CS 747, Autumn 2023: Lecture 22

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2023
Reinforcement Learning

1. Batch reinforcement learning
 ▶ Experience replay
 ▶ Fitted Q iteration

2. Applications
 ▶ Keepaway soccer
 ▶ Atari 2600 games
Reinforcement Learning

1. Batch reinforcement learning
 - Experience replay
 - Fitted Q iteration

2. Applications
 - Keepaway soccer
 - Atari 2600 games
Batch Updates to \hat{Q}

- We are back to value function-based learning (with function approximation).

On-line methods such as Q-learning “extract” very little information from each transition; are computationally lightweight. In many applications, samples are more expensive than computation; need to get more out of samples.

Batch RL keeps transitions in memory, performs more computationally-intensive updates.

Batch RL outer loop

$\hat{Q} \leftarrow 0$, $D \rightarrow \emptyset$.

Repeat for ever: //Each iteration is a batch.

$\pi \leftarrow \epsilon$-greedy(\hat{Q}).

Follow π for N episodes; gather data $D' = (s_i, a_i, r_i, s_{i+1})$. $L_i = 1$.

$D \leftarrow D \cup D'$.

$\hat{Q} \leftarrow \text{BatchUpdate}(D, \hat{Q})$. // \hat{Q} optional in RHS.
Batch Updates to \hat{Q}

- We are back to value function-based learning (with function approximation).
- On-line methods such as Q-learning “extract” very little information from each transition; are computationally lightweight.
Batch Updates to \hat{Q}

- We are back to value function-based learning (with function approximation).
- On-line methods such as Q-learning “extract” very little information from each transition; are computationally lightweight.
- In many applications, samples are more expensive than computation; need to get more out of samples.
Batch Updates to \hat{Q}

- We are back to value function-based learning (with function approximation).
- On-line methods such as Q-learning “extract” very little information from each transition; are computationally lightweight.
- In many applications, **samples are more expensive than computation**; need to get more out of samples.
- **Batch RL** keeps transitions in memory, performs more computationally-intensive updates.
Batch Updates to \hat{Q}

- We are back to value function-based learning (with function approximation).
- On-line methods such as Q-learning “extract” very little information from each transition; are computationally lightweight.
- In many applications, samples are more expensive than computation; need to get more out of samples.
- Batch RL keeps transitions in memory, performs more computationally-intensive updates.

Batch RL outer loop

$\hat{Q} \leftarrow 0, D \rightarrow \emptyset$.

Repeat for ever: //Each iteration is a batch.

$\pi \leftarrow \epsilon$-greedy(\hat{Q}).

Follow π for N episodes; gather data $D' = (s_i, a_i, r_i, s_{i+1})_{i=1}^L$.

$D \leftarrow D \cup D'$.

$\hat{Q} \leftarrow \text{BatchUpdate}(D, \hat{Q})$. //$\hat{Q}$ optional in RHS.
Experience Replay

- Assume \hat{Q} is function-approximated, say by a neural network.

\[
\text{BatchUpdateExperienceReplay}(D, \hat{Q})
\]

Repeat M times:
- Pick (s, a, r, s') uniformly at random from D.
- Tweak \hat{Q} so that for input (s, a), the output “better-matches” target $r + \gamma \max_{a' \in A} \hat{Q}(s', a')$ (for example, by one step of gradient descent).

Return \hat{Q}.

- Sometimes \hat{Q} reset/forgotten before the batch update.
- M usually large; hence multiple updates using each sample.
Fitted Q Iteration

- Idea: obtain \hat{Q} using supervised learning. Wait—labels?

```batchupdatefittedqiteration

$\hat{Q}_0 \leftarrow 0.
\text{For } i = 0, 1, \ldots, H - 1:\n\quad \text{For } j \in \{1, 2, \ldots, L\}: //\text{Create a labeled data set.}
\quad \quad x_j \leftarrow \text{FeatureVector}(s_j, a_j).
\quad \quad y_j \leftarrow r_j + \gamma \max_{a \in A} \hat{Q}_i(s_{j+1}, a).
\quad \hat{Q}_{i+1} \leftarrow \text{SupervisedLearning}((x_j, y_j)_{j=1}^L).
\text{Return } \hat{Q}_H.$
```

- Will not diverge if the supervised learning model is an **averager** (nearest neighbour methods, decision trees, etc.).
1. Batch reinforcement learning
 - Experience replay
 - Fitted Q iteration

2. Applications
 - Keepaway soccer
 - Atari 2600 games
Keepaway Task, Learning Architecture

- **See video:** https://www.cs.utexas.edu/~AustinVilla/sim/keepaway/mp4/InitialResults/learn360.mp4.

 - Only learn policy of keeper with ball.
 - **States:** specified distances, angles between players, play area.
 - **Actions:** hold ball; pass to closer teammate; pass to farther teammate.
 - **Reward:** time between state and next state.
 - No discounting.

 \hat{Q} approximated by (1) tile coding, (2) neural network with 1 hidden layer.
Keepaway Task, Learning Architecture

- **See video:** https://www.cs.utexas.edu/~AustinVilla/sim/keepaway/mp4/InitialResults/learn360.mp4.

- Only learn policy of keeper with ball.
 - **States:** specified distances, angles between players, play area.
 - **Actions:** hold ball; pass to closer teammate; pass to farther teammate.
 - **Reward:** Time between state and next state.
 - No discounting.
Keepaway Task, Learning Architecture

- **See video:** https://www.cs.utexas.edu/~AustinVilla/sim/keepaway/mp4/InitialResults/learn360.mp4.

- Only learn policy of keeper with ball.
- **States:** specified distances, angles between players, play area.
- **Actions:** hold ball; pass to closer teammate; pass to farther teammate.
- **Reward:** Time between state and next state.
- No discounting.

- \(\hat{Q} \) approximated by (1) tile coding, (2) neural network with 1 hidden layer.
Comparison: On-line vs. Batch RL

Learning Curves for Keepaway

Breakout

- Human-level control through deep reinforcement learning.

Breakout

- **Human-level control through deep reinforcement learning.**

 See video: https://www.youtube.com/watch?v=TmPfTpjtdgg.
Human-level control through deep reinforcement learning.

See video: https://www.youtube.com/watch?v=TmPfTpjtdgg.
Observe early, middle, and late stages of training.
Atari 2600 Games: Aggregate Results

From Mnih et al. (2015); for full reference see Slide 9.
Neural Network-based Representation of Q

- **Input:** 4 most-recent 84×84 frames. **Output:** 18 action values.

From Mnih *et al.* (2015); for full reference see Slide 9.
Neural Network-based Representation of Q

- **Input:** 4 most-recent 84×84 frames. **Output:** 18 action values.

From Mnih *et al.* (2015); for full reference see Slide 9.

- **Tens of thousands of weights!** How to train?
DQN Algorithm

- Batch RL, using experience replay.
 - A “mini-batch” of \((s, a, r, s')\) tuples replayed for a few iterations.
 - Q network for providing targets not updated after every atomic update, but still at regular intervals.
DQN Algorithm

- Batch RL, using experience replay.
 - A “mini-batch” of \((s, a, r, s') \) tuples replayed for a few iterations.
 - Q network for providing targets not updated after every atomic update, but still at regular intervals.

- Rewards clipped to \([-1, 1]\).
- No game-specific features or hyperparameter-tuning.
DQN Algorithm

- Batch RL, using experience replay.
 - A “mini-batch” of \((s, a, r, s')\) tuples replayed for a few iterations.
 - Q network for providing targets not updated after every atomic update, but still at regular intervals.

- Rewards clipped to \([-1, 1]\).
- No game-specific features or hyperparameter-tuning.

- Applied and evaluated on \(\approx 50\) Atari games.
- Code published: many implementations now available.
- Results on Atari have subsequently been improved, new algorithms (such as A3C) have emerged.
Summary

- Batch RL motivated by need to
 - conserve samples (by trading off with compute time),
 - handle stability issues with function approximation.
Summary

- Batch RL motivated by need to
 - conserve samples (by trading off with compute time),
 - handle stability issues with function approximation.

- Experience replay most simple, common, effective variant.
Summary

- Batch RL motivated by need to
 - conserve samples (by trading off with compute time),
 - handle stability issues with function approximation.

- Experience replay most simple, common, effective variant.

- Fitted Q iteration also popular; enjoys stability guarantee.
Summary

- Batch RL motivated by need to
 - conserve samples (by trading off with compute time),
 - handle stability issues with function approximation.

- Experience replay most simple, common, effective variant.

- Fitted Q iteration also popular; enjoys stability guarantee.

- Data set D can interpreted as an implicit representation of model.
Summary

- Batch RL motivated by need to
 - conserve samples (by trading off with compute time),
 - handle stability issues with function approximation.

- Experience replay most simple, common, effective variant.

- Fitted Q iteration also popular; enjoys stability guarantee.

- Data set D can interpreted as an implicit representation of model.

- **Next class:** Model-based methods (again).