CS 747, Autumn 2023: Lecture 10

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Markov Decision Problems

- 1. Action value function
- 2. Policy iteration
 - Policy improvement
 - Policy improvement theorem and proof
 - Policy iteration algorithm
- 3. History-dependent and stochastic policies

Markov Decision Problems

- 1. Action value function
- 2. Policy iteration
 - Policy improvement
 - Policy improvement theorem and proof
 - Policy iteration algorithm
- 3. History-dependent and stochastic policies

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) \stackrel{\text{def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) \stackrel{\text{def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at state s, taking action a at t = 0, and following policy π for $t \ge 1$.

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) \stackrel{\text{def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at state s, taking action a at t = 0, and following policy π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) \stackrel{\text{def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at state s, taking action a at t = 0, and following policy π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

Observe that Q^{π} satisfies, for $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\pi}(s') \}.$$

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) \stackrel{\text{def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at state s, taking action a at t = 0, and following policy π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

Observe that Q^{π} satisfies, for $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\pi}(s') \}.$$

For $\pi \in \Pi$, $s \in S$: $Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$.

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) \stackrel{\text{def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at state s, taking action a at t = 0, and following policy π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

Observe that Q^{π} satisfies, for $s \in S$, $a \in A$:

$$Q^{\pi}(s,a) = \sum_{s' \in S} T(s,a,s') \{ R(s,a,s') + \gamma V^{\pi}(s') \}.$$

For $\pi \in \Pi$, $s \in S$: $Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$.

• Q^{π} needs $O(n^2k)$ operations to compute if V^{π} is available.

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) \stackrel{\text{def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at state s, taking action a at t = 0, and following policy π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

Observe that Q^{π} satisfies, for $s \in S$, $a \in A$:

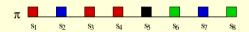
$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\pi}(s') \}.$$

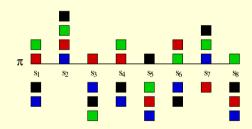
For $\pi \in \Pi$, $s \in S$: $Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$.

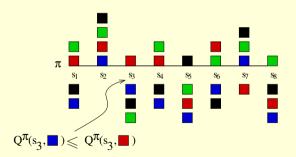
- Q^{π} needs $O(n^2k)$ operations to compute if V^{π} is available.
- All optimal policies have the same (optimal) action value function Q^* .

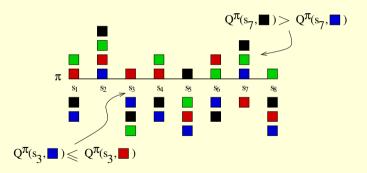
Markov Decision Problems

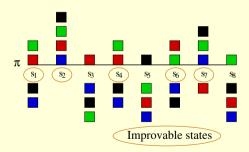
- 1. Action value function
- 2. Policy iteration
 - Policy improvement
 - Policy improvement theorem and proof
 - Policy iteration algorithm
- 3. History-dependent and stochastic policies

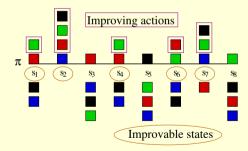


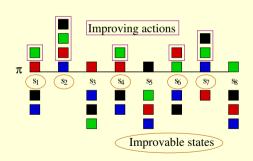








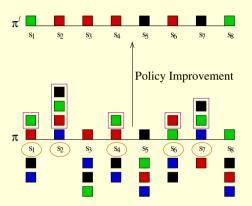




Given π ,

- Pick one or more improvable states, and in these states,
- Switch to an arbitrary improving action.

Let the resulting policy be π' .



Given π ,

- Pick one or more improvable states, and in these states,
- Switch to an arbitrary improving action.

Let the resulting policy be π' .

Markov Decision Problems

- 1. Action value function
- 2. Policy iteration
 - Policy improvement
 - Policy improvement theorem and proof
 - Policy iteration algorithm
- 3. History-dependent and stochastic policies

• For $\pi \in \Pi$, $s \in S$,

$$\mathsf{IA}(\pi, s) \stackrel{\mathsf{def}}{=} \{ a \in \mathsf{A} : Q^{\pi}(s, a) > V^{\pi}(s) \}.$$

• For $\pi \in \Pi$, $s \in S$,

$$extbf{IA}(\pi, s) \stackrel{ ext{def}}{=} \{ a \in \mathcal{A} : Q^{\pi}(s, a) > V^{\pi}(s) \}.$$

• For $\pi \in \Pi$.

$$|\mathbf{S}(\pi) \stackrel{\text{def}}{=} \{ s \in S : |\mathbf{IA}(\pi, s)| \geq 1 \}.$$

• For $\pi \in \Pi$, $s \in S$,

$$extbf{IA}(\pi, s) \stackrel{ ext{def}}{=} \{ a \in \mathcal{A} : Q^{\pi}(s, a) > V^{\pi}(s) \}.$$

• For $\pi \in \Pi$.

$$\mathbf{IS}(\pi) \stackrel{\text{def}}{=} \{ s \in S : |\mathbf{IA}(\pi, s)| \geq 1 \}.$$

• Suppose **IS**(π) $\neq \emptyset$ and $\pi' \in \Pi$ is obtained by policy improvement on π . Thus, π' satisfies

$$\forall s \in S : [\pi'(s) = \pi(s) \text{ or } \pi'(s) \in IA(\pi, s)] \text{ and } \exists s \in S : \pi'(s) \in IA(\pi, s).$$

• For $\pi \in \Pi$, $s \in S$,

$$extbf{IA}(\pi, s) \stackrel{ ext{def}}{=} \{ a \in \mathcal{A} : Q^{\pi}(s, a) > V^{\pi}(s) \}.$$

• For $\pi \in \Pi$.

$$\mathbf{IS}(\pi) \stackrel{\text{def}}{=} \{ s \in S : |\mathbf{IA}(\pi, s)| \geq 1 \}.$$

• Suppose **IS**(π) $\neq \emptyset$ and $\pi' \in \Pi$ is obtained by policy improvement on π . Thus, π' satisfies

$$\forall s \in S : [\pi'(s) = \pi(s) \text{ or } \pi'(s) \in IA(\pi, s)] \text{ and } \exists s \in S : \pi'(s) \in IA(\pi, s).$$

- (1) If $IS(\pi) = \emptyset$, then π is an optimal policy, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.

- (1) If $IS(\pi) = \emptyset$, then π is an optimal policy, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.

- (1) If $IS(\pi) = \emptyset$, then π is an optimal policy, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.

- (1) If $IS(\pi) = \emptyset$, then π is an optimal policy, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.
- But Π has a finite number of policies (k^n) .

- (1) If $IS(\pi) = \emptyset$, then π is an optimal policy, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.
- But Π has a finite number of policies (k^n) .
- Hence, there must exist a policy $\pi^* \in \Pi$ such that $\mathbf{IS}(\pi^*) = \emptyset$.

- (1) If $IS(\pi) = \emptyset$, then π is an optimal policy, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.
- But Π has a finite number of policies (k^n) .
- Hence, there must exist a policy $\pi^* \in \Pi$ such that $\mathbf{IS}(\pi^*) = \emptyset$.
- The theorem itself also tells us that π^* must be optimal.

- (1) If $IS(\pi) = \emptyset$, then π is an optimal policy, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.
- But Π has a finite number of policies (k^n) .
- Hence, there must exist a policy $\pi^* \in \Pi$ such that $\mathbf{IS}(\pi^*) = \emptyset$.
- The theorem itself also tells us that π^* must be optimal.
- Observe that $\mathbf{IS}(\pi^{\star}) = \emptyset \iff B^{\star}(V^{\pi^{\star}}) = V^{\pi^{\star}}$.

- (1) If $IS(\pi) = \emptyset$, then π is an optimal policy, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.
- But Π has a finite number of policies (k^n) .
- Hence, there must exist a policy $\pi^* \in \Pi$ such that $\mathbf{IS}(\pi^*) = \emptyset$.
- The theorem itself also tells us that π^* must be optimal.
- Observe that $\mathbf{IS}(\pi^*) = \emptyset \iff B^*(V^{\pi^*}) = V^{\pi^*}$.
- In other words, V^{π^*} satisfies the Bellman optimality equations—which we know has a unique solution. It is a convention to denote V^{π^*} by V^* .

• For $\pi \in \Pi$, we define $B^{\pi} : \mathbb{R}^n \to \mathbb{R}^n$ as follows.

For $X: S \to \mathbb{R}$ and for $s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{def}}{=} \sum_{s' \in S} T(s, \pi(s), s') \left(R(s, \pi(s), s') + \gamma X(s') \right).$$

• For $\pi \in \Pi$, we define $B^{\pi} : \mathbb{R}^{n} \to \mathbb{R}^{n}$ as follows.

For $X: S \to \mathbb{R}$ and for $s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{def}}{=} \sum_{s' \in S} T(s, \pi(s), s') \left(R(s, \pi(s), s') + \gamma X(s') \right).$$

• One Bellman operator for each $\pi \in \Pi$. No "max" like B^* .

• For $\pi \in \Pi$, we define $B^{\pi} : \mathbb{R}^{n} \to \mathbb{R}^{n}$ as follows.

For $X: S \to \mathbb{R}$ and for $s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{def}}{=} \sum_{s' \in S} T(s, \pi(s), s') \left(R(s, \pi(s), s') + \gamma X(s') \right).$$

- One Bellman operator for each $\pi \in \Pi$. No "max" like B^* .
- Some facts about B^{π} for all $\pi \in \Pi$. Similar proofs as for B^{\star} .
- B^{π} is a contraction mapping with contraction factor γ .
- For $X: \mathcal{S} \to \mathbb{R}: \lim_{l \to \infty} (B^\pi)^l(X) = V^\pi.$
- For $X:S \to \mathbb{R}, \ Y:S \to \mathbb{R} \colon X \succeq Y \implies B^{\pi}(X) \succeq B^{\pi}(Y)$.

• For $\pi \in \Pi$, we define $B^{\pi} : \mathbb{R}^n \to \mathbb{R}^n$ as follows.

For $X: S \to \mathbb{R}$ and for $s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{def}}{=} \sum_{s' \in S} T(s, \pi(s), s') \left(R(s, \pi(s), s') + \gamma X(s') \right).$$

- One Bellman operator for each $\pi \in \Pi$. No "max" like B^* .
- Some facts about B^{π} for all $\pi \in \Pi$. Similar proofs as for B^{\star} .
- B^{π} is a contraction mapping with contraction factor γ .
- For $X: \mathcal{S} \to \mathbb{R}: \lim_{l \to \infty} (B^\pi)^l(X) = V^\pi.$
- For $X:S \to \mathbb{R}, \ Y:S \to \mathbb{R} \colon X \succeq Y \implies B^{\pi}(X) \succeq B^{\pi}(Y)$.
- Observe that for $\pi, \pi' \in \Pi, \forall s \in S$: $B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s))$.

Proof of Policy Improvement Theorem

$$\mathsf{IS}(\pi) = \emptyset$$

$$\mathsf{IS}(\pi) = \emptyset \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\mathbf{IS}(\pi) = \emptyset \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$
$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})$$

$$\mathbf{IS}(\pi) = \emptyset \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})$$

$$\mathbf{IS}(\pi) = \emptyset \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

$$\mathbf{IS}(\pi) = \emptyset \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

$$\mathsf{IS}(\pi) \neq \emptyset; \pi \xrightarrow{\mathrm{P.I.}} \pi'$$

$$\mathbf{IS}(\pi) = \emptyset \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

$$\mathsf{IS}(\pi) \neq \emptyset; \pi \xrightarrow{\mathrm{P.I.}} \pi' \implies \mathsf{B}^{\pi'}(\mathsf{V}^{\pi}) \succ \mathsf{V}^{\pi}$$

$$\mathbf{IS}(\pi) = \emptyset \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

$$\mathsf{IS}(\pi) \neq \emptyset; \pi \xrightarrow{\mathrm{P.I.}} \pi' \implies B^{\pi'}(V^{\pi}) \succ V^{\pi} \\ \implies (B^{\pi'})^2(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\mathbf{IS}(\pi) = \emptyset \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

$$\mathsf{IS}(\pi) \neq \emptyset; \pi \xrightarrow{\mathrm{P.I.}} \pi' \implies B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies (B^{\pi'})^{2}(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi}) \succeq \cdots \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\mathbf{IS}(\pi) = \emptyset \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

$$\mathsf{IS}(\pi) \neq \emptyset; \pi \xrightarrow{\mathrm{P.I.}} \pi' \implies B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies (B^{\pi'})^{2}(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi}) \succeq \cdots \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies V^{\pi'} \succ V^{\pi}.$$

Markov Decision Problems

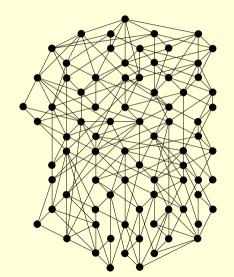
- 1. Action value function
- 2. Policy iteration
 - Policy improvement
 - Policy improvement theorem and proof
 - Policy iteration algorithm
- 3. History-dependent and stochastic policies

```
\pi \leftarrow Arbitrary policy.

While \pi has improvable states:
\pi' \leftarrow \text{PolicyImprovement}(\pi).
\pi \leftarrow \pi'.

Return \pi.
```

```
\pi \leftarrow Arbitrary policy. While \pi has improvable states: \pi' \leftarrow PolicyImprovement(\pi). \pi \leftarrow \pi'. Return \pi.
```



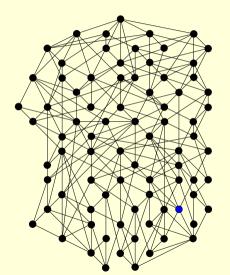
```
\pi \leftarrow Arbitrary policy.

While \pi has improvable states:

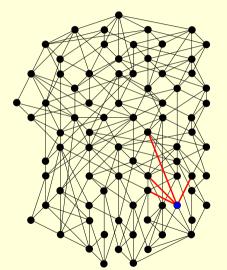
\pi' \leftarrow PolicyImprovement(\pi).

\pi \leftarrow \pi'.

Return \pi.
```



```
\pi \leftarrow Arbitrary policy. While \pi has improvable states: \pi' \leftarrow PolicyImprovement(\pi). \pi \leftarrow \pi'. Return \pi.
```



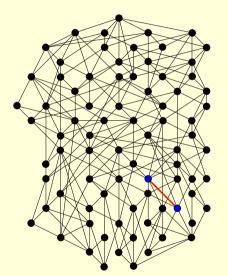
```
\pi \leftarrow Arbitrary policy.

While \pi has improvable states:

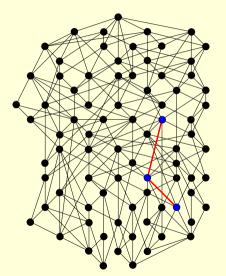
\pi' \leftarrow PolicyImprovement(\pi).

\pi \leftarrow \pi'.

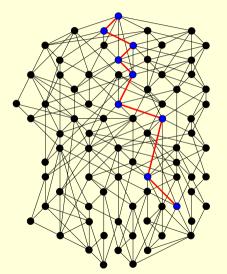
Return \pi.
```



```
\pi \leftarrow Arbitrary policy. While \pi has improvable states: \pi' \leftarrow PolicyImprovement(\pi). \pi \leftarrow \pi'. Return \pi.
```



```
\pi \leftarrow Arbitrary policy. While \pi has improvable states: \pi' \leftarrow PolicyImprovement(\pi). \pi \leftarrow \pi'. Return \pi.
```



```
\pi \leftarrow Arbitrary policy.

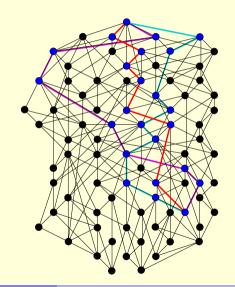
While \pi has improvable states:

\pi' \leftarrow PolicyImprovement(\pi).

\pi \leftarrow \pi'.

Return \pi.
```

Path taken (and hence the number of iterations) in general depends on the switching strategy.



Markov Decision Problems

- 1. Action value function
- 2. Policy iteration
 - Policy improvement
 - Policy improvement theorem and proof
 - Policy iteration algorithm
- 3. History-dependent and stochastic policies

- In principle, an agent can follow a policy λ that maps every possible history s^0 , a^0 , r^0 , s^1 , a^1 , r^1 , ..., s^t for $t \ge 0$ to a probability distribution over A.
- Let Λ be the set of such policies λ (which are in general non-Markovian, non-stationary, and stochastic).

- In principle, an agent can follow a policy λ that maps every possible history s^0 , a^0 , r^0 , s^1 , a^1 , r^1 , ..., s^t for $t \ge 0$ to a probability distribution over A.
- Let Λ be the set of such policies λ (which are in general non-Markovian, non-stationary, and stochastic).
- Recall that we only considered Π , the set of all policies $\pi: S \to A$ (which are Markovian, stationary, and deterministic). Observe that $\Pi \subset \Lambda$.
- We have shown that there exists $\pi^* \in \Pi$ such that for all $\pi \in \Pi$, $\pi^* \succeq \pi$.

- In principle, an agent can follow a policy λ that maps every possible history s^0 , a^0 , r^0 , s^1 , a^1 , r^1 , ..., s^t for $t \ge 0$ to a probability distribution over A.
- Let Λ be the set of such policies λ (which are in general non-Markovian, non-stationary, and stochastic).
- Recall that we only considered Π , the set of all policies $\pi: S \to A$ (which are Markovian, stationary, and deterministic). Observe that $\Pi \subset \Lambda$.
- We have shown that there exists $\pi^* \in \Pi$ such that for all $\pi \in \Pi$, $\pi^* \succeq \pi$.

Could there exist $\lambda \in \Lambda \setminus \Pi$ such that $\neg(\pi^* \succeq \lambda)$?

- In principle, an agent can follow a policy λ that maps every possible history s^0 , a^0 , r^0 , s^1 , a^1 , r^1 , ..., s^t for $t \ge 0$ to a probability distribution over A.
- Let Λ be the set of such policies λ (which are in general non-Markovian, non-stationary, and stochastic).
- Recall that we only considered Π , the set of all policies $\pi: S \to A$ (which are Markovian, stationary, and deterministic). Observe that $\Pi \subset \Lambda$.
- We have shown that there exists $\pi^* \in \Pi$ such that for all $\pi \in \Pi$, $\pi^* \succeq \pi$.

Could there exist $\lambda \in \Lambda \setminus \Pi$ such that $\neg(\pi^* \succeq \lambda)$? No.

 In MDPs, the agent can sense state, and the consequence of each action depends solely on state.

- In MDPs, the agent can sense state, and the consequence of each action depends solely on state.
- We are maximising an infinite sum of expected discounted rewards—the challenge at each time step is the same: to maximise the expected infinite discounted reward starting from the current state!

- In MDPs, the agent can sense state, and the consequence of each action depends solely on state.
- We are maximising an infinite sum of expected discounted rewards—the challenge at each time step is the same: to maximise the expected infinite discounted reward starting from the current state!
- History and stochasticity can help if the agent is unable to sense state perfectly. Such a situation arises in an abstraction called the Partially Observable MDP (POMDP).

- In MDPs, the agent can sense state, and the consequence of each action depends solely on state.
- We are maximising an infinite sum of expected discounted rewards—the challenge at each time step is the same: to maximise the expected infinite discounted reward starting from the current state!
- History and stochasticity can help if the agent is unable to sense state perfectly. Such a situation arises in an abstraction called the Partially Observable MDP (POMDP).
- Optimal policies for the finite horizon reward setting are in general non-stationary (time-dependent).

- In MDPs, the agent can sense state, and the consequence of each action depends solely on state.
- We are maximising an infinite sum of expected discounted rewards—the challenge at each time step is the same: to maximise the expected infinite discounted reward starting from the current state!
- History and stochasticity can help if the agent is unable to sense state perfectly. Such a situation arises in an abstraction called the Partially Observable MDP (POMDP).
- Optimal policies for the finite horizon reward setting are in general non-stationary (time-dependent).
- Optimal policies ("strategies") in many types of multi-player games are in general stochastic ("mixed") because the next state depends on all the players' actions, but each player chooses only their own.

Markov Decision Problems

- 1. Action value function
- 2. Policy iteration
 - Policy improvement
 - Policy improvement theorem and proof
 - Policy iteration algorithm
- 3. History-dependent and stochastic policies

Markov Decision Problems

- 1. Action value function
- 2. Policy iteration
 - Policy improvement
 - Policy improvement theorem and proof
 - Policy iteration algorithm
- 3. History-dependent and stochastic policies

Next class: Running time of policy iteration, review of MDP planning.