CS 747, Autumn 2020: Week 9, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2020

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 1/22



Question from Last Week

Episode 1: 51,5,51,2,55,3,8,,1, S7.
Episode 2: s5,2,53,1,83,1,83,2,85,1, 57.
Episode 3: s5¢,2,5,,2,5¢,5,51,1, 7.
Episode 4: s3,1, s7.

Episode 5: 55,3, 5,,3, 51,1, 57

(Let T denote the number of episodes.)
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Episode 2: s5,2,53,1,83,1,83,2,85,1, 57.
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(Let T denote the number of episodes.)
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Episode 1: 51,5,51,2,55,3,8,,1, S7.
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Episode 5: 55,3, 5,,3, 51,1, 57

(Let T denote the number of episodes.)

@ Islimr oo VI i = V™2 Yes.

. T —
@ Islimr_ VEvery visit ™ Ve
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Question from Last Week
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(Let T denote the number of episodes.)
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Question from Last Week

Episode 1: 51,5,51,2,55,3,8,,1, S7.
Episode 2: s5,2,83,1,83,1,83,2,55,1, 57.
Episode 3: 54,2, 5,,2,5¢,5,81,1, 7.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,3, 51,1, S7.

(Let T denote the number of episodes.)

@ Islimr oo VI i = V™2 Yes.

@ Islim70 Viveryvist = V™7 Yes.

Ve
o Islimr o V& gusi = V7?7 Yes.
v

@ Islimr_ = Vm?

Last-visit
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Question from Last Week

Episode 1:
Episode 2:
Episode 3:
Episode 4-:
Episode 5:

S1,5,S1,2,82,3, So, 1,ST.
32,2, S3, 1 , S13, 1,33, 2, So, 1,ST.
S1,2,Sg,2,S1,5,S1, 1,ST.

S3, 1 , ST.

$2,3,5,3,81,1,87.

(Let T denote the number of episodes.)

@ Islimr_ vr
@ Islimr_ V
@ Islimr_ V

v

o ls im0

Second-visit —

Last-visit

First-visit — = V"7 Yes.
Every-visit — V™?  Yes.

=V™? Yes.
=V™ No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

2/22



Reinforcement Learning

—

. Least-squares and Maximum likelihood estimators

N

. On-line implementation of First-visit MC
3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning
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Estimate p
@ You have two coins.
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Estimate p
@ You have two coins.
@ You are told that the probability of a head (1-reward) for
Coin 1is p € [0,0.5], and that for Coin 2 is 2p.

P{heads} =p  P{heads} =2p
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Estimate p
@ You have two coins.
@ You are told that the probability of a head (1-reward) for
Coin 1is p € [0,0.5], and that for Coin 2 is 2p.
@ Hence the corresponding probabilities of a tail (0-reward)
are 1 — pand 1 — 2p, respectively.

Coin 1 Coin 2
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Estimate p
@ You have two coins.
@ You are told that the probability of a head (1-reward) for
Coin 1is p € [0,0.5], and that for Coin 2 is 2p.
@ Hence the corresponding probabilities of a tail (0-reward)
are 1 — pand 1 — 2p, respectively.
@ You toss each coin once and see these outcomes.

Coin 1 Coin 2

P{heads} =p  P{heads} =2p
Outcome = 1 Outcome =0
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Estimate p
@ You have two coins.
@ You are told that the probability of a head (1-reward) for
Coin 1is p € [0,0.5], and that for Coin 2 is 2p.
@ Hence the corresponding probabilities of a tail (0-reward)
are 1 — pand 1 — 2p, respectively.
@ You toss each coin once and see these outcomes.

Coin 1 Coin 2

P{heads} =p  P{heads} =2p
Outcome = 1 Outcome =0

What is your estimate of p (call it p)?
4122



Two Common Estimates
@ Least-squares estimate.
For g € [0,0.5],
SE(q) = (q—1)°+ (29 - 0).

PLs = argmin SE(g) = 0.2.
qe[0,0.5]
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Two Common Estimates
@ Least-squares estimate.
For g € [0,0.5],
SE(q) = (q—1)°+ (29 - 0).

PLs = argmin SE(g) = 0.2.
qe[0,0.5]

@ Maximum likelihood estimate.
For g € [0,0.5],

L(q) = a(1 —2q).

Pu = argmax L(q) = 0.25.
ge[0,0.5]
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Two Common Estimates
o Least-squares estimate.
For g € [0,0.5],
SE(q) = (q—1)*+ (29 — 0)%.

Prs = argmin SE(q) = 0.2.
qe[0,0.5]

@ Maximum likelihood estimate.
For g € [0,0.9],
L(q) = q(1 —2q).

Pu = argmax L(q) = 0.25.
ge[0,0.5]

@ Which estimate is “correct”?
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Two Common Estimates
o Least-squares estimate.
For g € [0,0.5],
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Two Common Estimates
o Least-squares estimate.
For g € [0,0.5],
SE(q) = (q—1)*+ (29 — 0)%.

Prs = argmin SE(q) = 0.2.
qe[0,0.5]

@ Maximum likelihood estimate.
For g € [0,0.9],
L(q) = q(1 —2q).

Pu = argmax L(q) = 0.25.
ge[0,0.5]

@ Which estimate is “correct”? Neither!
@ Which estimate is more useful?
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Two Common Estimates
o Least-squares estimate.
For g € [0,0.5],
SE(q) = (q—1)*+ (29 — 0)%.

Prs = argmin SE(q) = 0.2.
qe[0,0.5]

@ Maximum likelihood estimate.
For g € [0,0.9],
L(q) = q(1 —2q).

Pu = argmax L(q) = 0.25.
ge[0,0.5]

@ Which estimate is “correct”? Neither!
@ Which estimate is more useful? Depends on the use!
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Two Common Estimates
@ Least-squares estimate.
For g € [0,0.5],

SE(q) = (g —1)* + (29 — 0)°.

Prs = argmin SE(q) = 0.2.
ge[0,0.5]
@ Maximum likelihood estimate.
For g € [0,0.9],

L(q) = q(1 —2q).
Pu = argmax L(q) = 0.25.
q<[0,0.5]
@ Which estimate is “correct”? Neither!
@ Which estimate is more useful? Depends on the use!
@ Note that there are other estimates, too.
5/22



Reinforcement Learning

—

. Least-squares and Maximum likelihood estimators

N

. On-line implementation of First-visit MC
3. TD(0) algorithm
4. Convergence of Batch TD(0)

5. Control with TD learning
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First-visit MC Again
@ Assume episodic task with S = {s1, S5, s3}; following .
@ Say we start each episode with state s (for illustration s,).

Episode 1: 55,3, 8,1, 5.

Episode 2: s5,2,53,1,83,1,83,2,85,1, 57.
Episode 3: 5,2, 51,5, 51,1, s7.

Episode 4: s,3,52,3,51,1, 87
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First-visit MC Again
@ Assume episodic task with S = {s1, S5, s3}; following .
@ Say we start each episode with state s (for illustration s,).

Episode 1: 55,3, 8,1, 5.

Episode 2: s5,2,83,1,83,1,83,2,8,,1, 7.
Episode 3: 5,2, 51,5, 51,1, s7.

Episode 4: 55,3, 55,3, 51,1, 87

o V'=G(s,1,1) =4.
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First-visit MC Again
@ Assume episodic task with S = {s1, S5, s3}; following .
@ Say we start each episode with state s (for illustration s,).

Episode 1: 55,3, 8,1, 5.

Episode 2: s5,2,83,1,83,1,83,2,8,,1, 7.
Episode 3: 5,2, 51,5, 51,1, s7.

Episode 4: 55,3, 55,3, 51,1, 87

o V'=G(s,1,1) =4.
o V2=1{G(s2,1,1) + G(52,2,1)} = 5.5.
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First-visit MC Again
@ Assume episodic task with S = {s1, S5, s3}; following .
@ Say we start each episode with state s (for illustration s,).

Episode 1: 55,3, 8,1, 5.

Episode 2: s5,2,83,1,83,1,83,2,8,,1, 7.
Episode 3: sp,2,51,5,581,1, s7.

Episode 4: s,,3, 55,3, 51,1, S7.

o V'=G(s,1,1) =4.
V2 = 1{G(s2,1,1) + G(52,2,1)} = 5.5.
o V¥ =1{G(s2,1,1) + G(s2,2,1) + G(s2,3,1)} ~ 6.33.
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First-visit MC Again
@ Assume episodic task with S = {s1, S5, s3}; following .
@ Say we start each episode with state s (for illustration s,).

Episode 1: 55,3, 8,1, 5.

Episode 2: s5,2,83,1,83,1,83,2,8,,1, 7.
Episode 3: sp,2,51,5,581,1, s7.

Episode 4: s,,3, 55,3, 51,1, S7.

V' = G(so,1,1) = 4.

V2 = 1{G(s2,1,1) + G(5,2,1)} = 5.5.

Ve = 1{G(s2,1,1) + G(s2,2,1) + G(52,3,1)} ~ 6.33.
In general, for t > 1:

t

Vi(s) = 1? > G(s,i,1).

i=1
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An On-line Implementation
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An On-line Implementation

t
172(33 t.1)
1 —1
= ZGS,I,1)+GS t, 1))

i=1
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An On-line Implementation
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An On-line Implementation

Vi(s) = G(s, t,1)

~..|_L

||MN
- - L
—~M—~

I

G(s, i,1)+ G(s, t, 1))

1
t
1 t—1

== (t=17 ")+ Gs,1.1))

VS

= (1 —a)V1(s) + a;G(s, t, 1) for oy = —
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An On-line Implementation

Vi(s) = 17 i G(s, t,1)

(t_ G(s,i, 1)+ G(s, t, 1))

= (t=1V(s)+a(s.t.1))

= (1 —an) V'7'(s) + e G(s, 1, 1) for a; = -

@ We already know that lim;_,,, V!(s) = V7(s).
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An On-line Implementation

Vi(s) = 17 i G(s, t,1)

(t_ G(s,i,1)+G(s7t,1)>
= ((t=1)V(s) + G(s, 1,1))

= (1 —an) V'7'(s) + e G(s, 1, 1) for a; = -

@ We already know that lim;_,,, V!(s) = V7(s).
@ Will we get convergence to V™(s) for other choices for «;?
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Stochastic Approximation
@ Result due to Robbins and Monro (1951).
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Stochastic Approximation

@ Result due to Robbins and Monro (1951).
@ Let the sequence (ay)r1 satisfy

> Zz% at = 0.
> Do (ar)® < oo
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Stochastic Approximation

@ Result due to Robbins and Monro (1951).
@ Let the sequence (ay)r1 satisfy

> Dpq at = oo

> 24 (en)? < oo
@ Fort>1, set

Vi(s) « (1 — a) VI (s) + o G(s, t, 1).
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Stochastic Approximation
@ Result due to Robbins and Monro (1951).
@ Let the sequence (ay)r1 satisfy

> Dpq at = oo
> 22 (ar)? < oo
@ Fort>1, set

Vi(s) « (1 — a) VI (s) + o G(s, t, 1).

@ Then lim; ., V!(s) = V7(s).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9/22



Stochastic Approximation

@ Result due to Robbins and Monro (1951).
@ Let the sequence (ay)r1 satisfy

> Dpq at = oo
> 22 (ar)? < oo
@ Fort>1, set

Vi(s) « (1 — a) VI (s) + o G(s, t, 1).

@ Then lim; ., V!(s) = V7(s).

@ (at)r>1 is the “learning rate” or “step size”.
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Stochastic Approximation

@ Result due to Robbins and Monro (1951).
@ Let the sequence (ay)r1 satisfy

> Dpq at = oo
> 22 (ar)? < oo
@ Fort>1, set

Vi(s) « (1 — a) VI (s) + o G(s, t, 1).

@ Then lim; ., V!(s) = V7(s).

@ (at)r>1 is the “learning rate” or “step size”.
@ Must be large enough, as well as small enough!
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Stochastic Approximation

@ Result due to Robbins and Monro (1951).
@ Let the sequence (ay)r1 satisfy

> Dpq at = oo

> 22 (ar)? < oo
@ Fort>1,set

Vi(s) «+ (1 — o) V' (S) + oy G(s, t, 1).

@ Then lim; ., V!(s) = V7(s).

@ (at)r>1 is the “learning rate” or “step size”.
@ Must be large enough, as well as small enough!

@ No need to store all previous episodes; t and V! suffice.
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Reinforcement Learning

—

. Least-squares and Maximum likelihood estimators

N

. On-line implementation of First-visit MC
3. TD(0) algorithm

4. Convergence of Batch TD()\)

5. Control with TD learning
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Bootstrapping

@ Suppose V! is our current estimate of state-values.
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Bootstrapping

@ Suppose V! is our current estimate of state-values.
@ Say we generate this episode.

‘ 32a27 33a17337173372a 3271aST-
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Bootstrapping

@ Suppose V! is our current estimate of state-values.
@ Say we generate this episode.

‘ 32a2733717337173372a8271as—|'- ‘

@ At what point of time can we update our estimate V/!(s;)?
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Bootstrapping

@ Suppose V! is our current estimate of state-values.
@ Say we generate this episode.
’ 32,2733,1,33,1,33,2,32,1,ST. ‘

@ At what point of time can we update our estimate V/!(s;)?
@ With MC methods, we would wait for s, and then update

Vi (sp) « V!(s2)(1 — arye) + w1 M, where
M=2+y-1+92- 1479724941,
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Bootstrapping

@ Suppose V! is our current estimate of state-values.
@ Say we generate this episode.
’ 32,2,33,1,33,1,53,2,32,1,ST. ‘

@ At what point of time can we update our estimate V/!(s;)?

@ With MC methods, we would wait for s, and then update
Ve (52) «— ‘A/t(SZ)(1 — Oét+1) + ay 1M, where
M=2+y-1+92- 1479724941,

@ Instead, how about this update as soon as we see s3?
V1 (sp) « V1(82)(1 — aryq) + ary1 B, where
B =2+ V(ss).
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Bootstrapping

@ Suppose V! is our current estimate of state-values.
@ Say we generate this episode.
’ 32,2,33,1,33,1,53,2,32,1,ST. ‘

@ At what point of time can we update our estimate V/!(s;)?

@ With MC methods, we would wait for s, and then update
V1 (sy) « Vi(sp)(1 — avgpt) + et M, where
M=2+~-1++2-14++3.2+4*.1. Monte Carlo estimate.

@ Instead, how about this update as soon as we see s3?
VtH1(sp) « Vt(s2)(1 — 1) + i1 B, where
B =2+ ~V!(s;). Bootstrapped estimate.
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Temporal Difference Learning: TD(0)

Assume policy to be evaluated is 7.
Initialise V° arbitrarily.
Assume that the agent is born in state s°.

Fort=0,1,2,...:
Take action a' ~ (s?).
Obtain reward r!, next state s'*'.
"‘/t+1(st) « \“/t(st) +at+1{r’+7\7t(s’+‘) _ \“/t(st)}_
Fors € S\{s}: V'+(s) « V!(s). //Often left implicit.
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Temporal Difference Learning: TD(0)

Assume policy to be evaluated is 7.
Initialise V° arbitrarily.
Assume that the agent is born in state s°.

Fort=0,1,2,...:
Take action a' ~ w(s!).
Obtain reward r!, next state s'*'.
"‘/t+1(st) « \“/t(st) +at+1{r’+7\7t(s’+1) _ \“/t(st)}_
For s € S\{s'}: V'*1(s) « V!(s). //Often left implicit.

e V!(s!): current estimate; r' + ~ V!(st*"): new estimate.
o rt 4+ V!(stt?) — V!(st): temporal difference prediction error.
@ «y.1: learning rate.
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Temporal Difference Learning: TD(0)

Assume policy to be evaluated is 7.
Initialise V° arbitrarily.
Assume that the agent is born in state s°.

Fort=0,1,2,...:
Take action a' ~ w(s!).
Obtain reward r!, next state s'*'.
"‘/t+1(st) « \“/t(st) +at+1{r’+7\7’(s’+1) _ \“/t(st)}_
For s € S\{s'}: V'*1(s) « V!(s). //Often left implicit.

e V!(s!): current estimate; r + v V!(st*'): new estimate.

o rt 4+ V!(stt?) — V!(st): temporal difference prediction error.
@ «y.1: learning rate.

@ Under standard conditions, lim;_,,, V! = V~.
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Temporal Difference Learning: TD(0)

Assume policy to be evaluated is 7.
Initialise V° arbitrarily.
Assume that the agent is born in state s°.

Fort=0,1,2,...:
Take action a' ~ w(s!).
Obtain reward r!, next state s'*'.
"‘/t+1(st) « \“/t(st) +at+1{r’+7\7’(s’+1) _ \“/t(st)}_
For s € S\{s'}: V'*1(s) « V!(s). //Often left implicit.

e V!(s!): current estimate; r' + ~ V!(st*"): new estimate.

o rt 4+ V!(stt?) — V!(st): temporal difference prediction error.
@ «y.1: learning rate.

@ Under standard conditions, lim;_,,, V! = V~.

@ In episodic tasks, keep V!(st) fixed at 0 (no updating).
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Reinforcement Learning

—

. Least-squares and Maximum likelihood estimators

N

. On-line implementation of First-visit MC
3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning
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First-visit MC Estimate

Episode 1: s51,5,51,2,55,3, 8., 1, s7.
Episode 2: s5,2,53,1,83,1,83,2,85,1, 57.
Episode 3: 51,2, 55,2, 51,5, 51,1, 57.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,2, 51,1, S7.

@ Recall that for s € S,

ZIT:1 G(S, i’1)
SLA(si 1)

T
Veirstisit(S) =
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First-visit MC Estimate

Episode 1: 51,5, 51,2, S,3, 52, 1, S7.
Episode 2: s5,2,53,1,83,1,83,2,85,1, 57.
Episode 3: 51,2, 55,2, 51,5, 51,1, 57.
Episode 4: s3,1, s7.

Episode 5: s;,3, 5,2, 51,1, S7.

@ Recall that for s € S,

T .
~ . G(s,i,1
Vlzi—rst-visit(s) = z317_' ! ( )

Zi:1 1(371';1)‘
@ Forse S, V:S — R, define

-
Errorea(V,8) 2 " 1(s,i,1) (V(s) — G(s,i,1)).

i=1
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First-visit MC Estimate

Episode 1: 51,5, 51,2, S,3, 52, 1, S7.
Episode 2: s5,2,53,1,83,1,83,2,85,1, 57.
Episode 3: 51,2, 5,,2,5¢,5,5¢,1,57.
Episode 4: s3,1, s7.

Episode 5: s;,3, 5,2, 51,1, S7.

@ Recall that for s € S,

T .
~ . G(s,i,1
Vlzi—rst-visit(s) = z317_' ! ( )

Zi:1 1(371';1)‘
@ Forse S, V:S — R, define

-
Errorea(V,8) 2 " 1(s,i,1) (V(s) — G(s,i,1)).
i=1
@ Observe thatfor s € S, V7, ii(S) = argminy Erroreis(V, s).



Every-visit MC Estimate

Episode 1: 51,5,51,2,55,3,8,, 1, s7.
Episode 2: s,,2,83,1,83,1,83,2,85,1, s7.
Episode 3: 51,2, 5,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: s;,3,52,2, 51,1, 7.

@ Recall that for s € S,
_ Z,T:1 > o1 G(s, 1))
i > it (s, 1.))

VETvery—visit(S)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020
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Every-visit MC Estimate

Episode 1: 51,5,51,2,55,3,8,, 1, s7.
Episode 2: s5,2,53,1,83,1,83,2,55,1, 57.
Episode 3: 54,2, 55,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,2, 51,1, S7.

@ Recall that for s € S,

XL R Gls,i))
L)
@ Forse S, V:S — R, define

VET;/ery—visit(S)

Erroreeny (V. )= i 1(s,i,) (V(s) — G(s,i,)))?.

i=1 j=1
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Every-visit MC Estimate

Episode 1: 51,5,51,2,55,3,8,, 1, s7.
Episode 2: s5,2,53,1,83,1,83,2,55,1, 57.
Episode 3: 54,2, 55,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,2, 51,1, S7.

@ Recall that for s € S,

XL R Gls,i))
L)
@ Forse S, V:S — R, define

VET;/ery—visit(S)

Erroreeny (V. )= i 1(s,i,) (V(s) — G(s,i,)))?.

i=1 j=1

@ Observe for s € S, Vo, isit(S) = argminy Errorevery (V, S).
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Batch TD(0) Estimate

Episode 1: 51,5,51,2,55,3, 8., 1, S7.
Episode 2: s5,2,53,1,83,1,83,2,55,1, 57.
Episode 3: 54,2, 55,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,2, 51,1, S7.

@ After any finite T episodes, the estimate of TD(0) will
depend on the initial estimate V°.

@ To “forget” VO, run the T collected episodes over and over
again, and make TD(0) updates.
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Batch TD(0) Estimate

Episode 1 @ Anneal the learning rate
Episode 2 as usual (o = 1).
Episode 3 . _—

o ° I(;rrr:t%o V' will not depend
Episode 5 '

Episode 6 (= Episode 1) @ It only depends on T
Episode 7 (= Episode 2) episodes of real data.
Episode 8 (= Episode 3) . ot
Episode 9 (= Episode 4) s Bv‘ifer 09 e V5 EE
Episode 10 (= Episode 5) Batch-TD(0)*

Episode 11 (= Episode 1) @ Can we conclude
Episode 12 (= Episode 2) something relevant about
' VBTatch-TD(O)?
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Batch TD(0) Estimate

Episode 1: s51,5,51,2,55,3, 82,1, s7.
Episode 2: s5,2,83,1,83,1,83,2,82,1, 57.
Episode 3: 51,2, 5,,2,5¢,5,51, 1, s7.
Episode 4: s3,1, s7.

Episode 5: s;,3,5,,2, 81,1, S7.

2/6,5 2/7,3

2/4
Let My e be the MDP
CJ () () e meoe e
: , (S,A, T,R,~) with the
0= —@—r®

e highest likelihood of

27,1 generating this data (true
6.1 T T, R unknown).

®

L1
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Batch TD(0) Estimate

Episode 1: s51,5,51,2,55,3, 82,1, s7.
Episode 2: s5,2,83,1,83,1,83,2,82,1, 57.
Episode 3: 51,2, 5,,2,5¢,5,51, 1, s7.
Episode 4: s3,1, s7.

Episode 5: s;,3, 52,2, 51,1, 7.

2/6,5 2/7,3 2/4
’ ’ Let My, g be the MDP
() ) Q) O S e e e

: i (S,A, T,R,~) with the
= —=0—0

e highest likelihood of

27,1 generating this data (true
6.1 T T, R unknown).

. _
@ ® VBatch-TD(o) is the same as
V7™ on Mu.e!

L1
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Comparison
@ Data.

Episode 1: s51,5,51,2, 55,3, 5,1, s7.
Episode 2: s5,2,53,1,83,1,83,2,82, 1, S7.
Episode 3: 51,2, 55,2, 51,5, 81,1, 57.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,2, 81,1, S7.

@ Estimates.
|51 s |ss
VFTIrst visit 7331625 |3
VEvery vsit | 9.83 [ 4.29 | 3.25
VBTatch-TD(O) 7.5 7 6
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Comparison
@ Data.

Episode 1: s51,5,51,2, 55,3, 5,1, s7.
Episode 2: s5,2,83,1,83,1,83,2,85,1, 57.
Episode 3: 51,2, 55,2, 51,5, 81,1, 57.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,2, 81,1, S7.

@ Estimates.
s [ s
‘A/F7i-rst—visit 7.33 16253
VETvery-visn 583|429 | 3.25
VBTatch-TD(O) 7.5 |7 6
@ Which estimate is “correct”? Which is more useful?
@ Is it recommended to bootstrap or not?
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Comparison
@ Data.

Episode 1: s51,5,51,2, 55,3, 5,1, s7.
Episode 2: s5,2,83,1,83,1,83,2,85,1, 57.
Episode 3: 51,2, 55,2, 51,5, 81,1, 57.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,2, 81,1, S7.

@ Estimates.
\ S1 \ S2 ‘ S3
‘A/F7i-rst—visit 7.33 16253
VETvery-visn 583|429 | 3.25
VBTatch-TD(O) 7.5 |7 6
@ Which estimate is “correct”? Which is more useful?
@ Is it recommended to bootstrap or not?
@ Usually a “middle path” works best. Coming up next week!
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Reinforcement Learning

—

. Least-squares and Maximum likelihood estimators

N

. On-line implementation of First-visit MC
3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning
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Sketch

1. Maintain action value function estimate Q' : S x A — R for
t > 0, initialised arbitrarily.

We would like to get Q! to converge to Q*.
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Sketch

1. Maintain action value function estimate Q' : S x A — R for
t > 0, initialised arbitrarily.
We would like to get Q' to converge to Q.

2. Follow policy 7' at time step t > 0, for example one that is
e;-greedy with respect to Q.
Set ¢; to ensure infinite exploration of every state-action pair
and also being greedy in the limit.
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Sketch

1. Maintain action value function estimate Q' : S x A — R for
t > 0, initialised arbitrarily.
We would like to get Q' to converge to Q.

2. Follow policy 7! at time step t > 0, for example one that is
e;-greedy with respect to Q.

Set ¢; to ensure infinite exploration of every state-action pair
and also being greedy in the limit.

3. Every transition (s, a', rt, st*') conveys information about
the underlying MDP. Update Q' based on the transition.
Can use TD learning (suitably adapted) to make the update.
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Sketch

1. Maintain action value function estimate Q' : S x A — R for
t > 0, initialised arbitrarily.
We would like to get Q' to converge to Q.

2. Follow policy 7! at time step t > 0, for example one that is
e;-greedy with respect to Q.

Set ¢; to ensure infinite exploration of every state-action pair
and also being greedy in the limit.

3. Every transition (s, a', rt, st*') conveys information about
the underlying MDP. Update Q' based on the transition.
Can use TD learning (suitably adapted) to make the update.
We see three different update rules.
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Three Control Algorithms

@ From state s, action taken is a' ~ r!(s).
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Three Control Algorithms
@ From state s, action taken is a' ~ r!(s).
@ Update made to Q' after observing transition st &, rt, st*+':

Qt(st, a) « QU(s!, a') + ar 1 {Target — Q'(sy, ')}
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Three Control Algorithms
@ From state s, action taken is a' ~ r!(s).
@ Update made to Q' after observing transition s’, &', rf, s**1:

Qt(st, a) « QU(s!, a') + ar 1 {Target — Q'(sy, ')}

Q-learning: Target = r’ + v max Qs a).
ac

Sarsa: Target = r' + 7Q!(s'*", a*").
Expected Sarsa: Target = r! + ~ Z rl(stt!, a) (s, a).

acA
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Three Control Algorithms
@ From state s', action taken is a' ~ !(s?).
@ Update made to Q! after observing transition s', at, rt, st*:

Q(st, al) « Q(s!, a!) + a1 {Target — Qi(s;, ah)}.

Q-learning: Target = r' + v max Qs a).
ac

Sarsa: Target = r! + yQ!(s"t1, a*").
Expected Sarsa: Target = ' + > «'(s'", a) Q'(s' a).

acA

o Q- Iearning s update is off- poIicy the other two are on-policy.

° Ilmt_m Q' = Q" for all three if 7! is e,-greedy w.r.t. Q.

o If n' = 7 (time-invariant) and it still visits every state-action
pair infinitely often, then lim;_,. Q' is Q" for Sarsa and
Expected Sarsa, but is Q* for Q-learning!
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Temporal Difference Learning: Review

@ Temporal difference (TD) learning is at the heart of RL.

@ An instance of on-line learning (computationally cheap
updates after each interaction).

@ Applies to both prediction and control.

@ Q-learning, Sarsa, Expected Sarsa are all model-free (use
6(|S||A|)-sized memory); can still be optimal in the limit.

@ Bootstrapping exploits the underlying Markovian structure,
which Monte Carlo methods ignore.

@ The TD(A) family of algorithms, A € [0, 1], allows for
controlling the extent of bootstrapping: A = 0 implements
“full bootstrapping” and A = 1 is “no bootstrapping.”’
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Temporal Difference Learning: Review

@ Temporal difference (TD) learning is at the heart of RL.

@ An instance of on-line learning (computationally cheap
updates after each interaction).

@ Applies to both prediction and control.

@ Q-learning, Sarsa, Expected Sarsa are all model-free (use
0(|S||A|)-sized memory); can still be optimal in the limit.

@ Bootstrapping exploits the underlying Markovian structure,
which Monte Carlo methods ignore.

@ The TD(A) family of algorithms, A € [0, 1], allows for
controlling the extent of bootstrapping: A = 0 implements
“full bootstrapping” and A = 1 is “no bootstrapping.”

Coming up next week.
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