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2. Other bandit problems
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UCB (Auer et al., 2002)

- Pull each arm once.

- Forte {n,n+1,...},forae A, uch, = pt + ,/220; pull argmax e, uchy.

1
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UCB (Auer et al., 2002)

- Pull each arm once.

- Forte {n,n+1,...},forae A, uch, = pt + ,/220; pull argmax e, uchy.

1

0

@ Recall that Ry = Tp* —

T—1
—o E[r1].
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UCB (Auer et al., 2002)
- Pull each arm once.
- Forte{nn+1,. ..} forac A ucb,®pl+ /20Y; pull argmax,c4 uch?.

1

0

@ Recall that Ry = Tp* —

T-1 t
—o E[r].
@ We shall show that UCB achieves Rr = O (>_, ., pﬂpa |og(T))
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Notation
@ A,= p* — p, (instance-specific constant); = an optimal arm.
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@ Let z! be a random variable that takes value 1 if arm a is pulled at time ¢, and
0 otherwise.
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Notation
@ A,= p* — p, (instance-specific constant); = an optimal arm.

@ Let Z! be the event that arm ais pulled at time t¢.

@ Let z! be a random variable that takes value 1 if arm a is pulled at time ¢, and
0 otherwise.
Observe that E[z}] = P{Z!}(1) + (1 — P{Z}})(0) = P{Z}}.
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Notation
@ A,= p* — p, (instance-specific constant); = an optimal arm.

@ Let Z! be the event that arm a is pulled at time t.

@ Let z! be a random variable that takes value 1 if arm a is pulled at time ¢, and
0 otherwise.
Observe that E[Z!] = P{Z!}(1) + (1 — P{Z[})(0) = P{ZL}.

@ As in the algorithm, u!, is a random variable that denotes the number of pulls
arm a has received up to time t:
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Notation
@ A,= p* — p, (instance-specific constant); = an optimal arm.

@ Let Z! be the event that arm a is pulled at time t.

@ Let z! be a random variable that takes value 1 if arm a is pulled at time ¢, and
0 otherwise.
Observe that E[Z!] = P{Z!}(1) + (1 — P{Z[})(0) = P{ZL}.

@ As in the algorithm, u!, is a random variable that denotes the number of pulls
arm a has received up to time t:

@ We define an instance-specific constant ] = {ﬁ In(T)W that will serve in

our proof as a “sufficient” number of pulls of arm a for horizon T.
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Proof Sketch

@ To upper-bound Ry, upper-bound the number of pulls of each sub-optimal
arm a.

@ Give each such arm a u/ pulls for free.
@ Beyond & pulls, arm a's UCB will have width at most A,/2.

@ If a continues to be pulled beyond ! pulls, either its empirical mean has
deviated by more than A,/2 from its true mean, or x’s UCB has fallen below
its true mean.

@ Both events above have a low probability—in aggregate at most a constant
even if summed over an infinite horizon.
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Proof Sketch

@ To upper-bound Ry, upper-bound the number of pulls of each sub-optimal
arm a.

@ Give each such arm a u/ pulls for free.
@ Beyond & pulls, arm a's UCB will have width at most A,/2.

@ If a continues to be pulled beyond ! pulls, either its empirical mean has
deviated by more than A,/2 from its true mean, or x’s UCB has fallen below
its true mean.

@ Both events above have a low probability—in aggregate at most a constant
even if summed over an infinite horizon.

@ KL-UCB uses the KL inequality, and slightly more sophisticated analysis.
5/16



Step 1: Show that Rr = Y, . E[uj]A..
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Step 1: Show that Rr = Y, . E[uj]A..

T-1

Rr=Tp* - > E[r]

t=0
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Step 1: Show that Rr = 3, .- E[u]]Aa.

Rr = Tp" — Z]E[r’] = Tp* — Z > P{ZBE[r|Z]]

t=0 acA
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Step 1: Show that Rr = 3, .- E[u]]Aa.

7l il
Rr=To" = S E[r] = Tp' = 5. 3 P{Z)E[|Z]
t=0 t=0 acA
T—1
=Tp" > > Elzlp.
t=0 acA
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Step 1: Show that Rr = 3, .- E[u]]Aa.

Rr = Tp" — Z]E[r’] = Tp* — ZZP{Z’}E[r 1Z]

t=0 acA
-7 - 3 S elellps (el - X stdle
t=0 acA acA acA
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Step 1: Show that Rr = 3, .- E[u]]Aa.

Rr = Tp* — Z]E[r’] = Tp* — ZZ]P’{Z’}E[r 1Z]

t=0 acA
= Tp* — Z > E[zi]p. = (Z Elu] ]> p* = E[u]]pa
=0 acA acA acA
= > E[u]l(p* — pa)

acA
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t=0 acA
-7 - 3 S elellps (el - X stdle
t=0 acA acA acA
=Y E[u]l(p* —pa) = ) E[u7]A,
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Step 1: Show that Rr = 3, .- E[u]]Aa.

T-1 T-1
Rr=Tp* = > E[r]=Tp" - > Y P{Z}E[r'|Z]]

t=0 t=0 acA
T—1

T -3 S Bz, (z E[ug) o~ 1P
t=0 acA acA acA

= E[uj](p* —pa) = > E[u]]A,

acA a:paF#p*

To show the regret bound, we shall show for each sub-optimal arm a that

E[ul] = O <(A1—)2 Iog(T)) |
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Step 2: Two Regimes for Sub-optimal Pulls

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023



Step 2: Two Regimes for Sub-optimal Pulls

To prove E[ul] = O (# |og(T)), we show E[u]] < ] + C for constant C.
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To prove E[ul] = O (# |og(T)), we show E[u]] < ] + C for constant C.

T-1
Elu]] = ) E[Z]
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To prove E[ul] = O (# |og(T)), we show E[u]] < ] + C for constant C.

T—1 T—1
Elu]] = ) E[z] =) P{Z}
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Step 2: Two Regimes for Sub-optimal Pulls

To prove E[ul] = O (# |og(T)), we show E[u]] < ] + C for constant C.

=t =
Elu,] = Z Elz;] = Z P{Z;}

T—1 T-1
=> P{Zland (uf < &)} + > P{Zland (u} > ])}
t=0 t=0
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To prove E[ul] = O (# |og(T)), we show E[u]] < ] + C for constant C.

=t =
Elu]] =) Elz]=) P{Z}

T—1 T—1
=> P{Zland (uf < &)} + > P{Zland (u} > ])}
t=0 t=0

=A+B.
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Step 2: Two Regimes for Sub-optimal Pulls

To prove E[ul] = O (# |og(T)), we show E[u]] < ] + C for constant C.

T—1 T—1
Elu;] = ) Elzl] =) P{Z}
t=0 t=0
T—1 T—1
=> P{Zland (uf < &)} + > P{Zland (u} > ])}
t=0 t=0
=A+B.

We show A is upper-bounded by & and B is upper-bounded by a constant.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 7/16



Step 3: Bounding A
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Step 3: Bounding A
T—1
A=) P{Zjand (uj < T])}

t=0
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Step 3: Bounding A

T-1
A=Y P{Z!and (U, < &)}
t=0
T—10) -1
= P{Z! and (U}, = m)}
t=0 m=0
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Step 3: Bounding A

-
Z P{Z! and (u! < &])}

t=0
T—1 L_l -1 L_I;—1 T_1
— {Zé and (u; =m)} = Z ZP{Zat and (u; — m)}

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8/16



Step 3: Bounding A

t=0
T-10]— 0] -1 71

=> {Zt and (uf = m)} = > Y P{Zand (uj = m)}
t=0 m= m=0 t=0
oy —1

= P{Z2, (WX =m)or Z},(ul=m)or...or ZI-' (ul-" = m)}
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Step 3: Bounding A

T—1
A=) P{Z and (U < &)}
t=0
T—10]-1 aT—1 71
= P{Zland (uf=m)} =Y > P{Zland (u} = m)}
t=0 m=0 m=0 t=0
oy —1
=Y P{Z° (W =m)orZ) (ut =m)or...or ZI7" (ul7" = m)}
m=0
T
< 1
m=0
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Step 3: Bounding A

T—1
A=) P{Z and (U < &)}
t=0
T—10]-1 aT—1 71
= P{Zland (uf=m)} =Y > P{Zland (u} = m)}
t=0 m=0 m=0 t=0
oy —1
=Y P{Z° (W =m)orZ) (ut =m)or...or ZI7" (ul7" = m)}
m=0
T
< 1=0
m=0
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Step 3: Bounding A

t=0
T-10]— 0] -1 71
=> {Zt and (uf = m)} = > Y P{Zand (uj = m)}
t=0 m= m=0 t=0
oy —1
=Y P{Z° (W =m)orZ) (ut =m)or...or ZI7" (ul7" = m)}
m=0
T
N
m=0

We have used the fact that for 0 < i < j <t —1, (Z., (v, = m)) and
(ZL, (4 = m)) are mutually exclusive.
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Step 4.1: Bounding B
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Step 4.1: Bounding B

71
B=Y P{Z\and (u} > U])}

t=0
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Step 4.1: Bounding B

T-1
B=Y P{Z{and (u} > 0])}

t=0

T-1
= 3" P{Z\and (u} > T])}
t=n
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Step 4.1: Bounding B

71
B=Y P{Z\and (u} > U])}

t=0

T-1
ZIP’{Z’ and (u!, > o]

2119’{(% 1/—In(t > pl+ 1/—In )and(u >uT)}

3
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Step 4.1: Bounding B

T—1

B=Y P{Z\and (u}> ])}

t=0

-
Z P{Z! and (

{(Pa ”—In > pl + 1/—In )and(u >u)}
Z Zp{ﬁa(x) V% In(t) > Pu(y) +4/ ) In(z‘)} where

pa(x) is the empirical mean of the first x pulls of arm a, and
p.(y) is the empirical mean of the first y pulls of arm .
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Step 4.2: Bounding B

e Fixxe{ul,ul +1,...;t}andy € {1,2,... t}.
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Step 4.2: Bounding B
e Fixxe{ul,ul +1,...;t}andy € {1,2,... t}.
1. We have:

Ba(x) + /(1) 2 puly) +
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Step 4.2: Bounding B

e Fixxe{ul,ul +1,...;t}andy € {1,2,... t}.

1. We have:
\/ In(t) > pu(y) + 1/ In(t

=><pa(> Xln(t)_p> (p*(y) §In(t><p*).

Fact: If > 3, then o > ~ or 5 < ~. Holds for arbitrary «, 3, ~!
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Step 4.2: Bounding B

e Fixxe{ul,ul +1,...;ttandy € {1,2,... t}.

1. We have:
\/ In t)>p ’/
= (ﬁa(X)ﬂ/%In(t) _p> (p*(y) ;In(f)<p*>.

Fact: If > 3, then o > ~ or 5 < ~. Holds for arbitrary «, 3, ~!

2. Since x > U], we have /£ In(t) <, /ZIn(t) < 42, and so
. 2 . A,
Pa(x) +1/ L In(t) 2 p. == Pa(X) = pat 5
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Step 4.3: Bounding B

Continuing from Step 4.1, using the two results from Step 4.2, and invoking
Hoeffding’s Inequality:

Bgmzizﬂb{ \/T(t)>p*(y \/T}

t=n x=gI y=1
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Step 4.3: Bounding B

Continuing from Step 4.1, using the two results from Step 4.2, and invoking
Hoeffding’s Inequality:

T—1
B<> M ZP{/@ \/ In(t) > p.(y) + \/ In(t }
T—1 t t
= Z(P{pa(X)>pa+%}+P{p*(y)<p*—\/}2—,ln(t)}>
t=n x=g] y=1
ool

e2(%) LoV '”(t))z)
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Step 4.3: Bounding B

Continuing from Step 4.1, using the two results from Step 4.2, and invoking
Hoeffding’s Inequality:

T—

—_

(3):52-%
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Step 4.3: Bounding B

Continuing from Step 4.1, using the two results from Step 4.2, and invoking
Hoeffding’s Inequality:

Bgﬁiiﬂ"{ \/T(t)>p*(y \/T}
{

P < Pa(x) > pa+%}+P{p*(J/)<p*— f;ln(t)}>

23533 e—zx(%a)2+eZY(\/W)2)

T-1 t ¢ T—1 5 © 5 2
—4In(t —41In(t 2 =
T T3 (o) < Ta(2) <527
t=n x:'; y=1 t=n t=1
We are done!
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Multi-armed Bandits

1. Analysis of UCB

2. Other bandit problems
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Other Bandit Problems

@ In this course, we have covered
» stochastic multi-armed bandits,
» minimisation of expected cumulative regret.
There are many other variations/formulations.
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Other Bandit Problems

@ In this course, we have covered
» stochastic multi-armed bandits,
» minimisation of expected cumulative regret.

There are many other variations/formulations.

@ Incorporating risk/variance in the objective.
» Arm 1 gives rewards 0 and 100, each w.p. 1/2.
» Arm 2 gives rewards 48 and 50, each w.p. 1/2.
» Which arm would you prefer?
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Other Bandit Problems

@ In this course, we have covered
» stochastic multi-armed bandits,
» minimisation of expected cumulative regret.
There are many other variations/formulations.

@ Incorporating risk/variance in the objective.
» Arm 1 gives rewards 0 and 100, each w.p. 1/2.
» Arm 2 gives rewards 48 and 50, each w.p. 1/2.
» Which arm would you prefer?

@ What if the arms’ (true) means vary over time?
» Nonstationary setting, seen for example, in on-line ads.
» Approach depends on nature of drift/change in rewards.
» In practice, one might only trust most recent data from arms.
» In practice, the set of arms can itself change over time!
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Other Bandit Problems

@ Pure exploration.
» Separate “testing” and “live” phases.
» In testing phase, rewards don’t matter.
» PAC formulation: W.p. at least 1 — §, must return an e-optimal arm, while
incurring a small number of pulls.
» Simple regret formulation: Given a budget of T pulls, must output an arm a
such that p, is large, or equivalently, simple regret = p* — p, is small).
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Other Bandit Problems

@ Pure exploration.
» Separate “testing” and “live” phases.
» In testing phase, rewards don’t matter.
» PAC formulation: W.p. at least 1 — 4, must return an e-optimal arm, while
incurring a small number of pulls.
» Simple regret formulation: Given a budget of T pulls, must output an arm a
such that p, is large, or equivalently, simple regret = p* — p, is small).

@ Limited number of feedback stages.
» Suppose you are given budget T, but your algorithm can look at history only
s < T times?
» UCB, Thompson Sampling, etc. are fully sequential (s = T).
» How to manage with fewer “stages” s?
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Other Bandit Problems

@ What if the number of arms is large (thousands, millions)?

» If arms can be described using features, mean reward is often treated as a
(linear) function of these features.
» Quantile-regret: look for “good”, rather than “optimal” arms.
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@ What if the number of arms is large (thousands, millions)?

» If arms can be described using features, mean reward is often treated as a
(linear) function of these features.
» Quantile-regret: look for “good”, rather than “optimal” arms.

@ What if we are interacting with many bandits simultaneously?

» Contextual bandits: If the bandits themselves can be described using features
(a “context”), data from one can be used to generate estimates about others.
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Other Bandit Problems

@ What if the number of arms is large (thousands, millions)?

» If arms can be described using features, mean reward is often treated as a
(linear) function of these features.
» Quantile-regret: look for “good”, rather than “optimal” arms.

@ What if we are interacting with many bandits simultaneously?

» Contextual bandits: If the bandits themselves can be described using features
(a “context”), data from one can be used to generate estimates about others.

@ What if the rewards do not come from a fixed random process?
» Adversarial bandits make no assumption on the rewards.
» Possible to show sub-linear regret when compared against playing a single arm
for the entire run.
» Necessary to use a randomised algorithm.
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Multi-armed Bandits
@ The exploration-exploitation dilemma
@ Definitions: Bandit, Algorithm
@ e-greedy algorithms
@ Evaluating algorithms: Regret
@ Achieving sub-linear regret
@ A lower bound on regret
@ UCB, KL-UCB algorithms
@ Thompson Sampling algorithm
@ Concentration bounds
@ Understanding Thompson Sampling
@ Other bandit problems
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Multi-armed Bandits
@ The exploration-exploitation dilemma
@ Definitions: Bandit, Algorithm
@ e-greedy algorithms
@ Evaluating algorithms: Regret
@ Achieving sub-linear regret
@ A lower bound on regret
@ UCB, KL-UCB algorithms
@ Thompson Sampling algorithm
@ Concentration bounds
@ Understanding Thompson Sampling
@ Other bandit problems

@ Next class: Markov Decision Problems
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