Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary
Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary
Decision-time planning: Problem

Decision-time planning: Problem

So far we have assumed that an agent’s learning algorithm produces π or Q as output. While acting on-line, the agent just needs a “look up” or associative “forward pass” from any state s to obtain its action.
Decision-time planning: Problem

- So far we have assumed that an agent’s learning algorithm produces π or Q as output. While acting on-line, the agent just needs a “look up” or associative “forward pass” from any state s to obtain its action.

- Sometimes π or Q might be difficult to learn in compact form, but a model $M = (T, R)$ (given or learned, exact or approximate) might be available.
Decision-time planning: Problem

- So far we have assumed that an agent’s learning algorithm produces π or Q as output. While acting on-line, the agent just needs a “look up” or associative “forward pass” from any state s to obtain its action.

- Sometimes π or Q might be difficult to learn in compact form, but a model $M = (T, R)$ (given or learned, exact or approximate) might be available.

- In decision-time planning, at every time step, we “imagine” possible futures emanating from the current state by using M, and use the computation to decide which action to take.
Decision-time planning: Problem

- So far we have assumed that an agent’s learning algorithm produces π or Q as output. While acting on-line, the agent just needs a “look up” or associative “forward pass” from any state s to obtain its action.

- Sometimes π or Q might be difficult to learn in compact form, but a model $M = (T, R)$ (given or learned, exact or approximate) might be available.

- In decision-time planning, at every time step, we “imagine” possible futures emanating from the current state by using M, and use the computation to decide which action to take.

- How to rigorously do so?
Tree Search on MDPs

- **Expectimax** calculation. Set $Q^h \leftarrow 0$ //Leaves.

 For $d = h - 1, h - 2, \ldots, 0$: //Bottom-up calculation.

 \[
 V^d(s) \leftarrow \max_{a \in A} Q^{d+1}(s, a);
 \]

 \[
 Q^d(s, a) \leftarrow \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^d(s') \}.
 \]
Tree Search on MDPs

- Need \(h = \Theta(\frac{1}{1-\gamma}) \) (or \(h = \text{episode length} \)) for sufficient accuracy.
- With branching factor \(b \), tree size is \(\Theta(b^h) \). Expensive!
- Often \(M \) is only a sampling model (not distribution model).
- Can we avoid expanding (clearly) inferior branches?
Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary
Rollout Policies

- Suppose we have a (look-up) policy π.
- Let policy π' satisfy $\pi'(s) = \arg\max_{a \in A} Q^\pi(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
Rollout Policies

Suppose we have a (look-up) policy π.

Let policy π' satisfy $\pi'(s) = \arg\max_{a \in A} Q^\pi(s, a)$ for $s \in S$.

By the policy improvement theorem, we know $\pi' \succeq \pi$.

We implement π' using Monte Carlo rollouts (through M).
Rollout Policies

- Suppose we have a (look-up) policy π.
- Let policy π' satisfy $\pi'(s) = \arg\max_{a \in A} Q^\pi(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through M).

- From current state s, for each action $a \in A$, generate N trajectories by taking a from s and thereafter following π.
Rollout Policies

- Suppose we have a (look-up) policy π.
- Let policy π' satisfy $\pi'(s) = \arg\max_{a \in A} Q^\pi(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through M).

- From current state s, for each action $a \in A$, generate N trajectories by taking a from s and thereafter following π.
- Set $\hat{Q}^\pi(s, a)$ as average of episodic returns.
Rollout Policies

Suppose we have a (look-up) policy π.

Let policy π' satisfy $\pi'(s) = \arg\max_{a \in A} Q^\pi(s, a)$ for $s \in S$.

By the policy improvement theorem, we know $\pi' \succeq \pi$.

We implement π' using Monte Carlo rollouts (through M).

- From current state s, for each action $a \in A$, generate N trajectories by taking a from s and thereafter following π.
- Set $\hat{Q}^\pi(s, a)$ as average of episodic returns.
- Take action $\pi'(s) = \arg\max_{a \in A} \hat{Q}^\pi(s, a)$.
Rollout Policies

- Suppose we have a (look-up) policy π.
- Let policy π' satisfy $\pi'(s) = \operatorname{argmax}_{a \in A} Q^\pi(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through M).

- From current state s, for each action $a \in A$, generate N trajectories by taking a from s and thereafter following π.
- Set $\hat{Q}^\pi(s, a)$ as average of episodic returns.
- Take action $\pi'(s) = \operatorname{argmax}_{a \in A} \hat{Q}^\pi(s, a)$.
- Repeat same process from next state s'.
Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary
Monte Carlo Tree Search (UCT Algorithm)

- Build out a tree up to height \(h \) (say 5–10) from current state \(s_{\text{current}} \).
- “Data” for the tree are samples returned by \(M \).
- For \((s, a)\) pairs reachable from \(s_{\text{current}} \) in \(\leq h \) steps, maintain
 - \(Q(s, a) \): average of returns of rollouts passing through \((s, a)\).
 - \(ucb(s, a) = Q(s, a) + C_p \sqrt{\frac{\ln(t)}{\text{visits}(s,a)}} \).

![Diagram of tree search](image)

Until end of episode
Monte Carlo Tree Search (UCT Algorithm)

- Build out a tree up to height h (say 5–10) from current state s_{current}.
 - “Data” for the tree are samples returned by M.
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - $Q(s, a)$: average of returns of rollouts passing through (s, a).
 - $ucb(s, a) = Q(s, a) + C_p \sqrt{\frac{\ln(t)}{\text{visits}(s,a)}}$.

Repeat N times from s_{current}:

1. Generate trajectory by calling M. From stored state s, “take” action
 $\arg\max_{a \in A} ucb(s, a)$; from leaf follow rollout policy π until end of episode.
Monte Carlo Tree Search (UCT Algorithm)

- Build out a tree up to height h (say 5–10) from current state s_{current}. “Data” for the tree are samples returned by M.
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - $Q(s, a)$: average of returns of rollouts passing through (s, a).
 - $ucb(s, a) = Q(s, a) + C_p\sqrt{\frac{\ln(t)}{\text{visits}(s,a)}}$.

Repeat N times from s_{current}:
1. Generate trajectory by calling M. From stored state s, “take” action $\arg\max_{a \in A} ucb(s, a)$; from leaf follow rollout policy π until end of episode.
2. Update Q, ucb for (s, a) pairs visited in trajectory.
Monte Carlo Tree Search (UCT Algorithm)

- Build out a tree up to height h (say 5–10) from current state s_{current}.
 - “Data” for the tree are samples returned by M.
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - $Q(s, a)$: average of returns of rollouts passing through (s, a).
 - $ucb(s, a) = Q(s, a) + C_p \sqrt{\frac{\ln(t)}{\text{visits}(s,a)}}$.

Repeat N times from s_{current}:

1. Generate trajectory by calling M.
 - From stored state s, “take” action $\arg\max_{a \in A} ucb(s, a)$; from leaf follow rollout policy π until end of episode.
2. Update Q, ucb for (s, a) pairs visited in trajectory.

Take action $\arg\max_{a \in A} ucb(s_{\text{current}}, a)$.

Shivaram Kalyanakrishnan (2023)
Monte Carlo Tree Search (UCT Algorithm)

- Main parameters of UCT: rollout policy π, search tree height h, number of rollouts N.
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as h is increased (if $N = \infty$).
- In practice N limited by available “think” time.
Monte Carlo Tree Search (UCT Algorithm)

- Main parameters of UCT: rollout policy π, search tree height h, number of rollouts N.
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as h is increased (if $N = \infty$).
- In practice N limited by available “think” time.
- C_p in the UCB formula needs to be large to deal with nonstationarity (from changes downstream).
Monte Carlo Tree Search (UCT Algorithm)

- Main parameters of UCT: rollout policy π, search tree height h, number of rollouts N.
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as h is increased (if $N = \infty$).
- In practice N limited by available “think” time.
- C_p in the UCB formula needs to be large to deal with nonstationarity (from changes downstream).
- In general there could be multiple paths to any particular stored (s, a) pair starting from s_{current}.
Monte Carlo Tree Search (UCT Algorithm)

- Main parameters of UCT: rollout policy π, search tree height h, number of rollouts N.
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as h is increased (if $N = \infty$).
- In practice N limited by available “think” time.
- C_p in the UCB formula needs to be large to deal with nonstationarity (from changes downstream).
- In general there could be multiple paths to any particular stored (s, a) pair starting from $s_{current}$.
- UCT focuses attention on rewarding regions of state space.
- Rollouts can easily be parallelised.
- Extremely successful algorithm in practice.
Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary
Evaluation Function

- With **rollouts**, value estimate of $L = \text{average rollout return}$.

For example, in Chess, set $\text{eval}(s)$ as $w_1 \times \text{Material-diff}(s) + w_2 \times \text{King-safety}(s) + w_3 \times \text{pawn-strength}(s) + \ldots$. Weights w_1, w_2, w_3, \ldots are tuned or learned.

Evaluation functions save compute time. Can be combined with rollouts.
Evaluation Function

- With **rollouts**, value estimate of $L = \text{average rollout return}$.

- With an **evaluation function**, value estimate of $L = \text{eval}(\text{state}(L))$.

Weights w_1, w_2, w_3, \ldots are tuned or learned.

Weights w_1, w_2, w_3, \ldots are tuned or learned.

For example, in Chess, set $\text{eval}(s)$ as $w_1 \times \text{Material-diff}(s) + w_2 \times \text{King-safety}(s) + w_3 \times \text{pawn-strength}(s) + \ldots$.

Evaluation functions save compute time. Can be combined with rollouts.
Evaluation Function

- With **rollouts**, value estimate of $L = \text{average rollout return}$.

- With an **evaluation function**, value estimate of $L = \text{eval}(\text{state}(L))$.

- For example, in Chess, set $\text{eval}(s)$ as

 $$w_1 \times \text{Material-diff}(s) + w_2 \times \text{King-safety}(s) + w_3 \times \text{pawn-strength}(s) + \ldots$$
Evaluation Function

- With **rollouts**, value estimate of $L = \text{average rollout return}$.

- With an **evaluation function**, value estimate of $L = \text{eval(state(L))}$.

- For example, in Chess, set $\text{eval}(s)$ as
 $$w_1 \times \text{Material-diff}(s) + w_2 \times \text{King-safety}(s) + w_3 \times \text{pawn-strength}(s) + \ldots$$

- Weights w_1, w_2, w_3, \ldots are tuned or learned.
Evaluation Function

- With **rollouts**, value estimate of $L = \text{average rollout return.}$

- With an **evaluation function**, value estimate of $L = \text{eval(state(L)).}$

For example, in Chess, set $\text{eval}(s)$ as

$$w_1 \times \text{Material-diff}(s) + w_2 \times \text{King-safety}(s) + w_3 \times \text{pawn-strength}(s) + \ldots$$

- Weights w_1, w_2, w_3, \ldots are tuned or learned.
- Evaluation functions save compute time. Can be combined with rollouts.
Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary
Search in On-line Decision Making

- Key requirement: simulator (model).

- More computationally expensive than lookup of π or Q.

- MCTS with rollout policies an effective approach to handle stochasticity as well as large state spaces.

- Learning (say an evaluation function) can also help solution quality of search in practice.

- Proof of all these claims: AlphaGo!
Search in On-line Decision Making

- Key requirement: simulator (model).

- More computationally expensive than lookup of π or Q.

- MCTS with rollout policies an effective approach to handle stochasticity as well as large state spaces.

- Learning (say an evaluation function) can also help solution quality of search in practice.

- Proof of all these claims: AlphaGo! Coming up later in this course.