k ≥ 0, the new update rule we propose is

wk+1 ← argmin
w∈R

∑
s

T (s)
(
Eπ[r + γV̂ (wk, x(s′))]− V̂ (w, x(s))

)2
.

Show that whatever be the initialisation w0 ∈ R, we shall achieve limk→∞wk = 0.

Solution. The expected number of time steps per episode spent at s2 is

T (s2) = ε(1) + (1− ε)ε(2) + (1− ε)2ε(3) + · · · = 1

ε
.

Hence, we have

wk+1 = argmin
w∈R

(
(2γwk − w)2 +

1

ε
(2γwk(1− ε)− 2w)2

)
= argmin

w∈R

(
w2

(
1 +

4

ε

)
+ w

(
−4γwk −

8γwk(1− ε)
ε

))
= argmin

w∈R

(
w2 − 2w

2γεwk + 4γwk(1− ε)
ε+ 4

)
= argmin

w∈R

(
w − γwk

4− 2ε

4 + ε

)2

=
4− 2ε

4 + ε
γwk =

(
4− 2ε

4 + ε
γ

)k
w0.

For w0 ∈ R, ε ∈ (0, 1), γ ∈ [0, 1], it is clear that limk→∞wk = 0.
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Week 10

Question. In the preceding weeks, we have stated the following two results without proofs. Both
relate to the prediction task; say policy π is being evaluated on MDP (S,A, T,R, γ). Assume the
MDP is continuing and ergodic; also assume standard conditions for annealing the learning rate.

R1. TD(0) in the tabular setting (that is, with a separate entry for each state) converges to the
underlying value function V π.

R2. Linear TD(λ), for λ ∈ [0, 1], which computes the estimate V̂ as a dot product of a d-
dimensional feature vector of state and learned weight vector w, converges to w∞λ satisfying

MSV E(w∞λ ) ≤ 1− γλ
1− γ

min
w∈Rd

MSV E(w).

Show that R2 implies R1.

Solution. The tabular representation can be interpreted as a linear function “approximation”
scheme using a one-hot encoding scheme. Herein, the number of features d is equal to the number
of states |S|. For each state s ∈ S, there is a corresponding feature in the feature vector x(s) that
is set to 1; all the other features in x(s) are 0. For example, if there are three states, their feature
vectors are (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Observe that with this approach, the weight ws corresponding to (the feature corresponding
to) a state s is essentially the value estimate V̂ (s), since V̂ (s) = w · x(s) = ws. Also observe
that TD(0) with a tabular representation is identical to Linear TD(0) with the one-hot encoding
representation, in terms of the update made after each step.

Now consider the weight vector w?, which, for every s ∈ S, has w?(s) = V π(s). It is clear that
MSV E(w?) = 0. It follows from R2 that Linear TD(0) using the proposed linear architecture
must converge to w∞0 satisfying MSV E(w∞0 ) = 0, in turn meaning w∞0 (s) = V π(s) for s ∈ S. The
convergence of the TD(0) estimate V̂ to V π—that is, R1—is a consequence.
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Week 9

Question. A learning agent interacts with an MDP (S,A, T,R, γ), where S = {s1, s2, s3} and
A = {a1, a2, a3}. No discounting is used (γ = 1).

The agent begins with the Q-table given below as initialisation Q̂0.

Q̂0(s, a)

s
a

a1 a2 a3

s1 2 -3 1

s2 2 2 2

s3 0 -1 1

The agent uses ε-greedy exploration with ε = 0.15, and a learning rate α = 0.1 (both are con-
stants, not annealed over time). Starting from state s2, suppose that the agent’s first transition is
(s2, a1, 2, s3) (the next state is s3 and the reward 2). From s3, the agent decides to take action a2.
Thus, the agent’s trajectory is s2, a1, 2, s3, a2, . . . . What is Q̂1—the Q-table after making the first
learning update? Give your answer for each of Q-learning, Sarsa, and Expected Sarsa being used
for making the update. In each case provide the complete 3 × 3 table for Q̂1. In the absence of
ties, note that a 0.15-greedy policy will pick the “argmax” action with probability 0.9, and each of
the other two actions with probability 0.05.

Solution. Under all three methods, the only entry that changes is Q̂(s2, a1); all the other entries
are carried forward from Q̂0 to Q̂1.

• Under Q-learning, we have

Q̂1(s2, a1) = Q̂0(s2, a1)(1− α) + α{2 + max
a∈A

Q̂0(s3, a)} = 2× 0.9 + 0.1× (2 + 1) = 2.1.

• Under Sarsa, we have

Q̂1(s2, a1) = Q̂0(s2, a1)(1− α) + α{2 + Q̂0(s3, a2)} = 2× 0.9 + 0.1× (2− 1) = 1.9.

• Under Expected Sarsa, the policy π used to pick an action at s3 is reflected in the update.
Since it is 0.15-greedy, we have

Q̂1(s2, a1) = Q̂0(s2, a1)(1− α) + α{2 +
∑
a∈A

π(s3, a)Q̂0(s3, a)}

= 2× 0.9 + 0.1× (2 + (0.05× 0 + 0.05×−1 + 0.9× 1)) = 2.085.

The tables below compare results from the three update rules.

Q̂1, Q-learning

s
a

a1 a2 a3

s1 2 −3 1

s2 2.1 2 2

s3 0 −1 1

Q̂1, Sarsa

s
a

a1 a2 a3

s1 2 −3 1

s2 1.9 2 2

s3 0 −1 1

Q̂1, Expected Sarsa

s
a

a1 a2 a3

s1 2 −3 1

s2 2.085 2 2

s3 0 −1 1

4



Week 8

Question. The figure below shows a Markov chain, which is defined by its states and transition
probabilities. A Markov chain is what we get by fixing a policy for a given MDP (and ignoring the
rewards and discount factor). The Markov chain in the figure has two states, s1 and s2. State s1

loops back to itself with probability p ∈ [0, 1], and transitions to s2 with probability 1 − p. State
s2 deterministically transitions to s1. This question examines the ergodicity of the Markov chain.

s1 s2

p

1 − p

1

Arrows are marked with transition probabilities.

Assume that for t ≥ 0, st is the state occupied at time step t. For t ≥ 0, i, j ∈ {1, 2}, define

xti,j
def
= P{st = si|s0 = sj}; in other words, xti,j is the probability of being in state si at step t given

the agent was at sj at step 0. Based on the definition and the fact that the agent will be in either
s1 or s2 at any time step t ≥ 0, observe that we have

x0
11 = 1 and x0

22 = 1; (1)

xt11 + xt21 = 1 and xt12 + xt22 = 1. (2)

Write down xt11, xt21, xt12, and xt22 as functions of p and t (to do this write down the variables
for step t+ 1 in terms of those at t, and then solve the recurrence). Show that for p ∈ (0, 1),

lim
t→∞

xt11 = lim
t→∞

xt12 and lim
t→∞

xt21 = lim
t→∞

xt22.

Do these limits exist for p = 0 and for p = 1?

Solution. Based on the transition probabilities, we observe the recurrences

xt+1
11 = xt11(p) + xt21 and xt+1

22 = xt12(1− p) (3)

for t ≥ 0. Using (1), (2), and (3), we obtain

xt11 =
1 + (−1)t(1− p)t+1

2− p
, xt21 =

1− p− (−1)t(1− p)t+1

2− p
,

xt12 =
1− (−1)t(1− p)t

2− p
, xt22 =

1− p+ (−1)t(1− p)t

2− p
.

for t ≥ 0. For p ∈ (0, 1), we get limt→∞ x
t
11 = limt→∞ x

t
12 = 1

2−p , and limt→∞ x
t
21 = limt→∞ x

t
22 =

1−p
2−p . The same limits hold for p = 1, but the Markov chain is not irreducible in this case (hence
not ergodic). The limits are not well-defined for p = 0 since the probabilities are exactly 0 or 1
depending on the parity of t.
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Week 6

Question. This question calls for a straightforward application of definitions introduced in the
Week 6 lecture. Consider the MDP shown in the figure below. It has two states: s1 and s2; and
three actions: a, b, and c. Action a is deterministic, always leading to state s1; action b is also
deterministic, but always leading to state s2. Action c, on the other hand, keeps the agent in the
starting state with probability 1/2, and moves the agent to the other state with probability 1/2.

Action a merits a reward of 1 and action b a reward of 2 regardless of the state from which
they are taken. Action c yields a reward of 3 if taken from s1 and a reward of 2 if taken from s2.
Observe that all the rewards can be written in terms of the starting state and action alone, with
no dependence on the next state. The MDP has a discount factor γ = 3/4.

1, 1
1, 1

0.5, 3 0.5, 2

0.5, 2

1, 2
1, 2

0.5, 3

a

b

cs1

Arrows are marked with "probability, reward"; transitions with zero probability are not shown.

γ = 3/4

s2

Consider the policy π = “ac”, which takes action a from s1 and action c from s2. What are
the improving actions for s1 and s2 under this policy? In other words, what are IA(ac, s1) and
IA(ac, s2)? Show the working to arrive at your answer.

Solution. The Bellman equations for policy ac are:

V ac(s1) = 1 + γV ac(s1); and V ac(s2) =
1

2
{2 + γV ac(s1)}+

1

2
{2 + γV ac(s2)} ,

solving which we obtain V ac(s1) = 4; V ac(s2) = 28/5 = 5.6. Using V ac, we calculate Qac for the
actions not taken at each state:

Qac(s1, b) = 2 + γV ac(s2) = 31/5 = 6.2.

Qac(s1, c) =
1

2
{3 + γV ac(s1)}+

1

2
{3 + γV ac(s2)} = 33/5 = 6.6.

Qac(s2, a) = 1 + γV ac(s1) = 4.

Qac(s2, b) = 2 + γV ac(s2) = 31/5 = 6.2.

Notice that Qac(s1, b) and Qac(s1, c) both exceed V ac(s1), whereas Qac(s2, a) < V ac(s2) <
Qac(s2, b). Consequently we have

IA(ac, s1) = {b, c};
IA(ac, s2) = {b}.
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Week 5

Question. For an MDP (S,A, T,R, γ), let V0 : S → R be an initial guess of the optimal value
function V ?. Suppose that this guess is progressively updated using Value Iteration: that is, by
setting Vt+1 ← B?(Vt) for t = 0, 1, 2, . . . . Recall that B? is the Bellman optimality operator.

In this question, we examine the design of a stopping condition for Value Iteration. As usual, let
‖·‖∞ denote the max norm. We would like that our computed solution, Vu for some u ∈ {1, 2, . . . },
be within ε of V ? for some given tolerance ε > 0. In other words, we would like to stop after u
applications of B?, so long as we can guarantee ‖Vu−V ?‖∞ ≤ ε. Naturally, we cannot use V ? itself
in our stopping rule, since it is not known! Show that it suffices to stop when

‖Vu − Vu−1‖∞ ≤
ε(1− γ)

γ
.

and thereafter return Vu as the answer.
You are likely to find two results handy: (1) that B? is a contraction mapping with contraction

factor γ, and (2) the triangle inequality: for X : S → R, Y : S → R, ‖X + Y ‖∞ ≤ ‖X‖∞ + ‖Y ‖∞.

Solution. Let ε′ = ε(1−γ)
γ . We are given ‖Vu−Vu−1‖∞ ≤ ε′; by successive application of the result

that B? is a contraction mapping with contraction factor γ, we get

‖Vu − Vu−1‖∞ ≤ ε′,
‖B?(Vu)−B?(Vu−1)‖∞ ≤ ε′γ,

‖(B?)2(Vu)− (B?)2(Vu−1)‖∞ ≤ ε′γ2,

...

‖(B?)k(Vu)− (B?)k(Vu−1)‖∞ ≤ ε′γk

for all k ≥ 0. By using the triangle inequality, we obtain

‖(B?)k(Vu)− Vu‖∞ ≤
k∑
j=1

‖(B?)k(Vu)− (B?)k(Vu−1)‖∞ ≤ ε′(γ + γ2 + · · ·+ γk)

for all k ≥ 0. Taking the limit as k →∞ yields ‖V ? − Vu‖∞ ≤ ε′γ
1−γ = ε.
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Week 4

Question. In this week’s lecture, we derived Bellman equations for policy evaluation. If M =
(S,A, T,R, γ) is our input MDP, we showed for every policy π : S → A and state s ∈ S:

V π(s) =
∑
s′∈S

T (s, π(s), s′){R(s, π(s), s′) + γV π(s′)}.

This question considers four variations in our definitions or assumptions regarding the input MDP
M and policy π. In each case write down Bellman equations after making appropriate modifications.
The set of equations for each case will suffice; no need for additional explanation.

a. The reward functionR does not depend on the next state s′; it is given to you asR : S×A→ R.

b. The reward function R depends only on the next state s′; it is given to you as R : S → R.

c. The policy π is stochastic: for s ∈ S, a ∈ A, π(s, a) denotes the probability with which the
policy takes action a from state s.

d. The underlying MDP M is deterministic. Hence, the transition function T is given as T :
S ×A→ S, with the semantics that T (s, a) is the next state s′ ∈ S for s ∈ S, a ∈ A.

Solution. Answers are given below for all policies π and states s ∈ S.

a. V π(s) = R(s, π(s)) + γ
∑

s′∈S T (s, π(s), s′)V π(s′).

b. V π(s) =
∑

s′∈S T (s, π(s), s′){R(s′) + γV π(s′)}.

c. V π(s) =
∑

a∈A π(s, a)
∑

s′∈S T (s, a, s′){R(s, a, s′) + γV π(s′)}.

d. V π(s) = R(s, π(s), T (s, π(s))) + γV π(T (s, π(s))).
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Week 3

Question. A 2-armed bandit instance I has as the mean rewards of its arms p1, p2 ∈ [0, 1], where
|p1 − p2| = ∆ > 0. Both arms produce 0 and 1 rewards (that is, from Bernoulli distributions).

Suppose we are given ∆, but we do not know which arm has the higher mean reward. Our aim
is to determine the optimal arm with probability at least 1− δ. In order to do so, we pull each arm
N times, and declare as our answer the arm which registers the higher empirical mean (breaking
ties uniformly at random).

Show that it suffices to set

N = θ

(
1

∆2
log

(
1

δ

))
in order to indeed give the correct answer with probability at least 1− δ.

Solution. Without loss of generality, let arm 1, with mean p1, be the optimal arm, and arm 2,
with mean p2, be the sub-optimal arm. Intuition suggests that as N becomes larger, the probability
that arm 1 is returned increases. We will build a proof assuming N is sufficiently large—and take
it to the point that the proof itself suggests to us how N must be set.

After N pulls each, let the empirical means of the arms be p̂1 and p̂2, respectively. Consider the
mid-point between these means, p1+p2

2 , as a “boundary”, in the sense that the answer is guaranteed
to be correct if neither empirical mean “crosses” the boundary. In other words, if each empirical
mean stays within ∆

2 of the true mean on its corresponding side, then p̂1 must exceed p̂2, thereby
yielding the right answer. We invoke Hoeffding’s Inequality to bound the deviation probability.

P{Wrong answer given} ≤ P{p̂1 ≤ p̂2}

≤ P
{
p̂1 ≤

p1 + p2

2
or p̂2 ≥

p1 + p2

2

}
≤ P

{
p̂1 ≤

p1 + p2

2

}
+ P

{
p̂2 ≥

p1 + p2

2

}
= P

{
p̂1 ≤ p1 −

∆

2

}
+ P

{
p̂2 ≥ p2 +

∆

2

}
≤ e−2N(∆/2)2 + e−2N(∆/2)2 .

Suppose we had set N such that 2e−2N(∆/2)2 ≤ δ, we would have an acceptable proof to go with
that choice! Observe that it suffices to take N = d 2

∆2 ln(2
δ )e.
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Week 2

Question. In this question, we consider bandit instances in which the number of arms n = 10;
assume the set of arms is A = {0, 1, 2, . . . , 9}. Each arm yields rewards from a Bernoulli distribution
whose mean is strictly less than 1. Call this set of bandit instances Ī.

Now consider a family of algorithms L that operate on Ī, wherein each algorithm L ∈ L satisfies
the following properties.

• L is deterministic.

• In the first n pulls made by L (on steps 0 ≤ t ≤ n− 1), each arm is pulled exactly once.

• For t = n, n+ 1, n+ 2, . . . : if t is not a prime number, then the arm pulled by L on the t-th
step has the highest empirical mean among all the arms at that step.

In other words, each L ∈ L is a deterministic algorithm that begins with round-robin sampling for
n pulls, and thereafter exploits on every step t that is not a prime number. You can assume ties are
broken arbitrarily. The chief difference between the elements of L arises from the decisions they
make on steps t that are prime numbers—there is no restriction on the choice made on such steps.

a. Show that there exists Lgood ∈ L such that Lgood achieves sub-linear regret on all I ∈ Ī.

a. Show that there exists Lbad ∈ L such that Lbad does not achieve sub-linear regret on all
I ∈ Ī.

Your arguments can be informal: no need for the dense notation of Class Note 1. You can use the
fact that the number of prime numbers smaller than any natural number N is θ( N

log(N)).

Solution. For part (a), it suffices to show that there exists Lgood ∈ L that is GLIE. For every prime
number t, let m(t) denote the number of prime numbers smaller than t. Thus m(2) = 0,m(3) =
1,m(5) = 2, . . . . Take Lgood as an algorithm that on every step t that is a prime number, pulls arm
m(t) mod n. It is clear that Lgood will pull each arm infinitely often in the limit. Furthermore,
the number of “exploit” steps up to horizon T is at least T − θ( T

log(T )). For I ∈ Ī, we have

lim
T→∞

ELgood,I [exploit(T )]

T
= lim

T→∞

(
1− θ

(
1

log(T )

))
= 1,

implying that Lgood is greedy in the limit.
For part (b), it suffices to show that there exists Lbad ∈ L that is not GLIE: in particular we

need only show that Lbad is not guaranteed to pull each arm infinitely often in the limit. Take
Lbad to be an algorithm that only pulls arm 0 on steps t that are prime numbers. On any instance
in which the means of arms are in increasing order of their index (hence arm 9 is the sole optimal
arm), there is a non-zero probability that arm 9 will initially give a 0-reward, some other arm a
1-reward, and thereafter arm 9 will never get pulled by Lbad. On such an instance, Lbad incurs
linear regret.

In summary: the prime number bound guarantees that each L ∈ L will be greedy in the limit,
and it also allows for infinite exploration. Whether L ∈ L actually performs infinite exploration of
each arm determines the sub-linearity of its regret.
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Week 1

Question. Consider a 2-armed bandit instance B in which the rewards from the arms come from
uniform distributions (recall that the lectures assumed they came from Bernoulli distributions).
The rewards of arm 1 are drawn uniformly at random from [a, b], and the rewards of arm 2 are
drawn uniformly at random from [c, d], where 0 < a < c < b < d < 1. Observe that this means
there is an overlap: both arms produce some rewards from the interval [c, b].

An algorithm L proceeds as follows. First it pulls arm 1; then it pulls arm 2; whichever of these
arms produced a higher reward (or arm 1 in case of a tie) is then pulled a further 20 times. In
other words, the algorithm performs round-robin exploration for 2 steps and greedily picks an arm
for the subsequent exploitation phase, during which that arm is blindly pulled 20 times. What is
the expected cumulative regret of L on B after 22 pulls?

(If you have worked out an answer but are not sure about it, consider writing a small program
to simulate L and run it many times for fixed a, b, c, d. Is the average regret from these runs close
to your answer? The program is for your own sake; no need to submit or to explain to us.)

Solution. The mean reward of arm 1 is p1 = a+b
2 and the mean reward of arm 2 is p2 = c+d

2 . Since
a < c and b < d, it is clear that arm 2 is optimal.

The expected cumulative regret from the 22 pulls is the sum of those from the first 2 pulls
and from the subsequent exploitation phase (20 pulls). In the first two pulls, the expected cu-
mulative regret is exactly p2 − p1, since arm 1 (the suboptimal arm) is pulled exactly once.
In the exploitation phase, the expected cumulative regret is 0 in case arm 2 is played, and
20(p2 − p1) if arm 1 is pulled. The expected cumulative regret from exploitation is therefore
P{arm 1 is selected after first 2 steps} · 20 · (p2 − p1).

What is the probability that arm 1 gets selected after the first two pulls? We know that each
reward x1 from arm 1 is drawn from [a, b] according to pdf 1

b−a . Similarly, the reward x2 from arm

2 is drawn from [c, d] according to pdf 1
d−c . The probability that x1 ≥ x2 is therefore

P{arm 1 is selected after first 2 steps} =

∫ b

x1=c

∫ x1

x2=c

1

(b− a)(d− c)
dx2dx1 =

(c− b)2

2(b− a)(d− c)
.

An alternative argument to obtain this probability is that (1) x1 falls in [c, b] with probability c−b
b−a ,

(2) x2 falls in [c, b] with probability c−b
d−c , and (3) conditioned on x1 and x2 both falling in [c, b],

each has a uniform distribution in that range, and thus the probability that one exceeds the other
is 1/2.

The expected cumulative regret from the 22 pulls is thus

(p2−p1)+P{arm 1 is selected after first 2 steps}·20·(p2−p1) =
c+ d− a− b

2

(
1 +

10(c− b)2

(b− a)(d− c)

)
.
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