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Question from Last Week

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

(Let T denote the number of episodes.)

Is limT→∞ V̂ T
First-visit = V π? Yes.

Is limT→∞ V̂ T
Every-visit = V π? Yes.

Is limT→∞ V̂ T
Second-visit = V π? Yes.

Is limT→∞ V̂ T
Last-visit = V π? No.
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Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning
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Estimate p
You have two coins.

You are told that the probability of a head (1-reward) for
Coin 1 is p ∈ [0,0.5], and that for Coin 2 is 2p.
Hence the corresponding probabilities of a tail (0-reward)
are 1− p and 1− 2p, respectively.
You toss each coin once and see these outcomes.

Coin 1 Coin 2

P{heads} = p P{heads} = 2p
Outcome = 1 Outcome = 0

What is your estimate of p (call it p̂)?
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Two Common Estimates
Least-squares estimate.
For q ∈ [0,0.5],

SE(q) = (q − 1)2 + (2q − 0)2.

p̂LS
def
=argmin

q∈[0,0.5]
SE(q) = 0.2.

Maximum likelihood estimate.
For q ∈ [0,0.5],

L(q) = q(1− 2q).

p̂ML
def
=argmax

q∈[0,0.5]
L(q) = 0.25.

Which estimate is “correct”? Neither!
Which estimate is more useful? Depends on the use!
Note that there are other estimates, too.
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Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning
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First-visit MC Again
Assume episodic task with S = {s1, s2, s3}; following π.
Say we start each episode with state s (for illustration s2).

Episode 1: s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s2,2, s1,5, s1,1, s>.
Episode 4: s2,3, s2,3, s1,1, s>

V̂ 1 = G(s2,1,1) = 4.
V̂ 2 = 1

2{G(s2,1,1) + G(s2,2,1)} = 5.5.
V̂ 3 = 1

3{G(s2,1,1) + G(s2,2,1) + G(s2,3,1)} ≈ 6.33.
In general, for t ≥ 1:

V̂ t(s) =
1
t

t∑
i=1

G(s, i ,1).
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An On-line Implementation

V̂ t(s) =
1
t

t∑
i=1

G(s, t ,1)

=
1
t

(
t−1∑
i=1

G(s, i ,1) + G(s, t ,1)

)

=
1
t

(
(t − 1)V̂ t−1(s) + G(s, t ,1)

)
= (1− αt)V̂ t−1(s) + αtG(s, t ,1) for αt =

1
t
.

We already know that limt→∞ V̂ t(s) = V π(s).
Will we get convergence to V π(s) for other choices for αt?
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Stochastic Approximation
Result due to Robbins and Monro (1951).

Let the sequence (αt)t≥1 satisfy
I
∑∞

t=1 αt =∞.
I
∑∞

t=1(αt)
2 <∞.

For t ≥ 1, set

V̂ t(s)← (1− αt)V̂ t−1(s) + αtG(s, t ,1).

Then limt→∞ V̂ t(s) = V π(s).

(αt)t≥1 is the “learning rate” or “step size”.
Must be large enough, as well as small enough!
No need to store all previous episodes; t and V̂ t suffice.
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Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(λ)

5. Control with TD learning
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Bootstrapping
Suppose V̂ t is our current estimate of state-values.

Say we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.

At what point of time can we update our estimate V̂ t(s2)?

With MC methods, we would wait for s>, and then update
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1M, where
M = 2+ γ · 1+ γ2 · 1+ γ3 · 2+ γ4 · 1. Monte Carlo estimate.

Instead, how about this update as soon as we see s3?
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1B, where
B = 2 + γV̂ t(s3). Bootstrapped estimate.
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Temporal Difference Learning: TD(0)
Assume policy to be evaluated is π.
Initialise V̂ 0 arbitrarily.
Assume that the agent is born in state s0.

For t = 0,1,2, . . . :
Take action at ∼ π(st).
Obtain reward r t , next state st+1.
V̂ t+1(st)← V̂ t(st) + αt+1{r t + γV̂ t(st+1)− V̂ t(st)}.
For s ∈ S\{st}: V̂ t+1(s)← V̂ t(s). //Often left implicit.

V̂ t(st): current estimate; r t + γV̂ t(st+1): new estimate.
r t + γV̂ t(st+1)− V̂ t(st): temporal difference prediction error.
αt+1: learning rate.
Under standard conditions, limt→∞ V̂ t = V π.
In episodic tasks, keep V̂ t(s>) fixed at 0 (no updating).
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Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning
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First-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Recall that for s ∈ S,

V̂ T
First-visit(s) =

∑T
i=1 G(s, i ,1)∑T
i=1 1(s, i ,1)

.

For s ∈ S, V : S → R, define

ErrorFirst(V , s)
def
=

T∑
i=1

1(s, i ,1) (V (s)−G(s, i ,1))2 .

Observe that for s ∈ S, V̂ T
First-visit(s) = argminV ErrorFirst(V , s).
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Every-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Recall that for s ∈ S,

V̂ T
Every-visit(s) =

∑T
i=1

∑∞
j=1 G(s, i , j)∑T

i=1

∑∞
j=1 1(s, i , j)

.

For s ∈ S, V : S → R, define

ErrorEvery(V , s)
def
=

T∑
i=1

∞∑
j=1

1(s, i , j) (V (s)−G(s, i , j))2 .

Observe for s ∈ S, V̂ T
Every-visit(s) = argminV ErrorEvery(V , s).
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Batch TD(0) Estimate

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

After any finite T episodes, the estimate of TD(0) will
depend on the initial estimate V 0.
To “forget” V 0, run the T collected episodes over and over
again, and make TD(0) updates.
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Batch TD(0) Estimate

Episode 1
Episode 2
Episode 3
Episode 4
Episode 5
Episode 6 (= Episode 1)
Episode 7 (= Episode 2)
Episode 8 (= Episode 3)
Episode 9 (= Episode 4)
Episode 10 (= Episode 5)
Episode 11 (= Episode 1)
Episode 12 (= Episode 2)
...

Anneal the learning rate
as usual (αt =

1
t ).

limt→∞ V t will not depend
on V̂ 0.

It only depends on T
episodes of real data.

Refer to limt→∞ V̂ t as
V̂ T

Batch-TD(0).

Can we conclude
something relevant about
V̂ T

Batch-TD(0)?
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Batch TD(0) Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

s s1 2

s

s 3

2/6, 5 2/7, 3 2/4, 1

2/6, 2 1/7, 2

2/7, 2 1/4, 2

2/6, 1

2/7, 1

1/4, 1

Let MMLE be the MDP
(S,A, T̂ , R̂, γ) with the
highest likelihood of
generating this data (true
T , R unknown).

V̂ T
Batch-TD(0) is the same as

V π on MMLE !
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Comparison
Data.

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Estimates.
s1 s2 s3

V̂ T
First-visit 7.33 6.25 3

V̂ T
Every-visit 5.83 4.29 3.25

V̂ T
Batch-TD(0) 7.5 7 6

Which estimate is “correct”? Which is more useful?
Is it recommended to bootstrap or not?
Usually a “middle path” works best. Coming up next week!
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Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning
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Sketch
1. Maintain action value function estimate Q̂t : S × A→ R for

t ≥ 0, initialised arbitrarily.
We would like to get Q̂t to converge to Q?.

2. Follow policy πt at time step t ≥ 0, for example one that is
εt -greedy with respect to Q̂t .
Set εt to ensure infinite exploration of every state-action pair
and also being greedy in the limit.

3. Every transition (st ,at , r t , st+1) conveys information about
the underlying MDP. Update Q̂t based on the transition.
Can use TD learning (suitably adapted) to make the update.
We see three different update rules.
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Three Control Algorithms
From state st , action taken is at ∼ πt(st).

Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q? for all three if πt is εt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action
pair infinitely often, then limt→∞ Q̂t is Qπ for Sarsa and
Expected Sarsa, but is Q? for Q-learning!
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Temporal Difference Learning: Review

Temporal difference (TD) learning is at the heart of RL.
An instance of on-line learning (computationally cheap
updates after each interaction).
Applies to both prediction and control.
Q-learning, Sarsa, Expected Sarsa are all model-free (use
θ(|S||A|)-sized memory); can still be optimal in the limit.
Bootstrapping exploits the underlying Markovian structure,
which Monte Carlo methods ignore.
The TD(λ) family of algorithms, λ ∈ [0,1], allows for
controlling the extent of bootstrapping: λ = 0 implements
“full bootstrapping” and λ = 1 is “no bootstrapping.”

Coming up next week.
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