
1/16

CS 747, Autumn 2023: Lecture 5

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2023

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 1 / 16



2/16

Multi-armed Bandits

1. Analysis of UCB

2. Other bandit problems

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 2 / 16



2/16

Multi-armed Bandits

1. Analysis of UCB

2. Other bandit problems

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 2 / 16



3/16

UCB (Auer et al., 2002)
- Pull each arm once.
- For t ∈ {n,n + 1, . . . }, for a ∈ A, ucbt

a
def
= p̂t

a +
√

2 ln(t)
ut

a
; pull argmaxa∈A ucbt

a.

R

1

0

p
a
t

ucba
t

Recall that RT = Tp⋆ −
∑T−1

t=0 E[r t ].

We shall show that UCB achieves RT = O
(∑

a:pa ̸=p⋆
1

p⋆−pa
log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3 / 16



3/16

UCB (Auer et al., 2002)
- Pull each arm once.
- For t ∈ {n,n + 1, . . . }, for a ∈ A, ucbt

a
def
= p̂t

a +
√

2 ln(t)
ut

a
; pull argmaxa∈A ucbt

a.

R

1

0

p
a
t

ucba
t

Recall that RT = Tp⋆ −
∑T−1

t=0 E[r t ].

We shall show that UCB achieves RT = O
(∑

a:pa ̸=p⋆
1

p⋆−pa
log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3 / 16



3/16

UCB (Auer et al., 2002)
- Pull each arm once.
- For t ∈ {n,n + 1, . . . }, for a ∈ A, ucbt

a
def
= p̂t

a +
√

2 ln(t)
ut

a
; pull argmaxa∈A ucbt

a.

R

1

0

p
a
t

ucba
t

Recall that RT = Tp⋆ −
∑T−1

t=0 E[r t ].

We shall show that UCB achieves RT = O
(∑

a:pa ̸=p⋆
1

p⋆−pa
log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3 / 16



3/16

UCB (Auer et al., 2002)
- Pull each arm once.
- For t ∈ {n,n + 1, . . . }, for a ∈ A, ucbt

a
def
= p̂t

a +
√

2 ln(t)
ut

a
; pull argmaxa∈A ucbt

a.

R

1

0

p
a
t

ucba
t

Recall that RT = Tp⋆ −
∑T−1

t=0 E[r t ].

We shall show that UCB achieves RT = O
(∑

a:pa ̸=p⋆
1

p⋆−pa
log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3 / 16



4/16

Notation
∆a

def
=p⋆ − pa (instance-specific constant); ⋆ an optimal arm.

Let Z t
a be the event that arm a is pulled at time t .

Let z t
a be a random variable that takes value 1 if arm a is pulled at time t , and

0 otherwise.
Observe that E[z t

a] = P{Z t
a}(1) + (1 − P{Z t

a})(0) = P{Z t
a}.

As in the algorithm, ut
a is a random variable that denotes the number of pulls

arm a has received up to time t :

ut
a =

t−1∑
i=0

z i
a.

We define an instance-specific constant ūT
a

def
=
⌈

8
(∆a)2 ln(T )

⌉
that will serve in

our proof as a “sufficient” number of pulls of arm a for horizon T .

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 16



4/16

Notation
∆a

def
=p⋆ − pa (instance-specific constant); ⋆ an optimal arm.

Let Z t
a be the event that arm a is pulled at time t .

Let z t
a be a random variable that takes value 1 if arm a is pulled at time t , and

0 otherwise.
Observe that E[z t

a] = P{Z t
a}(1) + (1 − P{Z t

a})(0) = P{Z t
a}.

As in the algorithm, ut
a is a random variable that denotes the number of pulls

arm a has received up to time t :

ut
a =

t−1∑
i=0

z i
a.

We define an instance-specific constant ūT
a

def
=
⌈

8
(∆a)2 ln(T )

⌉
that will serve in

our proof as a “sufficient” number of pulls of arm a for horizon T .

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 16



4/16

Notation
∆a

def
=p⋆ − pa (instance-specific constant); ⋆ an optimal arm.

Let Z t
a be the event that arm a is pulled at time t .

Let z t
a be a random variable that takes value 1 if arm a is pulled at time t , and

0 otherwise.

Observe that E[z t
a] = P{Z t

a}(1) + (1 − P{Z t
a})(0) = P{Z t

a}.

As in the algorithm, ut
a is a random variable that denotes the number of pulls

arm a has received up to time t :

ut
a =

t−1∑
i=0

z i
a.

We define an instance-specific constant ūT
a

def
=
⌈

8
(∆a)2 ln(T )

⌉
that will serve in

our proof as a “sufficient” number of pulls of arm a for horizon T .

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 16



4/16

Notation
∆a

def
=p⋆ − pa (instance-specific constant); ⋆ an optimal arm.

Let Z t
a be the event that arm a is pulled at time t .

Let z t
a be a random variable that takes value 1 if arm a is pulled at time t , and

0 otherwise.
Observe that E[z t

a] = P{Z t
a}(1) + (1 − P{Z t

a})(0) = P{Z t
a}.

As in the algorithm, ut
a is a random variable that denotes the number of pulls

arm a has received up to time t :

ut
a =

t−1∑
i=0

z i
a.

We define an instance-specific constant ūT
a

def
=
⌈

8
(∆a)2 ln(T )

⌉
that will serve in

our proof as a “sufficient” number of pulls of arm a for horizon T .

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 16



4/16

Notation
∆a

def
=p⋆ − pa (instance-specific constant); ⋆ an optimal arm.

Let Z t
a be the event that arm a is pulled at time t .

Let z t
a be a random variable that takes value 1 if arm a is pulled at time t , and

0 otherwise.
Observe that E[z t

a] = P{Z t
a}(1) + (1 − P{Z t

a})(0) = P{Z t
a}.

As in the algorithm, ut
a is a random variable that denotes the number of pulls

arm a has received up to time t :

ut
a =

t−1∑
i=0

z i
a.

We define an instance-specific constant ūT
a

def
=
⌈

8
(∆a)2 ln(T )

⌉
that will serve in

our proof as a “sufficient” number of pulls of arm a for horizon T .

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 16



4/16

Notation
∆a

def
=p⋆ − pa (instance-specific constant); ⋆ an optimal arm.

Let Z t
a be the event that arm a is pulled at time t .

Let z t
a be a random variable that takes value 1 if arm a is pulled at time t , and

0 otherwise.
Observe that E[z t

a] = P{Z t
a}(1) + (1 − P{Z t

a})(0) = P{Z t
a}.

As in the algorithm, ut
a is a random variable that denotes the number of pulls

arm a has received up to time t :

ut
a =

t−1∑
i=0

z i
a.

We define an instance-specific constant ūT
a

def
=
⌈

8
(∆a)2 ln(T )

⌉
that will serve in

our proof as a “sufficient” number of pulls of arm a for horizon T .
Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 16



5/16

Proof Sketch
To upper-bound RT , upper-bound the number of pulls of each sub-optimal
arm a.

Give each such arm a ūT
a pulls for free.

Beyond ūT
a pulls, arm a’s UCB will have width at most ∆a/2.

If a continues to be pulled beyond ūT
a pulls, either its empirical mean has

deviated by more than ∆a/2 from its true mean, or ⋆’s UCB has fallen below
its true mean.
Both events above have a low probability—in aggregate at most a constant
even if summed over an infinite horizon.

KL-UCB uses the KL inequality, and slightly more sophisticated analysis.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 16



5/16

Proof Sketch
To upper-bound RT , upper-bound the number of pulls of each sub-optimal
arm a.

Give each such arm a ūT
a pulls for free.

Beyond ūT
a pulls, arm a’s UCB will have width at most ∆a/2.

If a continues to be pulled beyond ūT
a pulls, either its empirical mean has

deviated by more than ∆a/2 from its true mean, or ⋆’s UCB has fallen below
its true mean.
Both events above have a low probability—in aggregate at most a constant
even if summed over an infinite horizon.

KL-UCB uses the KL inequality, and slightly more sophisticated analysis.
Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 16



6/16

Step 1: Show that RT =
∑

a:pa ̸=p⋆ E[uT
a ]∆a.

RT = Tp⋆ −
T−1∑
t=0

E[r t ] = Tp⋆ −
T−1∑
t=0

∑
a∈A

P{Z t
a}E[r t |Z t

a]

= Tp⋆ −
T−1∑
t=0

∑
a∈A

E[z t
a]pa =

(∑
a∈A

E[uT
a ]

)
p⋆ −

∑
a∈A

E[uT
a ]pa

=
∑
a∈A

E[uT
a ](p

⋆ − pa) =
∑

a:pa ̸=p⋆

E[uT
a ]∆a.

To show the regret bound, we shall show for each sub-optimal arm a that

E[uT
a ] = O

(
1

(∆a)2 log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 16



6/16

Step 1: Show that RT =
∑

a:pa ̸=p⋆ E[uT
a ]∆a.

RT = Tp⋆ −
T−1∑
t=0

E[r t ]

= Tp⋆ −
T−1∑
t=0

∑
a∈A

P{Z t
a}E[r t |Z t

a]

= Tp⋆ −
T−1∑
t=0

∑
a∈A

E[z t
a]pa =

(∑
a∈A

E[uT
a ]

)
p⋆ −

∑
a∈A

E[uT
a ]pa

=
∑
a∈A

E[uT
a ](p

⋆ − pa) =
∑

a:pa ̸=p⋆

E[uT
a ]∆a.

To show the regret bound, we shall show for each sub-optimal arm a that

E[uT
a ] = O

(
1

(∆a)2 log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 16



6/16

Step 1: Show that RT =
∑

a:pa ̸=p⋆ E[uT
a ]∆a.

RT = Tp⋆ −
T−1∑
t=0

E[r t ] = Tp⋆ −
T−1∑
t=0

∑
a∈A

P{Z t
a}E[r t |Z t

a]

= Tp⋆ −
T−1∑
t=0

∑
a∈A

E[z t
a]pa =

(∑
a∈A

E[uT
a ]

)
p⋆ −

∑
a∈A

E[uT
a ]pa

=
∑
a∈A

E[uT
a ](p

⋆ − pa) =
∑

a:pa ̸=p⋆

E[uT
a ]∆a.

To show the regret bound, we shall show for each sub-optimal arm a that

E[uT
a ] = O

(
1

(∆a)2 log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 16



6/16

Step 1: Show that RT =
∑

a:pa ̸=p⋆ E[uT
a ]∆a.

RT = Tp⋆ −
T−1∑
t=0

E[r t ] = Tp⋆ −
T−1∑
t=0

∑
a∈A

P{Z t
a}E[r t |Z t

a]

= Tp⋆ −
T−1∑
t=0

∑
a∈A

E[z t
a]pa

=

(∑
a∈A

E[uT
a ]

)
p⋆ −

∑
a∈A

E[uT
a ]pa

=
∑
a∈A

E[uT
a ](p

⋆ − pa) =
∑

a:pa ̸=p⋆

E[uT
a ]∆a.

To show the regret bound, we shall show for each sub-optimal arm a that

E[uT
a ] = O

(
1

(∆a)2 log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 16



6/16

Step 1: Show that RT =
∑

a:pa ̸=p⋆ E[uT
a ]∆a.

RT = Tp⋆ −
T−1∑
t=0

E[r t ] = Tp⋆ −
T−1∑
t=0

∑
a∈A

P{Z t
a}E[r t |Z t

a]

= Tp⋆ −
T−1∑
t=0

∑
a∈A

E[z t
a]pa =

(∑
a∈A

E[uT
a ]

)
p⋆ −

∑
a∈A

E[uT
a ]pa

=
∑
a∈A

E[uT
a ](p

⋆ − pa) =
∑

a:pa ̸=p⋆

E[uT
a ]∆a.

To show the regret bound, we shall show for each sub-optimal arm a that

E[uT
a ] = O

(
1

(∆a)2 log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 16



6/16

Step 1: Show that RT =
∑

a:pa ̸=p⋆ E[uT
a ]∆a.

RT = Tp⋆ −
T−1∑
t=0

E[r t ] = Tp⋆ −
T−1∑
t=0

∑
a∈A

P{Z t
a}E[r t |Z t

a]

= Tp⋆ −
T−1∑
t=0

∑
a∈A

E[z t
a]pa =

(∑
a∈A

E[uT
a ]

)
p⋆ −

∑
a∈A

E[uT
a ]pa

=
∑
a∈A

E[uT
a ](p

⋆ − pa)

=
∑

a:pa ̸=p⋆

E[uT
a ]∆a.

To show the regret bound, we shall show for each sub-optimal arm a that

E[uT
a ] = O

(
1

(∆a)2 log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 16



6/16

Step 1: Show that RT =
∑

a:pa ̸=p⋆ E[uT
a ]∆a.

RT = Tp⋆ −
T−1∑
t=0

E[r t ] = Tp⋆ −
T−1∑
t=0

∑
a∈A

P{Z t
a}E[r t |Z t

a]

= Tp⋆ −
T−1∑
t=0

∑
a∈A

E[z t
a]pa =

(∑
a∈A

E[uT
a ]

)
p⋆ −

∑
a∈A

E[uT
a ]pa

=
∑
a∈A

E[uT
a ](p

⋆ − pa) =
∑

a:pa ̸=p⋆

E[uT
a ]∆a.

To show the regret bound, we shall show for each sub-optimal arm a that

E[uT
a ] = O

(
1

(∆a)2 log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 16



6/16

Step 1: Show that RT =
∑

a:pa ̸=p⋆ E[uT
a ]∆a.

RT = Tp⋆ −
T−1∑
t=0

E[r t ] = Tp⋆ −
T−1∑
t=0

∑
a∈A

P{Z t
a}E[r t |Z t

a]

= Tp⋆ −
T−1∑
t=0

∑
a∈A

E[z t
a]pa =

(∑
a∈A

E[uT
a ]

)
p⋆ −

∑
a∈A

E[uT
a ]pa

=
∑
a∈A

E[uT
a ](p

⋆ − pa) =
∑

a:pa ̸=p⋆

E[uT
a ]∆a.

To show the regret bound, we shall show for each sub-optimal arm a that

E[uT
a ] = O

(
1

(∆a)2 log(T )

)
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 16



7/16

Step 2: Two Regimes for Sub-optimal Pulls

To prove E[uT
a ] = O

(
1
∆2

a
log(T )

)
, we show E[uT

a ] ≤ ūT
a + C for constant C.

E[uT
a ] =

T−1∑
t=0

E[z t
a] =

T−1∑
t=0

P{Z t
a}

=
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}+

T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

= A + B.

We show A is upper-bounded by ūT
a and B is upper-bounded by a constant.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 7 / 16



7/16

Step 2: Two Regimes for Sub-optimal Pulls

To prove E[uT
a ] = O

(
1
∆2

a
log(T )

)
, we show E[uT

a ] ≤ ūT
a + C for constant C.

E[uT
a ] =

T−1∑
t=0

E[z t
a] =

T−1∑
t=0

P{Z t
a}

=
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}+

T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

= A + B.

We show A is upper-bounded by ūT
a and B is upper-bounded by a constant.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 7 / 16



7/16

Step 2: Two Regimes for Sub-optimal Pulls

To prove E[uT
a ] = O

(
1
∆2

a
log(T )

)
, we show E[uT

a ] ≤ ūT
a + C for constant C.

E[uT
a ] =

T−1∑
t=0

E[z t
a]

=
T−1∑
t=0

P{Z t
a}

=
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}+

T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

= A + B.

We show A is upper-bounded by ūT
a and B is upper-bounded by a constant.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 7 / 16



7/16

Step 2: Two Regimes for Sub-optimal Pulls

To prove E[uT
a ] = O

(
1
∆2

a
log(T )

)
, we show E[uT

a ] ≤ ūT
a + C for constant C.

E[uT
a ] =

T−1∑
t=0

E[z t
a] =

T−1∑
t=0

P{Z t
a}

=
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}+

T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

= A + B.

We show A is upper-bounded by ūT
a and B is upper-bounded by a constant.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 7 / 16



7/16

Step 2: Two Regimes for Sub-optimal Pulls

To prove E[uT
a ] = O

(
1
∆2

a
log(T )

)
, we show E[uT

a ] ≤ ūT
a + C for constant C.

E[uT
a ] =

T−1∑
t=0

E[z t
a] =

T−1∑
t=0

P{Z t
a}

=
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}+

T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

= A + B.

We show A is upper-bounded by ūT
a and B is upper-bounded by a constant.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 7 / 16



7/16

Step 2: Two Regimes for Sub-optimal Pulls

To prove E[uT
a ] = O

(
1
∆2

a
log(T )

)
, we show E[uT

a ] ≤ ūT
a + C for constant C.

E[uT
a ] =

T−1∑
t=0

E[z t
a] =

T−1∑
t=0

P{Z t
a}

=
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}+

T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

= A + B.

We show A is upper-bounded by ūT
a and B is upper-bounded by a constant.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 7 / 16



7/16

Step 2: Two Regimes for Sub-optimal Pulls

To prove E[uT
a ] = O

(
1
∆2

a
log(T )

)
, we show E[uT

a ] ≤ ūT
a + C for constant C.

E[uT
a ] =

T−1∑
t=0

E[z t
a] =

T−1∑
t=0

P{Z t
a}

=
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}+

T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

= A + B.

We show A is upper-bounded by ūT
a and B is upper-bounded by a constant.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 7 / 16



8/16

Step 3: Bounding A

A =
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}

=
T−1∑
t=0

ūT
a −1∑

m=0

P{Z t
a and (ut

a = m)} =

ūT
a −1∑

m=0

T−1∑
t=0

P{Z t
a and (ut

a = m)}

=

ūT
a −1∑

m=0

P{Z 0
a , (u

0
a = m) or Z 1

a , (u
1
a = m) or . . . or Z T−1

a , (uT−1
a = m)}

≤
ūT

a −1∑
m=0

1 = ūT
a .

We have used the fact that for 0 ≤ i < j ≤ t − 1, (Z i
a, (u i

a = m)) and
(Z j

a, (u
j
a = m)) are mutually exclusive.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8 / 16



8/16

Step 3: Bounding A

A =
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}

=
T−1∑
t=0

ūT
a −1∑

m=0

P{Z t
a and (ut

a = m)} =

ūT
a −1∑

m=0

T−1∑
t=0

P{Z t
a and (ut

a = m)}

=

ūT
a −1∑

m=0

P{Z 0
a , (u

0
a = m) or Z 1

a , (u
1
a = m) or . . . or Z T−1

a , (uT−1
a = m)}

≤
ūT

a −1∑
m=0

1 = ūT
a .

We have used the fact that for 0 ≤ i < j ≤ t − 1, (Z i
a, (u i

a = m)) and
(Z j

a, (u
j
a = m)) are mutually exclusive.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8 / 16



8/16

Step 3: Bounding A

A =
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}

=
T−1∑
t=0

ūT
a −1∑

m=0

P{Z t
a and (ut

a = m)}

=

ūT
a −1∑

m=0

T−1∑
t=0

P{Z t
a and (ut

a = m)}

=

ūT
a −1∑

m=0

P{Z 0
a , (u

0
a = m) or Z 1

a , (u
1
a = m) or . . . or Z T−1

a , (uT−1
a = m)}

≤
ūT

a −1∑
m=0

1 = ūT
a .

We have used the fact that for 0 ≤ i < j ≤ t − 1, (Z i
a, (u i

a = m)) and
(Z j

a, (u
j
a = m)) are mutually exclusive.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8 / 16



8/16

Step 3: Bounding A

A =
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}

=
T−1∑
t=0

ūT
a −1∑

m=0

P{Z t
a and (ut

a = m)} =

ūT
a −1∑

m=0

T−1∑
t=0

P{Z t
a and (ut

a = m)}

=

ūT
a −1∑

m=0

P{Z 0
a , (u

0
a = m) or Z 1

a , (u
1
a = m) or . . . or Z T−1

a , (uT−1
a = m)}

≤
ūT

a −1∑
m=0

1 = ūT
a .

We have used the fact that for 0 ≤ i < j ≤ t − 1, (Z i
a, (u i

a = m)) and
(Z j

a, (u
j
a = m)) are mutually exclusive.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8 / 16



8/16

Step 3: Bounding A

A =
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}

=
T−1∑
t=0

ūT
a −1∑

m=0

P{Z t
a and (ut

a = m)} =

ūT
a −1∑

m=0

T−1∑
t=0

P{Z t
a and (ut

a = m)}

=

ūT
a −1∑

m=0

P{Z 0
a , (u

0
a = m) or Z 1

a , (u
1
a = m) or . . . or Z T−1

a , (uT−1
a = m)}

≤
ūT

a −1∑
m=0

1 = ūT
a .

We have used the fact that for 0 ≤ i < j ≤ t − 1, (Z i
a, (u i

a = m)) and
(Z j

a, (u
j
a = m)) are mutually exclusive.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8 / 16



8/16

Step 3: Bounding A

A =
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}

=
T−1∑
t=0

ūT
a −1∑

m=0

P{Z t
a and (ut

a = m)} =

ūT
a −1∑

m=0

T−1∑
t=0

P{Z t
a and (ut

a = m)}

=

ūT
a −1∑

m=0

P{Z 0
a , (u

0
a = m) or Z 1

a , (u
1
a = m) or . . . or Z T−1

a , (uT−1
a = m)}

≤
ūT

a −1∑
m=0

1

= ūT
a .

We have used the fact that for 0 ≤ i < j ≤ t − 1, (Z i
a, (u i

a = m)) and
(Z j

a, (u
j
a = m)) are mutually exclusive.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8 / 16



8/16

Step 3: Bounding A

A =
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}

=
T−1∑
t=0

ūT
a −1∑

m=0

P{Z t
a and (ut

a = m)} =

ūT
a −1∑

m=0

T−1∑
t=0

P{Z t
a and (ut

a = m)}

=

ūT
a −1∑

m=0

P{Z 0
a , (u

0
a = m) or Z 1

a , (u
1
a = m) or . . . or Z T−1

a , (uT−1
a = m)}

≤
ūT

a −1∑
m=0

1 = ūT
a .

We have used the fact that for 0 ≤ i < j ≤ t − 1, (Z i
a, (u i

a = m)) and
(Z j

a, (u
j
a = m)) are mutually exclusive.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8 / 16



8/16

Step 3: Bounding A

A =
T−1∑
t=0

P{Z t
a and (ut

a < ūT
a )}

=
T−1∑
t=0

ūT
a −1∑

m=0

P{Z t
a and (ut

a = m)} =

ūT
a −1∑

m=0

T−1∑
t=0

P{Z t
a and (ut

a = m)}

=

ūT
a −1∑

m=0

P{Z 0
a , (u

0
a = m) or Z 1

a , (u
1
a = m) or . . . or Z T−1

a , (uT−1
a = m)}

≤
ūT

a −1∑
m=0

1 = ūT
a .

We have used the fact that for 0 ≤ i < j ≤ t − 1, (Z i
a, (u i

a = m)) and
(Z j

a, (u
j
a = m)) are mutually exclusive.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8 / 16



9/16

Step 4.1: Bounding B

B =
T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

=
T−1∑
t=n

P{Z t
a and (ut

a ≥ ūT
a )}

≤
T−1∑
t=n

P

{(
p̂t

a +

√
2
ut

a
ln(t) ≥ p̂t

⋆ +

√
2
ut
⋆

ln(t)

)
and (ut

a ≥ ūT
a )

}

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

P

{
p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

}
where

p̂a(x) is the empirical mean of the first x pulls of arm a, and
p̂⋆(y) is the empirical mean of the first y pulls of arm ⋆.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 9 / 16



9/16

Step 4.1: Bounding B

B =
T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

=
T−1∑
t=n

P{Z t
a and (ut

a ≥ ūT
a )}

≤
T−1∑
t=n

P

{(
p̂t

a +

√
2
ut

a
ln(t) ≥ p̂t

⋆ +

√
2
ut
⋆

ln(t)

)
and (ut

a ≥ ūT
a )

}

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

P

{
p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

}
where

p̂a(x) is the empirical mean of the first x pulls of arm a, and
p̂⋆(y) is the empirical mean of the first y pulls of arm ⋆.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 9 / 16



9/16

Step 4.1: Bounding B

B =
T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

=
T−1∑
t=n

P{Z t
a and (ut

a ≥ ūT
a )}

≤
T−1∑
t=n

P

{(
p̂t

a +

√
2
ut

a
ln(t) ≥ p̂t

⋆ +

√
2
ut
⋆

ln(t)

)
and (ut

a ≥ ūT
a )

}

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

P

{
p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

}
where

p̂a(x) is the empirical mean of the first x pulls of arm a, and
p̂⋆(y) is the empirical mean of the first y pulls of arm ⋆.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 9 / 16



9/16

Step 4.1: Bounding B

B =
T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

=
T−1∑
t=n

P{Z t
a and (ut

a ≥ ūT
a )}

≤
T−1∑
t=n

P

{(
p̂t

a +

√
2
ut

a
ln(t) ≥ p̂t

⋆ +

√
2
ut
⋆

ln(t)

)
and (ut

a ≥ ūT
a )

}

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

P

{
p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

}
where

p̂a(x) is the empirical mean of the first x pulls of arm a, and
p̂⋆(y) is the empirical mean of the first y pulls of arm ⋆.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 9 / 16



9/16

Step 4.1: Bounding B

B =
T−1∑
t=0

P{Z t
a and (ut

a ≥ ūT
a )}

=
T−1∑
t=n

P{Z t
a and (ut

a ≥ ūT
a )}

≤
T−1∑
t=n

P

{(
p̂t

a +

√
2
ut

a
ln(t) ≥ p̂t

⋆ +

√
2
ut
⋆

ln(t)

)
and (ut

a ≥ ūT
a )

}

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

P

{
p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

}
where

p̂a(x) is the empirical mean of the first x pulls of arm a, and
p̂⋆(y) is the empirical mean of the first y pulls of arm ⋆.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 9 / 16



10/16

Step 4.2: Bounding B
Fix x ∈ {ūT

a , ūT
a + 1, . . . , t} and y ∈ {1,2, . . . , t}.

1. We have:

p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

=⇒

(
p̂a(x) +

√
2
x
ln(t) ≥ p⋆

)
or

(
p̂⋆(y) +

√
2
y
ln(t) < p⋆

)
.

Fact: If α > β, then α ≥ γ or β < γ. Holds for arbitrary α, β, γ!

2. Since x ≥ ūT
a , we have

√
2
x ln(t) ≤

√
2

ūT
a
ln(t) ≤ ∆a

2 , and so

p̂a(x) +

√
2
x
ln(t) ≥ p⋆ =⇒ p̂a(x) ≥ pa +

∆a

2
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 10 / 16



10/16

Step 4.2: Bounding B
Fix x ∈ {ūT

a , ūT
a + 1, . . . , t} and y ∈ {1,2, . . . , t}.

1. We have:

p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

=⇒

(
p̂a(x) +

√
2
x
ln(t) ≥ p⋆

)
or

(
p̂⋆(y) +

√
2
y
ln(t) < p⋆

)
.

Fact: If α > β, then α ≥ γ or β < γ. Holds for arbitrary α, β, γ!

2. Since x ≥ ūT
a , we have

√
2
x ln(t) ≤

√
2

ūT
a
ln(t) ≤ ∆a

2 , and so

p̂a(x) +

√
2
x
ln(t) ≥ p⋆ =⇒ p̂a(x) ≥ pa +

∆a

2
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 10 / 16



10/16

Step 4.2: Bounding B
Fix x ∈ {ūT

a , ūT
a + 1, . . . , t} and y ∈ {1,2, . . . , t}.

1. We have:

p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

=⇒

(
p̂a(x) +

√
2
x
ln(t) ≥ p⋆

)
or

(
p̂⋆(y) +

√
2
y
ln(t) < p⋆

)
.

Fact: If α > β, then α ≥ γ or β < γ. Holds for arbitrary α, β, γ!

2. Since x ≥ ūT
a , we have

√
2
x ln(t) ≤

√
2

ūT
a
ln(t) ≤ ∆a

2 , and so

p̂a(x) +

√
2
x
ln(t) ≥ p⋆ =⇒ p̂a(x) ≥ pa +

∆a

2
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 10 / 16



10/16

Step 4.2: Bounding B
Fix x ∈ {ūT

a , ūT
a + 1, . . . , t} and y ∈ {1,2, . . . , t}.

1. We have:

p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

=⇒

(
p̂a(x) +

√
2
x
ln(t) ≥ p⋆

)
or

(
p̂⋆(y) +

√
2
y
ln(t) < p⋆

)
.

Fact: If α > β, then α ≥ γ or β < γ. Holds for arbitrary α, β, γ!

2. Since x ≥ ūT
a , we have

√
2
x ln(t) ≤

√
2

ūT
a
ln(t) ≤ ∆a

2 , and so

p̂a(x) +

√
2
x
ln(t) ≥ p⋆ =⇒ p̂a(x) ≥ pa +

∆a

2
.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 10 / 16



11/16

Step 4.3: Bounding B
Continuing from Step 4.1, using the two results from Step 4.2, and invoking
Hoeffding’s Inequality:

B ≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

P

{
p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

}

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
P
{

p̂a(x) ≥ pa +
∆a

2

}
+ P

{
p̂⋆(y) < p⋆ −

√
2
y
ln(t)

})

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
e−2x(∆a

2 )
2

+ e−2y
(√

2
y ln(t)

)2)

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
e−4 ln(t) + e−4 ln(t)

)
≤

T−1∑
t=n

t2
(

2
t4

)
≤

∞∑
t=1

2
t2 =

π2

3
.

We are done!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 16



11/16

Step 4.3: Bounding B
Continuing from Step 4.1, using the two results from Step 4.2, and invoking
Hoeffding’s Inequality:

B ≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

P

{
p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

}

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
P
{

p̂a(x) ≥ pa +
∆a

2

}
+ P

{
p̂⋆(y) < p⋆ −

√
2
y
ln(t)

})

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
e−2x(∆a

2 )
2

+ e−2y
(√

2
y ln(t)

)2)

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
e−4 ln(t) + e−4 ln(t)

)
≤

T−1∑
t=n

t2
(

2
t4

)
≤

∞∑
t=1

2
t2 =

π2

3
.

We are done!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 16



11/16

Step 4.3: Bounding B
Continuing from Step 4.1, using the two results from Step 4.2, and invoking
Hoeffding’s Inequality:

B ≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

P

{
p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

}

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
P
{

p̂a(x) ≥ pa +
∆a

2

}
+ P

{
p̂⋆(y) < p⋆ −

√
2
y
ln(t)

})

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
e−2x(∆a

2 )
2

+ e−2y
(√

2
y ln(t)

)2)

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
e−4 ln(t) + e−4 ln(t)

)
≤

T−1∑
t=n

t2
(

2
t4

)
≤

∞∑
t=1

2
t2 =

π2

3
.

We are done!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 16



11/16

Step 4.3: Bounding B
Continuing from Step 4.1, using the two results from Step 4.2, and invoking
Hoeffding’s Inequality:

B ≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

P

{
p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

}

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
P
{

p̂a(x) ≥ pa +
∆a

2

}
+ P

{
p̂⋆(y) < p⋆ −

√
2
y
ln(t)

})

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
e−2x(∆a

2 )
2

+ e−2y
(√

2
y ln(t)

)2)

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
e−4 ln(t) + e−4 ln(t)

)
≤

T−1∑
t=n

t2
(

2
t4

)
≤

∞∑
t=1

2
t2 =

π2

3
.

We are done!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 16



11/16

Step 4.3: Bounding B
Continuing from Step 4.1, using the two results from Step 4.2, and invoking
Hoeffding’s Inequality:

B ≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

P

{
p̂a(x) +

√
2
x
ln(t) ≥ p̂⋆(y) +

√
2
y
ln(t)

}

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
P
{

p̂a(x) ≥ pa +
∆a

2

}
+ P

{
p̂⋆(y) < p⋆ −

√
2
y
ln(t)

})

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
e−2x(∆a

2 )
2

+ e−2y
(√

2
y ln(t)

)2)

≤
T−1∑
t=n

t∑
x=ūT

a

t∑
y=1

(
e−4 ln(t) + e−4 ln(t)

)
≤

T−1∑
t=n

t2
(

2
t4

)
≤

∞∑
t=1

2
t2 =

π2

3
.

We are done!
Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 16



12/16

Multi-armed Bandits

1. Analysis of UCB

2. Other bandit problems

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 12 / 16



13/16

Other Bandit Problems
In this course, we have covered

▶ stochastic multi-armed bandits,
▶ minimisation of expected cumulative regret.

There are many other variations/formulations.

Incorporating risk/variance in the objective.
▶ Arm 1 gives rewards 0 and 100, each w.p. 1/2.
▶ Arm 2 gives rewards 48 and 50, each w.p. 1/2.
▶ Which arm would you prefer?

What if the arms’ (true) means vary over time?
▶ Nonstationary setting, seen for example, in on-line ads.
▶ Approach depends on nature of drift/change in rewards.
▶ In practice, one might only trust most recent data from arms.
▶ In practice, the set of arms can itself change over time!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 13 / 16



13/16

Other Bandit Problems
In this course, we have covered

▶ stochastic multi-armed bandits,
▶ minimisation of expected cumulative regret.

There are many other variations/formulations.

Incorporating risk/variance in the objective.
▶ Arm 1 gives rewards 0 and 100, each w.p. 1/2.
▶ Arm 2 gives rewards 48 and 50, each w.p. 1/2.
▶ Which arm would you prefer?

What if the arms’ (true) means vary over time?
▶ Nonstationary setting, seen for example, in on-line ads.
▶ Approach depends on nature of drift/change in rewards.
▶ In practice, one might only trust most recent data from arms.
▶ In practice, the set of arms can itself change over time!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 13 / 16



13/16

Other Bandit Problems
In this course, we have covered

▶ stochastic multi-armed bandits,
▶ minimisation of expected cumulative regret.

There are many other variations/formulations.

Incorporating risk/variance in the objective.
▶ Arm 1 gives rewards 0 and 100, each w.p. 1/2.
▶ Arm 2 gives rewards 48 and 50, each w.p. 1/2.
▶ Which arm would you prefer?

What if the arms’ (true) means vary over time?
▶ Nonstationary setting, seen for example, in on-line ads.
▶ Approach depends on nature of drift/change in rewards.
▶ In practice, one might only trust most recent data from arms.
▶ In practice, the set of arms can itself change over time!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 13 / 16



14/16

Other Bandit Problems
Pure exploration.

▶ Separate “testing” and “live” phases.
▶ In testing phase, rewards don’t matter.
▶ PAC formulation: W.p. at least 1 − δ, must return an ϵ-optimal arm, while

incurring a small number of pulls.
▶ Simple regret formulation: Given a budget of T pulls, must output an arm a

such that pa is large, or equivalently, simple regret = p⋆ − pa is small).

Limited number of feedback stages.
▶ Suppose you are given budget T , but your algorithm can look at history only

s < T times?
▶ UCB, Thompson Sampling, etc. are fully sequential (s = T ).
▶ How to manage with fewer “stages” s?

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 14 / 16



14/16

Other Bandit Problems
Pure exploration.

▶ Separate “testing” and “live” phases.
▶ In testing phase, rewards don’t matter.
▶ PAC formulation: W.p. at least 1 − δ, must return an ϵ-optimal arm, while

incurring a small number of pulls.
▶ Simple regret formulation: Given a budget of T pulls, must output an arm a

such that pa is large, or equivalently, simple regret = p⋆ − pa is small).

Limited number of feedback stages.
▶ Suppose you are given budget T , but your algorithm can look at history only

s < T times?
▶ UCB, Thompson Sampling, etc. are fully sequential (s = T ).
▶ How to manage with fewer “stages” s?

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 14 / 16



15/16

Other Bandit Problems
What if the number of arms is large (thousands, millions)?

▶ If arms can be described using features, mean reward is often treated as a
(linear) function of these features.

▶ Quantile-regret: look for “good”, rather than “optimal” arms.

What if we are interacting with many bandits simultaneously?
▶ Contextual bandits: If the bandits themselves can be described using features

(a “context”), data from one can be used to generate estimates about others.

What if the rewards do not come from a fixed random process?
▶ Adversarial bandits make no assumption on the rewards.
▶ Possible to show sub-linear regret when compared against playing a single arm

for the entire run.
▶ Necessary to use a randomised algorithm.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 15 / 16



15/16

Other Bandit Problems
What if the number of arms is large (thousands, millions)?

▶ If arms can be described using features, mean reward is often treated as a
(linear) function of these features.

▶ Quantile-regret: look for “good”, rather than “optimal” arms.

What if we are interacting with many bandits simultaneously?
▶ Contextual bandits: If the bandits themselves can be described using features

(a “context”), data from one can be used to generate estimates about others.

What if the rewards do not come from a fixed random process?
▶ Adversarial bandits make no assumption on the rewards.
▶ Possible to show sub-linear regret when compared against playing a single arm

for the entire run.
▶ Necessary to use a randomised algorithm.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 15 / 16



15/16

Other Bandit Problems
What if the number of arms is large (thousands, millions)?

▶ If arms can be described using features, mean reward is often treated as a
(linear) function of these features.

▶ Quantile-regret: look for “good”, rather than “optimal” arms.

What if we are interacting with many bandits simultaneously?
▶ Contextual bandits: If the bandits themselves can be described using features

(a “context”), data from one can be used to generate estimates about others.

What if the rewards do not come from a fixed random process?
▶ Adversarial bandits make no assumption on the rewards.
▶ Possible to show sub-linear regret when compared against playing a single arm

for the entire run.
▶ Necessary to use a randomised algorithm.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 15 / 16



16/16

Multi-armed Bandits
The exploration-exploitation dilemma
Definitions: Bandit, Algorithm
ϵ-greedy algorithms
Evaluating algorithms: Regret
Achieving sub-linear regret
A lower bound on regret
UCB, KL-UCB algorithms
Thompson Sampling algorithm
Concentration bounds
Understanding Thompson Sampling
Other bandit problems

Next class: Markov Decision Problems

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 16 / 16



16/16

Multi-armed Bandits
The exploration-exploitation dilemma
Definitions: Bandit, Algorithm
ϵ-greedy algorithms
Evaluating algorithms: Regret
Achieving sub-linear regret
A lower bound on regret
UCB, KL-UCB algorithms
Thompson Sampling algorithm
Concentration bounds
Understanding Thompson Sampling
Other bandit problems

Next class: Markov Decision Problems
Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 16 / 16


