CS 747, Autumn 2022: Lecture 24

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2022

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 1/21

Navigation System
How to go from IIT Bombay to Marine Drive?

Sea

Eriitis

[1]https://www.flickr.com/photos/nat507/16088993607. CC image courtesy of Nathan Hughes Hamilton on Flickr licensed under CC BY 2.0.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

https://www.flickr.com/photos/nat507/16088993607

Navigation System
How to go from IIT Bombay to Marine Drive?

{7 Start

/) Destination

—> Action

[1]https://www.flickr.com/photos/nat507/16088993607. CC image courtesy of Nathan Hughes Hamilton on Flickr licensed under CC BY 2.0.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

https://www.flickr.com/photos/nat507/16088993607

Some Popular Puzzles

| How to solve? |

1
2|3
4 5
1
3 6
7 58
6|7
1 4
5[2

Sudoku [1]

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png.
CC image courtesy of LithiumFlash on WikiCommons licensed under CC-BY-SA-4.0.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/21

https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg

Some Popular Puzzles

| How to solve? |

12

10

14

1
Ak 13| 2
4 5
1 9 (11
3] |6
7 5]8 5
6|7
1 4 15| 8
52

3
1
4
7

6

Sudoku [1] 15-puzzle [2]

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png.
CC image courtesy of LithiumFlash on WikiCommons licensed under CC-BY-SA-4.0.

[2] https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CC image courtesy of Stannic on WikiMedia Commons licensed

under CC-BY-SA-3.0

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

3/21

https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg

Some Popular Puzzles

| How to solve? |

1
513 13| 2 | 3 |12
41 | |5
1 9 |11 1 |10
3| |6
7 5/8 5| 4|14
6|7
1 : 15/ 8|76
5|2

Sudoku [1] 15-puzzle [2]

N

77y Start

» Destination

—> Action

Same abstraction?

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png.

CC image courtesy of LithiumFlash on WikiCommons licensed under CC-BY-SA-4.0.

[2] https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CC image courtesy of Stannic on WikiMedia Commons licensed

under CC-BY-SA-3.0

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/21

https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg

Classical Search

@ Problem instances
@ Generic search template
@ Uninformed search

@ Informed search (a.k.a. heuristic search)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/21

Classical Search

@ Problem instances
@ Generic search template
@ Uninformed search

@ Informed search (a.k.a. heuristic search)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/21

Elements of a Search Problem Instance

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

Elements of a Search Problem Instance
@ Set of states, including designated start state.
@ Set of actions available from each state.
@ NexiState(s, a) for each state s and action a.
@ Cost(s, a) for each state s and action a (assumed > 0).
@ IsGoal(s) for each state s.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5/21

Elements of a Search Problem Instance
@ Set of states, including designated start state.
@ Set of actions available from each state.
@ NextState(s, a) for each state s and action a.
@ Cost(s, a) for each state s and action a (assumed > 0).
@ IsGoal(s) for each state s.

@ Expected output: a sequence of actions, which when applied from start
state:
» reaches a goal state, and
» (optionally) has minimum path-cost.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5/21

Elements of a Search Problem Instance
@ Set of states, including designated start state.
@ Set of actions available from each state.
@ NextState(s, a) for each state s and action a.
@ Cost(s, a) for each state s and action a (assumed > 0).
@ IsGoal(s) for each state s.

@ Expected output: a sequence of actions, which when applied from start
state:
» reaches a goal state, and
» (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5/21

Elements of a Search Problem Instance
@ Set of states, including designated start state.
@ Set of actions available from each state.
@ NextState(s, a) for each state s and action a.
@ Cost(s, a) for each state s and action a (assumed > 0).
@ IsGoal(s) for each state s.

@ Expected output: a sequence of actions, which when applied from start
state:
» reaches a goal state, and
» (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

@ Number of available actions in each state is branching factor b.
@ Length of optimal path to reach goal state is depth d of the search instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5/21

Problem Formulation: Navigation System

States?

e

>

() Start
[Destination

—~ Action

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/21

Problem Formulation: Navigation System
States?

Start state?

e

>

() Start
[Destination

—~ Action

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/21

Problem Formulation: Navigation System
States?
Start state?

Actions?

i

>

() Start
[Destination

—~ Action

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/21

Problem Formulation: Navigation System
States?
Start state?
Actions?

NextState()?

i

>

() Start
[Destination

—~ Action

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/21

Problem Formulation: Navigation System
States?
Start state?
Actions?
NextState()?
Cost()?

i

>

() Start
[Destination

—~ Action

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/21

Problem Formulation: Navigation System

‘ States?
« Start state?
" Actions?
' NextState()?
Cost()?
‘/ IsGoal()?
Start
Destination
—~ Action

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/21

Problem Formulation: Navigation System

‘ States?
Q « Start state?
.' Actions?
' NextState()?
Cost()?
‘/ IsGoal()?
Start
{_} Destination A solver needs to find the
—= Lwion least-cost path.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/21

Problem Formulation: Navigation System

‘ States?
Q « Start state?
" Actions?
' NextState()?
Cost()?
‘/ IsGoal()?
Start
2 Des““ation% (Least—cost) Path A solver needs to find the
—= Lwion least-cost path.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/21

Problem Formulation: 15 Puzzle

13]2[3]12 States?
Start state f 151 ; 13
TREE Start state?

/iN Actions?

13[2]3]12 13[2]3]12 13[2]3]12
ol11] 110 of1[110 of11] 110 NextState()?
9| 5[4|1 s|e 4|14 15/ 5] 4|14
15/8]7]6 HREE o[s]7]06 Cost()?
IsGoal()?
1[2]3]4
Goal state |1 21 71'®
9|10]11]12
13]14]15]

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/21

Problem Formulation: 15 Puzzle

13]2[3]12 States?
Start state f 151 i 13
TREE Start state?

/iN Actions?

13 2| 3112 1312|312 13 23112
e |11 1]10 9[11| 1]10 9|11 1|10 NeXtState()?
951414 5|e| 4|14 15| 5| 4|14
15/ 8| 7|6 15| 8|7 e | 8|76 Cost()’)
IsGoal()?
112|3]|4
Goal state 9| 6|78
9|10[1112 A solver needs to find the shortest
13[14|15| @

path to goal state.
7/21

Classical Search

@ Problem instances
@ Generic search template
@ Uninformed search

@ Informed search (a.k.a. heuristic search)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 8/21

Generic Search Template: Pseudocode

@ Primary data element is a Node, which a tuple of the form

(state, pathFromStartState, pathCost).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/21

Generic Search Template: Pseudocode

@ Primary data element is a Node, which a tuple of the form

(state, pathFromStartState, pathCost).

@ At every stage of the search,

- some states have been explored

- some states remain unexplored, and

- The Frontier is a set of nodes due for imminent expansion.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/21

Generic Search Template: Pseudocode

Frontier < { Node(startState, (startState),0)}.
Repeat for ever:
Select a node n from Frontier.
/[Expand n.
If isGoal(n.state):
Return n.
For each action a available from n.state:
s « NextState(n.state, a).
¢ < Cost(n.state, a).
n’ <— Node(s, n.path + (a, s), n.pathCost + c).
Merge n’ with Frontier.//Typically insertion;might also allow deletions.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/21

Generic Search Template: Pseudocode

Frontier < { Node(startState, (startState),0)}.
Repeat for ever:
Select a node n from Frontier.//\Which one?
/[Expand n.
If isGoal(n.state):
Return n.
For each action a available from n.state:
s « NextState(n.state, a).
¢ < Cost(n.state, a).
n’ <— Node(s, n.path + (a, s), n.pathCost + c).
Merge n’ with Frontier.//Typically insertion;might also allow deletions.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/21

Generic Search Template: lllustration

%

o

(" Start
) Destination

—~ Action

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/21

Generic Search Template: lllustration

N

@

"y Explored
[, Frontier

.’ Unexplored

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/21

Generic Search Template: lllustration

"y Explored
[, Frontier

.’ Unexplored

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/21

Generic Search Template: lllustration

(" Explored
., Frontier

Unexplored

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/21

Generic Search Template: lllustration

(" Explored
[, Frontier

Unexplored

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/21

Generic Search Template: lllustration

(" Explored { , Goal
", Frontier

. Unexplored

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/21

Generic Search Template: lllustration

Which frontier node to expand?

(" Explored { , Goal
", Frontier

. Unexplored

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/21

Classical Search

@ Problem instances
@ Generic search template
@ Uninformed search

@ Informed search (a.k.a. heuristic search)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11/21

Depth-first Search (DFS)

Expand frontier node with longest path from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/21

Depth-first Search (DFS)

Expand frontier node with longest path from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/21

Depth-first Search (DFS)

Expand frontier node with longest path from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/21

Depth-first Search (DFS)

Expand frontier node with longest path from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/21

Depth-first Search (DFS)

Expand frontier node with longest path from start state.

+ Explored . Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/21

Depth-first Search (DFS)

Expand frontier node with longest path from start state.

@ Frontier treated like a stack
(LIFO).

+ Explored . Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/21

Depth-first Search (DFS)

Expand frontier node with longest path from start state.

@ Frontier treated like a stack
(LIFO).

@ No need to explicitly
maintain frontier (construct
on-line).

+ Explored . Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/21

Depth-first Search (DFS)

Expand frontier node with longest path from start state.

@ Frontier treated like a stack
(LIFO).

@ No need to explicitly
maintain frontier (construct
on-line).

@ Guaranteed to terminate on
finite search instances.

+ Explored . Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/21

Depth-first Search (DFS)

Expand frontier node with longest path from start state.

@ Frontier treated like a stack
(LIFO).

@ No need to explicitly
maintain frontier (construct
on-line).

@ Guaranteed to terminate on
finite search instances.

@ Memory requirement linear

+ Explored {» Frontier in depth d.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/21

Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

" Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/21

Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/21

Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/21

Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/21

Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/21

Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/21

Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/21

Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

@ Frontier treated like a queue
(FIFO).

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/21

Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

@ Frontier treated like a queue
(FIFO).

@ Guaranteed to terminate if
search depth is finite.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/21

Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

@ Frontier treated like a queue
(FIFO).

@ Guaranteed to terminate if
search depth is finite.

@ Memory requirement O(b?).

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/21

Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

" Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/21

Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/21

Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/21

Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/21

Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/21

Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

@ For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on

a(n).

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/21

Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

@ For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on
a(n).

@ Guaranteed to terminate if
search depth is finite and
each cost exceeds ¢ > 0.

+ Explored .+ Frontier

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/21

Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

@ For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on
a(n).

@ Guaranteed to terminate if
search depth is finite and
each cost exceeds ¢ > 0.

@ Memory requirement
% Frontier depends heavily on
instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/21

1 Explored

Classical Search

@ Problem instances
@ Generic search template
@ Uninformed search

@ Informed search (a.k.a. heuristic search)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 15/21

Incorporating Domain Knowledge into Search
@ Have to travel from Powai to Mahim.

Powai
.

« Mahim

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 16/21

Incorporating Domain Knowledge into Search
@ Have to travel from Powai to Mahim.

Kanjur Marg
Powai 2

L&T
i Vikhroli
Hiranandani X

G}iatkopar

« Mahim

@ First you expand the Powai node.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 16/21

Incorporating Domain Knowledge into Search
@ Have to travel from Powai to Mahim.

Kanjur Marg
Powai 2

L&T
i Vikhroli
Hiranandani X

G}iatkopar

« Mahim

@ First you expand the Powai node. Which node will you expand next?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 16/21

Incorporating Domain Knowledge into Search
@ Have to travel from Powai to Mahim.

Kanjur Marg
Powai 2

L&T
i Vikhroli
Hiranandani X

G}iatkopar

« Mahim

@ First you expand the Powai node. Which node will you expand next?
@ L&T and Hiranandani are geographically closer to Mahim: should that count?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 16/21

Heuristic Functions and A* Search Algorithm

@ A heuristic function h(n) is a guess of ¢*(n), the optimal path-cost-to-goal of
(the state in) node n.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17/21

Heuristic Functions and A* Search Algorithm
@ A heuristic function h(n) is a guess of ¢*(n), the optimal path-cost-to-goal of
(the state in) node n.

@ h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) = \/ (n.state.x — Mahim.x)? + (n.state.y — Mahim.y)?.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17/21

Heuristic Functions and A* Search Algorithm
@ A heuristic function h(n) is a guess of ¢*(n), the optimal path-cost-to-goal of
(the state in) node n.

@ h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) = \/ (n.state.x — Mahim.x)? + (n.state.y — Mahim.y)?.

@ Recall that in LCFS, we expand argmin,,cgoniier 9(N).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17/21

Heuristic Functions and A* Search Algorithm
@ A heuristic function h(n) is a guess of ¢*(n), the optimal path-cost-to-goal of
(the state in) node n.

@ h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) = \/ (n.state.x — Mahim.x)? + (n.state.y — Mahim.y)?.

@ Recall that in LCFS, we expand argmin ,croniier 9(1)-
@ In A* search, we expand argmin,cronier (9(N) + A(N)).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17/21

Heuristic Functions and A* Search Algorithm
@ A heuristic function h(n) is a guess of ¢*(n), the optimal path-cost-to-goal of
(the state in) node n.

@ h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) = \/ (n.state.x — Mahim.x)? + (n.state.y — Mahim.y)?.

@ Recall that in LCFS, we expand argmin ,croniier 9(1)-
@ In A* search, we expand argmin,cronier (9(N) + A(N)).

@ g(n) summarises the past (known); h(n) anticipates the future (unknown).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17/21

Heuristic Functions and A* Search Algorithm
@ A heuristic function h(n) is a guess of ¢*(n), the optimal path-cost-to-goal of
(the state in) node n.

@ h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) = \/ (n.state.x — Mahim.x)? + (n.state.y — Mahim.y)?.

@ Recall that in LCFS, we expand argmin ,croniier 9(1)-
@ In A* search, we expand argmin,cronier (9(N) + A(N)).

@ g(n) summarises the past (known); h(n) anticipates the future (unknown).
@ The addition of h(n) makes A* an informed or heuristic search algorithm.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17/21

Heuristic Functions and A* Search Algorithm
@ A heuristic function h(n) is a guess of ¢*(n), the optimal path-cost-to-goal of
(the state in) node n.

@ h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) = \/ (n.state.x — Mahim.x)? + (n.state.y — Mahim.y)?.

@ Recall that in LCFS, we expand argmin ,croniier 9(1)-
@ In A* search, we expand argmin,cronier (9(N) + A(N)).

@ g(n) summarises the past (known); h(n) anticipates the future (unknown).
@ The addition of h(n) makes A* an informed or heuristic search algorithm.
@ A* search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17/21

Admissible Heuristics
@ A heuiristic h is admissible if for all nodes n,

0 < h(n) < c*(n),

where c¢*(n) is the optimal cost-to-goal of n.state.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18/21

Admissible Heuristics

@ A heuristic h is admissible if for all nodes n,
0 < h(n) < c*(n),
where c¢*(n) is the optimal cost-to-goal of n.state.
@ Key result. If A* search is run using an admissible heuristic (and some

minor technical conditions hold), then the first goal node it expands will have
optimal path-cost from the start state (and the algorithm can terminate).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18/21

Admissible Heuristics

@ A heuristic h is admissible if for all nodes n,
0 < h(n) < c*(n),

where c¢*(n) is the optimal cost-to-goal of n.state.

@ Key result. If A* search is run using an admissible heuristic (and some
minor technical conditions hold), then the first goal node it expands will have
optimal path-cost from the start state (and the algorithm can terminate).

@ |s straight line distance an admissible heuristic for navigation?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18/21

Admissible Heuristics

@ A heuristic h is admissible if for all nodes n,
0 < h(n) < c*(n),

where c¢*(n) is the optimal cost-to-goal of n.state.

@ Key result. If A* search is run using an admissible heuristic (and some
minor technical conditions hold), then the first goal node it expands will have
optimal path-cost from the start state (and the algorithm can terminate).

@ Is straight line distance an admissible heuristic for navigation? Yes.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18/21

Admissible Heuristics

@ A heuristic h is admissible if for all nodes n,
0 < h(n) < c*(n),

where c¢*(n) is the optimal cost-to-goal of n.state.

@ Key result. If A* search is run using an admissible heuristic (and some
minor technical conditions hold), then the first goal node it expands will have
optimal path-cost from the start state (and the algorithm can terminate).

@ Is straight line distance an admissible heuristic for navigation? Yes.

@ For a given task, which is the best heuristic function to use?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18/21

Effect of Heuristic

O L4 ® . ° 3 O
O . o .
L] O O L] L]
L] d L] *
.] . L] . O L] O
. . M ®
L] L]
. o LY . . O O
* L] . ° . (:1: « * 0
. L] . L] L] ° L] . L]
. . . . o o
. . .
o L] Y . L] 0 . .
o ° ® O . L4 ° . *
L] ° T
° L] L] L] L]
L] ¢ * ° O L]
° L]
] s O O ¢]
L] L] o 0 L] L]
L)) ° °
O ° * L] ® L)
3 Start {) Destination
Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

19/21

Effect of Heuristic

R h(n) = c*(n). Will only expand
o o R nodes along optimal path!
R Unfortunately c*(n) is not known!

{7 Start Destination « Expanded

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 19/21

Effect of Heuristic

e .. - L e h(n) = 0. Identical to LCFS.

{ sStart {) Destination + Expanded

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 19/21

Effect of Heuristic

. 0 .o .. P Intermediate/typical h(n) expands
S fewer nodes than LCFS.

{ sStart {) Destination e+ Expanded

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 19/21

Admissible Heuristics
@ How to design an effective admissible heuristic for a task?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20/21

Admissible Heuristics
@ How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20/21

Admissible Heuristics

@ How to design an effective admissible heuristic for a task?

For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

@ What’s a good heuristic for 15-puzzle?

131 2

3 123

Start state | > |11 1]10 ER— 3| G| 7]l E Goal state
o 5(4|14 9(10(11|12
15/8(7]6 13[14[15| @

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20/21

Admissible Heuristics

@ How to design an effective admissible heuristic for a task?

For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

@ What'’s a good heuristic for 15-puzzle?

13]2]3]12 1]2]3]4
Start state | oM IO > 3| G| 7]l E Goal state

504014 9|10[11]12

15/8(7]6 13[14[15| @

Sum of Manhattan distances between each number’s position in start state
and its position in goal state.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20/21

Admissible Heuristics

@ How to design an effective admissible heuristic for a task?

For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

@ What'’s a good heuristic for 15-puzzle?

13]2]3]12 1]2]3]4
Start state | oM IO > 3| G| 7]l E Goal state

504014 9|10[11]12

15/8(7]6 13]1415| @

Sum of Manhattan distances between each number’s position in start state
and its position in goal state.

@ Can we make do with inadmissible heuristics?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20/21

Admissible Heuristics

@ How to design an effective admissible heuristic for a task?

For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

@ What'’s a good heuristic for 15-puzzle?

13]2]3]12 1]2]3]4
Start state | oM IO > 3| G| 7]l E Goal state

504014 9|10[11]12

15/8(7]6 13]1415| @

Sum of Manhattan distances between each number’s position in start state
and its position in goal state.

@ Can we make do with inadmissible heuristics?
Yes—example coming up in next class on search in games. But try to avoid.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20/21

Discussion

@ Classical search a well-studied topic in Al.

@ Compute time measured by number of nodes expanded.
@ Heuristic guides search towards goal, improves efficiency.
@ What if actions have stochastic outcomes?

@ Studied as “decision-time planning” in MDPs.

Technical problem: compute a near-optimal action for a particular “current”
state in o(|S|) time (that is, without visiting all states in the MDP).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 21/21

