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Multi-armed Bandits
@ The exploration-exploitation dilemma
@ Definitions: Bandit, Algorithm
@ e-greedy algorithms
@ Evaluating algorithms: Regret
@ Achieving sub-linear regret
@ A lower bound on regret
@ UCB, KL-UCB algorithms
@ Thompson Sampling algorithm

@ Understanding Thompson Sampling
@ Concentration bounds

@ Analysis of UCB
@ Other bandit problems
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Thompson Sampling (Thompson, 1933)

- At time t, arm a has s!, successes (1’s) and f! failures (0’s).
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Thompson Sampling (Thompson, 1933)
- Attime t, arm a has s!, successes (1’s) and f! failures (0’s).
- Beta(st, + 1, fi + 1) represents a “belief” about p,.
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Thompson Sampling (Thompson, 1933)
- Attime t, arm a has s!, successes (1’s) and f! failures (0’s).
- Beta(st, + 1, fi + 1) represents a “belief” about p,.

LI

0 R -
- Computational step: For every arm a, draw a sample
xi ~ Beta(st, +1,fi+1).
- Sampling step: Pull an arm a for which x! is maximum.
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Bayesian Inference
@ Bayes’ Rule of Probability for events A and B:
P{B|A}P{A}

P(AIB} = — 5
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Bayesian Inference
@ Bayes’ Rule of Probability for events A and B:
P{B|A}P{A}
P{B}
@ Application: there is an unknown world w from among possible worlds W, in

which we live.
@ We maintain a belief distribution over w ¢ W.

Beliefy(w) = P{w}.

P{A|B} =
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@ Bayes’ Rule of Probability for events A and B:
P{B|A}P{A}
P{B}
@ Application: there is an unknown world w from among possible worlds W, in

which we live.
@ We maintain a belief distribution over w ¢ W.

Beliefy(w) = P{w}.

P{A|B} =

@ The process by/probability with which each w produces evidence e is known.
@ Evidence samples ey, es, ..., e, are produced i.i.d. by the unknown world w.
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Bayesian Inference
@ Bayes’ Rule of Probability for events A and B:
P{B|A}P{A}
P{B}
@ Application: there is an unknown world w from among possible worlds W, in

which we live.
@ We maintain a belief distribution over w ¢ W.

Beliefy(w) = P{w}.

P{A|B} =

@ The process by/probability with which each w produces evidence e is known.
@ Evidence samples ey, es, ..., e, are produced i.i.d. by the unknown world w.
@ How to refine our belief distribution based on incoming evidence?

Beliefm(w) = P{w|ey, ez, ...,en}.
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Bayesian Inference

Beliefm1(w) = P{w|ey, €2, ..., €mi1}
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Bayesian Inference

Beliefm1(w) = P{w|ey, €2, ..., €mi1}
_ ]P){eh €2,...,6m1 |W}I[D{W}
]P){eh €2,..., em+1}
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Bayesian Inference

Beliefn 1(w) =P{w|ei, e, ..., €mi1}
_ P{ey,e,...,en|WiP{W}
N P{ei, €, ...,6mi1}
_ P{ey, e, ..., en|wiP{en.|W}P{w}
N Pl{er, €, ...,6mu1}
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Bayesian Inference

Beliefn 1(w) =P{w|ei, e, ..., €mi1}
. ]P’{e1, €o,...,Cmp1 |W}]P{W}
N P{e1,62,...,em+1}
_ P{ey, e, ..., en|wiP{en.|W}P{w}
N Pl{er, €, ...,6mu1}
_ P{ey,er,...,6m WiP{€m1|W}
N IP’{e1,eg,...,em+1}
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Bayesian Inference

Beliefn 1(w) =P{w|ei, e, ..., €mi1}
. ]P’{e1, €o,...,Cmp1 |W}P{W}
N P{e1,62,...,em+1}
_ P{ey, e, ..., en|wiP{en.|W}P{w}
N Pl{er, €, ...,6mu1}
_ P{ey,er,...,6m WiP{€m1|W}
N IP’{e1,eg,...,em+1}
_ P{wley, e,...,en}P{er, 6, ..., enP{en 1w}
N P{e1,62,...,em+1}
B Belief(w)P{emn1|w}
> e Beliefo(w)P{em W'}
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Bayesian Inference in Thompson Sampling
@ View each arm a's mean p, as world w, estimated from rewards (evidence).
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Bayesian Inference in Thompson Sampling
@ View each arm a's mean p, as world w, estimated from rewards (evidence).
@ Beliefy over p, is typically set to Uniform(0, 1), but need not.
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Bayesian Inference in Thompson Sampling
@ View each arm a's mean p, as world w, estimated from rewards (evidence).
@ Beliefy over p, is typically set to Uniform(0, 1), but need not.
@ If ey, is @ 1-reward, we must set for x € [0, 1]

Belief, 1(x) = — 22 em(X) )X

J,_o Beliefn(y) -y
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Bayesian Inference in Thompson Sampling
@ View each arm a’'s mean p, as world w, estimated from rewards (evidence).
@ Beliefy over p, is typically set to Uniform(0, 1), but need not.
@ If e, 1 is a 1-reward, we must set for x € [0, 1]

Beliefrm.1(x)

_ Beliefn(x) - x
/o Beliefw(y) -y

@ If ep. 1 is a O-reward, we must set for x € [0, 1]

Beliefn(x) - (1 — x)

Beliefm1(x) = _ :
™ J,L_o Beliefn(y) - (1 — y)
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Bayesian Inference in Thompson Sampling
@ View each arm a’'s mean p, as world w, estimated from rewards (evidence).
@ Beliefy over p, is typically set to Uniform(0, 1), but need not.
@ If e, 1 is a 1-reward, we must set for x € [0, 1]

Beliefrm.1(x)

_ Beliefn(x) - x
[}, Beliefn(y) -y

@ If ep. 1 is a O-reward, we must set for x € [0, 1]

_ Beliefn(x) - (1 — x)

~ J)_y Beliefy(y)- (1 - y)

@ We achieve exactly that by taking

Beliefr.1(x)

Beliefy(x) = Betas1,41(x)dx

when the first m pulls yield s 1’'s and 7 O’s!



Principle of Selecting Arm to Pull

@ We have a belief distribution for each arm’s mean.

@ Together, these distributions represent a belief distribution over bandit
instances.

@ We sample a bandit instance / from the joint belief distribution, and
@ We act optimally w.r.t. /.
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Principle of Selecting Arm to Pull

@ We have a belief distribution for each arm’s mean.

@ Together, these distributions represent a belief distribution over bandit
instances.

@ We sample a bandit instance / from the joint belief distribution, and
@ We act optimally w.r.t. /.

@ Alternative view: the probability with which we pick an arm is our belief that it
is optimal. For example, if A= {1,2}, the probability of pulling 1 is

1 X1

t t

P{x; > X} = / Betag: 1 1t,1,(X1)Betag 1 111 (X2) dX2dxs.
x1=0 J xo=0
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Multi-armed Bandits

1. Understanding Thompson Sampling

2. Concentration bounds
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Hoeffding’s Inequality (Hoeffding, 1963)

@ Let X be a random variable bounded in [0, 1], with E[X] = y;
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Hoeffding’s Inequality (Hoeffding, 1963)
@ Let X be a random variable bounded in [0, 1], with E[X] = y;
@ Letu>1;
@ Let xq,x0,..., x, bei.i.d. samples of X; and
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Hoeffding’s Inequality (Hoeffding, 1963)
@ Let X be a random variable bounded in [0, 1], with E[X] = y;
@ Letu>1;
@ Let xq,x0,..., x, bei.i.d. samples of X; and
@ Let X be the mean of these samples (an empirical mean):

1 u
X =— E X;.
u 4
i=1
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Hoeffding’s Inequality (Hoeffding, 1963)
@ Let X be a random variable bounded in [0, 1], with E[X] = y;
@ Letu>1;
@ Let xq,x0,..., x, bei.i.d. samples of X; and
@ Let X be the mean of these samples (an empirical mean):

1 u
X =— E X;.
u 4
i=1

@ Then, for or any fixed ¢ > 0, we have

P{X > p+e} < e 2 and
P{X < i —¢} < &2
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Hoeffding’s Inequality (Hoeffding, 1963)
@ Let X be a random variable bounded in [0, 1], with E[X] = y;
@ Letu>1;
@ Let xq,x0,..., x, bei.i.d. samples of X; and
@ Let x be the mean of these samples (an empirical mean):

1 u

@ Then, for or any fixed ¢ > 0, we have

P{x>p+e} < e‘2”€2, and
P{X < i —¢} < &2

@ Note the bounds are trivial for large ¢, since x < [0, 1].
9/14



Applications

@ For given mistake probability 6 and tolerance ¢, how many samples uy of X
do we need to guarantee that with probability at least 1 — §, the empirical
mean X will not exceed the true mean p by ¢ or more?
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Applications

@ For given mistake probability 6 and tolerance ¢, how many samples uy of X
do we need to guarantee that with probability at least 1 — ¢, the empirical
mean X will not exceed the true mean p by ¢ or more?

Uo = [ In(3)] pulls are sufficient, since Hoeffding’s Inequality gives

P{X > pu+ ¢} < e2% <5,
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Applications

@ For given mistake probability 6 and tolerance ¢, how many samples uy of X
do we need to guarantee that with probability at least 1 — ¢, the empirical
mean X will not exceed the true mean p by ¢ or more?

Uo = [ In(3)] pulls are sufficient, since Hoeffding’s Inequality gives

P{X > ju+ ¢} < @29 <5,

@ We have u samples of X. How do we fill up this blank?:
With probability at least 1 — ¢, the empirical mean x exceeds the true mean p
by at most ¢g =
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Applications
@ For given mistake probability 6 and tolerance ¢, how many samples uy of X
do we need to guarantee that with probability at least 1 — ¢, the empirical
mean X will not exceed the true mean . by € or more?
Uo = [ In(3)] pulls are sufficient, since Hoeffding’s Inequality gives

P{X > ju+ ¢} < @29 <5,

@ We have u samples of X. How do we fill up this blank?:
With probability at least 1 — ¢, the empirical mean x exceeds the true mean p
by at most ¢g =

We can write ¢g = 2— (%) by Hoeffding’s Inequality:

P{x>pu+e} < g~2u«)l® < 4.
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Arbitrary Bounded Range

@ Suppose X is a random variable bounded in [a, b]. Can we still apply
Hoeffding’s Inequality?
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Arbitrary Bounded Range

@ Suppose X is a random variable bounded in [a, b]. Can we still apply
Hoeffding’s Inequality?

Yes. Assume u; X1, X, . .., X,; € as defined earlier.
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Arbitrary Bounded Range

@ Suppose X is a random variable bounded in [a, b]. Can we still apply
Hoeffding’s Inequality?

Yes. Assume u; X1, X, . .., X,; € as defined earlier.
g X-a. ; i—a. o _ 1w
Consider Y = 7=2;for1 <i<u, =32,y =>4 Vi-
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Arbitrary Bounded Range

@ Suppose X is a random variable bounded in [a, b]. Can we still apply
Hoeffding’s Inequality?
Yes. Assume U' x1 , X, ..., Xy; € as defined earlier.
Consider Y = for1</<uy,—x'_a,}7—1z,1y,
Since Y is bounded in [0, 1], we get

2ué?

€ _
+ } <e ®-a* and

P{Xx>p+e}= ]P’{}_/z

2

€ __2ue
_ <e (b—a)2

IP’{)?SM—E}IP{I/
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A “KL’ Inequality
@ Let X be a random variable bounded in [0, 1], with E[X] = 4;
@ Letu>1;
@ Let x1,Xx,...,x, be i.i.d. samples of X; and
@ Let x be the mean of these samples (an empirical mean):

1 u
= E;X,’.

I
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A “KL’ Inequality
@ Let X be a random variable bounded in [0, 1], with E[X] = u;
@ Letu>1,;
@ Let x1,Xx,...,x, be i.i.d. samples of X; and
@ Let x be the mean of these samples (an empirical mean):

1 u
)_(—E;X,‘.

@ Then, for or any fixed € € [0,1 — u], we have

IP’{)_( > u+ 6} < e—uKL(u—ke,u)7
and for or any fixed € € [0, u|, we have

P{x <p—e} < e—UKL(M—EM),

where for p, g € [0,1], KL(p, q) = pIn(2) + (1 — p) In(1=2).
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Some Observations

@ The KL inequality gives a tighter upper bound:
For p,q € [0, 1],

KL(pv q) > 2(p - Q)Q — e—uKL(p,q) < e—2u(p—q)2’

@ Both bounds are instances of “Chernoff bounds”, of which there are many
more forms.

@ Similar bounds can also be given when X has infinite support (such as a
Gaussian), but might need additional assumptions.
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Multi-armed Bandits
@ The exploration-exploitation dilemma
@ Definitions: Bandit, Algorithm
@ e-greedy algorithms
@ Evaluating algorithms: Regret
@ Achieving sub-linear regret
@ A lower bound on regret
@ UCB, KL-UCB algorithms
@ Thompson Sampling algorithm

@ Understanding Thompson Sampling
@ Concentration bounds

@ Analysis of UCB
@ Other bandit problems

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 14/14



