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Multi-armed Bandits: Recap, Upcoming Topics

1. Evaluating algorithms: Regret

2. Achieving sub-linear regret

3. A lower bound on regret
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Visualising Performance

Consider a plot of E[r t ] against t .

What is the least expected reward
that can be achieved?
pmin = mina∈A pa.
What is the highest expected
reward that can be achieved?
p⋆ = maxa∈A pa.

1

0
T

E[r  ]
t

t

If an algorithm pulls arms uniformly at random, what reward will it achieve?
pavg = 1

n

∑
a∈A pa.

How will the graph look for a reasonable learning algorithm?
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Regret
The maximum achievable expected
reward in T steps is Tp⋆.

The actual expected reward for an
algorithm is

∑T−1
t=0 E[r t ].

The (expected cumulative) regret of
the algorithm for horizon T is the
difference

RT = Tp∗ −
T−1∑
t=0

E[r t ].

1

0

p*

p
avg

pmin

T

E[r  ]
t Learning algorithm

t

We would like RT to be small, in fact for limT→∞
RT
T = 0.

Does this happen for ϵG1, ϵG2, ϵG3?
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Review of ϵG1, ϵG2

ϵ-first: Explore (uniformly) for ϵT
pulls; then exploit.

What would happen if we ran for
horizon 2T instead of T?
Exploratory phase would last 2ϵT
steps!

1

0

p*

p
avg

pmin

T

E[r  ]
t

t

−firstε

Tε

RT = Tp⋆ −
T−1∑
t=0

E[r t ]

= Tp⋆ −
ϵT−1∑
t=0

E[r t ]−
T−1∑
t=ϵT

E[r t ]

= Tp⋆ − ϵTpavg −
T−1∑
t=ϵT

E[r t ]

≥ Tp⋆ − ϵTpavg − (T − ϵT )p⋆

= ϵ(p⋆ − pavg)T

= Ω(T ).
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Review of ϵG3

ϵ-greedy: On each step explore
(uniformly) w.p. ϵ, exploit w.p. 1 − ϵ.

E[r t ] can never exceed
p⋆(1 − ϵ) + ϵpavg!

p
avg

p*

p
avg

p*

1

0

pmin

T

E[r  ]
t

t

ε−greedy

(1 − ε) + ε

RT = Tp⋆ −
T−1∑
t=0

E[r t ]

≥ Tp⋆ −
T−1∑
t=0

((ϵ)pavg + (1 − ϵ)p⋆)

= ϵ(p⋆ − pavg)T

= Ω(T ).
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How to achieve Sub-linear Regret?

Two conditions must be met: C1 and C2.

C1. Infinite exploration. In the limit (T → ∞), each arm must almost surely be
pulled an infinite number of times.

- On the contrary, suppose we pull some arm a only a finite U times.
- We cannot be 100% sure based on the pulls of a that it is non-optimal.
- Even an optimal arm a will have the lowest possible empirical mean (0) with

positive probability (1 − p⋆)U .
- Pulling only arms other than a will give linear regret if no other optimal arms.
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positive probability (1 − p⋆)U .
- Pulling only arms other than a will give linear regret if no other optimal arms.
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How to achieve Sub-linear Regret?

C2. Greed in the Limit. Let exploit(T ) denote the number of pulls that are
greedy w.r.t. the empirical mean up to horizon T . For sub-linear regret, we
need

lim
T→∞

E[exploit(T )]

T
= 1.

Let Ī be the set of all bandit instances with reward means strictly less than 1.
Result. An algorithm L achieves sub-linear regret on all instances I ∈ Ī if
and only if it satisfies C1 and C2 on all I ∈ Ī.

In short: “GLIE” ⇐⇒ sub-linear regret.
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In short: “GLIE” ⇐⇒ sub-linear regret.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 9 / 14



10/14

GLIE-ifying ϵ-Greedy Strategies
ϵT -first with ϵT = 1√

T
.

Explore for ϵT · T =
√

T pulls. Thereafter exploit.

C1 satisfied since each arm gets at least Θ(1
n

√
T ) pulls with high probability.

C2 satisfied since E[exploit(T )] ≥ T −
√

T .

ϵt -greedy with ϵt =
1

t+1 .

On the t-th step, explore w.p. ϵt , exploit w.p. 1 − ϵt .

C1 satisfied: each arm assured
∑T−1

t=0
1

n(t+1) = Θ( log T
n ) pulls with high

probability.
C2 satisfied since E[exploit(T )] ≥ T −Θ(logT ).
What happened when we took ϵt = ϵ? What will happen by taking ϵt =

1
(t+1)2 ?
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Multi-armed Bandits

1. Evaluating algorithms: Regret

2. Achieving sub-linear regret

3. A lower bound on regret
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A Lower Bound on Regret

What is the least regret possible?

An algorithm that always pulls arm 3 gets zero regret on some instances. . .
but linear regret on other instances!

We desire “low” regret on all instances. What is the best we can do?
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A Lower Bound on Regret
Paraphrasing Lai and Robbins (1985; see Theorem 2).

Let L be an algorithm such that for every bandit instance I ∈ Ī
and for every α > 0, as T → ∞:

RT (L, I) = o(T α).

Then, for every bandit instance I ∈ Ī, as T → ∞:

RT (L, I)
ln(T )

≥
∑

a:pa(I )̸=p⋆(I)

p⋆(I)− pa(I)
KL(pa(I),p⋆(I))

,

where for x , y ∈ [0,1),KL(x , y) def
= x ln x

y + (1 − x) ln 1−x
1−y .
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Multi-armed Bandits

1. Evaluating algorithms: Regret

2. Achieving sub-linear regret

3. A lower bound on regret

Next class: Optimal algorithms!
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