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Multi-armed Bandits
The exploration-exploitation dilemma
Definitions: Bandit, Algorithm
ϵ-greedy algorithms
Evaluating algorithms: Regret
Achieving sub-linear regret
A lower bound on regret
UCB, KL-UCB algorithms
Thompson Sampling algorithm

Understanding Thompson Sampling
Concentration bounds

Analysis of UCB
Other bandit problems
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Thompson Sampling (Thompson, 1933)
- At time t, arm a has st

a successes (1’s) and f t
a failures (0’s).

- Beta(st
a + 1, f t

a + 1) represents a “belief” about pa.

R

1

0

- Computational step: For every arm a, draw a sample

x t
a ∼ Beta(st

a + 1, f t
a + 1).

- Sampling step: Pull an arm a for which x t
a is maximum.
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Bayesian Inference
Bayes’ Rule of Probability for events A and B:

P{A|B} =
P{B|A}P{A}

P{B}
.

Application: there is an unknown world w from among possible worlds W , in
which we live.
We maintain a belief distribution over w ∈ W .

Belief0(w) = P{w}.

The process by/probability with which each w produces evidence e is known.
Evidence samples e1,e2, . . . ,em are produced i.i.d. by the unknown world w .
How to refine our belief distribution based on incoming evidence?

Beliefm(w) = P{w |e1,e2, . . . ,em}.
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Bayesian Inference

Beliefm+1(w) = P{w |e1,e2, . . . ,em+1}

=
P{e1,e2, . . . ,em+1|w}P{w}

P{e1,e2, . . . ,em+1}

=
P{e1,e2, . . . ,em|w}P{em+1|w}P{w}

P{e1,e2, . . . ,em+1}

=
P{e1,e2, . . . ,em,w}P{em+1|w}

P{e1,e2, . . . ,em+1}

=
P{w |e1,e2, . . . ,em}P{e1,e2, . . . ,em}P{em+1|w}

P{e1,e2, . . . ,em+1}

=
Beliefm(w)P{em+1|w}∑

w ′∈W Beliefm(w ′)P{em+1|w ′}
.
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Bayesian Inference in Thompson Sampling
View each arm a’s mean pa as world w , estimated from rewards (evidence).

Belief0 over pa is typically set to Uniform(0,1), but need not.
If em+1 is a 1-reward, we must set for x ∈ [0,1]

Beliefm+1(x) =
Beliefm(x) · x∫ 1

y=0 Beliefm(y) · y
.

If em+1 is a 0-reward, we must set for x ∈ [0,1]

Beliefm+1(x) =
Beliefm(x) · (1 − x)∫ 1

y=0 Beliefm(y) · (1 − y)
.

We achieve exactly that by taking

Beliefm(x) = Betas+1,f+1(x)dx

when the first m pulls yield s 1’s and f 0’s!
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Principle of Selecting Arm to Pull

We have a belief distribution for each arm’s mean.
Together, these distributions represent a belief distribution over bandit
instances.
We sample a bandit instance I from the joint belief distribution, and
We act optimally w.r.t. I.

Alternative view: the probability with which we pick an arm is our belief that it
is optimal. For example, if A = {1,2}, the probability of pulling 1 is

P{x t
1 > x t

2} =

∫ 1

x1=0

∫ x1

x2=0
Betast

1+1,f t
1+1,(x1)Betast

2+1,f t
2+1,(x2)dx2dx1.
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Multi-armed Bandits

1. Understanding Thompson Sampling

2. Concentration bounds
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Hoeffding’s Inequality (Hoeffding, 1963)
Let X be a random variable bounded in [0,1], with E[X ] = µ;

Let u ≥ 1;
Let x1, x2, . . . , xu be i.i.d. samples of X ; and
Let x̄ be the mean of these samples (an empirical mean):

x̄ =
1
u

u∑
i=1

xi .

Then, for or any fixed ϵ > 0, we have

P{x̄ ≥ µ+ ϵ} ≤ e−2uϵ2
, and

P{x̄ ≤ µ− ϵ} ≤ e−2uϵ2
.

Note the bounds are trivial for large ϵ, since x̄ ∈ [0,1].
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Applications
For given mistake probability δ and tolerance ϵ, how many samples u0 of X
do we need to guarantee that with probability at least 1 − δ, the empirical
mean x̄ will not exceed the true mean µ by ϵ or more?

u0 = ⌈ 1
2ϵ2 ln(

1
δ
)⌉ pulls are sufficient, since Hoeffding’s Inequality gives

P{x̄ ≥ µ+ ϵ} ≤ e−2u0ϵ
2 ≤ δ.

We have u samples of X . How do we fill up this blank?:
With probability at least 1 − δ, the empirical mean x̄ exceeds the true mean µ
by at most ϵ0 = .

We can write ϵ0 =
√

1
2u ln(

1
δ
); by Hoeffding’s Inequality:

P{x̄ ≥ µ+ ϵ0} ≤ e−2u(ϵ0)
2 ≤ δ.
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Arbitrary Bounded Range

Suppose X is a random variable bounded in [a,b]. Can we still apply
Hoeffding’s Inequality?

Yes. Assume u; x1, x2, . . . , xu; ϵ as defined earlier.
Consider Y = X−a

b−a ; for 1 ≤ i ≤ u, yi =
xi−a
b−a ; ȳ = 1

u

∑u
i=1 yi .

Since Y is bounded in [0,1], we get

P{x̄ ≥ µ+ ϵ} = P
{

ȳ ≥ µ− a
b − a

+
ϵ

b − a

}
≤ e− 2uϵ2

(b−a)2 , and

P{x̄ ≤ µ− ϵ} = P
{

ȳ ≤ µ− a
b − a

− ϵ

b − a

}
≤ e− 2uϵ2

(b−a)2 .
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ȳ ≥ µ− a
b − a

+
ϵ

b − a

}
≤ e− 2uϵ2

(b−a)2 , and

P{x̄ ≤ µ− ϵ} = P
{
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A “KL” Inequality
Let X be a random variable bounded in [0,1], with E[X ] = µ;
Let u ≥ 1;
Let x1, x2, . . . , xu be i.i.d. samples of X ; and
Let x̄ be the mean of these samples (an empirical mean):

x̄ =
1
u

u∑
i=1

xi .

Then, for or any fixed ϵ ∈ [0,1 − µ], we have

P{x̄ ≥ µ+ ϵ} ≤ e−uKL(µ+ϵ,µ),

and for or any fixed ϵ ∈ [0, µ], we have

P{x̄ ≤ µ− ϵ} ≤ e−uKL(µ−ϵ,µ),

where for p,q ∈ [0,1],KL(p,q) def
=p ln(p

q ) + (1 − p) ln(1−p
1−q ).
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Some Observations

The KL inequality gives a tighter upper bound:
For p,q ∈ [0,1],

KL(p,q) ≥ 2(p − q)2 =⇒ e−uKL(p,q) ≤ e−2u(p−q)2
.

Both bounds are instances of “Chernoff bounds”, of which there are many
more forms.

Similar bounds can also be given when X has infinite support (such as a
Gaussian), but might need additional assumptions.
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Multi-armed Bandits
The exploration-exploitation dilemma
Definitions: Bandit, Algorithm
ϵ-greedy algorithms
Evaluating algorithms: Regret
Achieving sub-linear regret
A lower bound on regret
UCB, KL-UCB algorithms
Thompson Sampling algorithm

Understanding Thompson Sampling
Concentration bounds

Analysis of UCB
Other bandit problems
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