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The Learning Setting
Underlying MDP:
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From current state, agent takes action.
Environment (MDP) decides next state and reward.
Possible history: s2, RED,−2, s3, BLUE,1, s1, RED,0, s1, . . . .
History conveys information about the MDP to the agent.

Can the agent eventually take optimal actions?
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Planning and Learning
In the planning setting, the entire MDP (S,A,T ,R, γ) is
available as an input.
Obtaining π? is a computational problem.

In the learning setting, the agent only knows S, A, γ, and
sometimes R. It has to make inferences about T (and
sometimes R) by taking actions from different states.

For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a
t-length history.
A learning algorithm L is a mapping from the set of all
histories to the set of all (probability distributions over) arms.
Learning problem: Can we construct L such that

lim
T→∞

1
T

(
T−1∑
t=0

P{at ∼ L(ht) is an optimal action for st}

)
= 1?
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Upcoming Topics
Temporal difference learning: prediction and control

I On-line estimation of value function/action value function.

Generalisation and function approximation
I Compact representations to handle large state spaces.

Policy gradient and Policy search methods
I Direct search over policy parameters.

Model-based RL
I Using (approximate) representations of T and R for learning.

Batch RL
I Storing and learning from a sequence of transitions (batch).

Monte Carlo tree search
I Planning for action selection.

Multiagent RL
I Coping with other learning agents.

Applications
I ATARI games (Mnih et al. (2015)), Go (Silver et al. (2016)).
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Board Games

Backgammon Go Chess

[1] [2] [3]

References: Tesauro (1992), Silver et al. (2018).

1. https://www.publicdomainpictures.net/pictures/60000/velka/backgammon.jpg.

2. https://www.publicdomainpictures.net/pictures/170000/velka/finished-go-game.jpg.

3. https://www.publicdomainpictures.net/pictures/80000/velka/chess-board-and-pieces.jpg.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 14

https://www.publicdomainpictures.net/pictures/60000/velka/backgammon.jpg
https://www.publicdomainpictures.net/pictures/170000/velka/finished-go-game.jpg
https://www.publicdomainpictures.net/pictures/80000/velka/chess-board-and-pieces.jpg


9/14

Robotics and Control
Helicopter control

[1]

Reference: Ng et al. (2003).

1. https://www.publicdomainpictures.net/pictures/20000/velka/
police-helicopter-8712919948643Mk.jpg.
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Video Games

[1]

Reference: Mnih et al. (2015).

1. https://www.publicdomainpictures.net/pictures/30000/velka/arcade-gaming.jpg.
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Computer Systems
Optimising a memory controller

[1]

Reference: İpek et al. (2008).

1. https://www.publicdomainpictures.net/pictures/100000/velka/motherboard.jpg.
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Healthcare
Adaptive treatment of epilepsy

[1]

Reference: Guez et al. (2008).

1. https://www.publicdomainpictures.net/pictures/140000/velka/brain-signals.jpg.
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Finance
Stock trading

Reference: Moody and Saffell (2001).
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