
1/22

CS 747, Autumn 2020: Week 9, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2020

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 1 / 22

2/22

Question from Last Week

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

(Let T denote the number of episodes.)

Is limT→∞ V̂ T
First-visit = V π? Yes.

Is limT→∞ V̂ T
Every-visit = V π? Yes.

Is limT→∞ V̂ T
Second-visit = V π? Yes.

Is limT→∞ V̂ T
Last-visit = V π? No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 22

2/22

Question from Last Week

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

(Let T denote the number of episodes.)

Is limT→∞ V̂ T
First-visit = V π?

Yes.

Is limT→∞ V̂ T
Every-visit = V π? Yes.

Is limT→∞ V̂ T
Second-visit = V π? Yes.

Is limT→∞ V̂ T
Last-visit = V π? No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 22

2/22

Question from Last Week

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

(Let T denote the number of episodes.)

Is limT→∞ V̂ T
First-visit = V π? Yes.

Is limT→∞ V̂ T
Every-visit = V π? Yes.

Is limT→∞ V̂ T
Second-visit = V π? Yes.

Is limT→∞ V̂ T
Last-visit = V π? No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 22

2/22

Question from Last Week

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

(Let T denote the number of episodes.)

Is limT→∞ V̂ T
First-visit = V π? Yes.

Is limT→∞ V̂ T
Every-visit = V π?

Yes.

Is limT→∞ V̂ T
Second-visit = V π? Yes.

Is limT→∞ V̂ T
Last-visit = V π? No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 22

2/22

Question from Last Week

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

(Let T denote the number of episodes.)

Is limT→∞ V̂ T
First-visit = V π? Yes.

Is limT→∞ V̂ T
Every-visit = V π? Yes.

Is limT→∞ V̂ T
Second-visit = V π? Yes.

Is limT→∞ V̂ T
Last-visit = V π? No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 22

2/22

Question from Last Week

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

(Let T denote the number of episodes.)

Is limT→∞ V̂ T
First-visit = V π? Yes.

Is limT→∞ V̂ T
Every-visit = V π? Yes.

Is limT→∞ V̂ T
Second-visit = V π?

Yes.

Is limT→∞ V̂ T
Last-visit = V π? No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 22

2/22

Question from Last Week

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

(Let T denote the number of episodes.)

Is limT→∞ V̂ T
First-visit = V π? Yes.

Is limT→∞ V̂ T
Every-visit = V π? Yes.

Is limT→∞ V̂ T
Second-visit = V π? Yes.

Is limT→∞ V̂ T
Last-visit = V π? No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 22

2/22

Question from Last Week

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>.

(Let T denote the number of episodes.)

Is limT→∞ V̂ T
First-visit = V π? Yes.

Is limT→∞ V̂ T
Every-visit = V π? Yes.

Is limT→∞ V̂ T
Second-visit = V π? Yes.

Is limT→∞ V̂ T
Last-visit = V π?

No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 22

2/22

Question from Last Week

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>.

(Let T denote the number of episodes.)

Is limT→∞ V̂ T
First-visit = V π? Yes.

Is limT→∞ V̂ T
Every-visit = V π? Yes.

Is limT→∞ V̂ T
Second-visit = V π? Yes.

Is limT→∞ V̂ T
Last-visit = V π? No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 22

3/22

Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 22

3/22

Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 22

4/22

Estimate p
You have two coins.

You are told that the probability of a head (1-reward) for
Coin 1 is p ∈ [0,0.5], and that for Coin 2 is 2p.
Hence the corresponding probabilities of a tail (0-reward)
are 1− p and 1− 2p, respectively.
You toss each coin once and see these outcomes.

Coin 1 Coin 2

P{heads} = p P{heads} = 2p
Outcome = 1 Outcome = 0

What is your estimate of p (call it p̂)?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 22

4/22

Estimate p
You have two coins.
You are told that the probability of a head (1-reward) for
Coin 1 is p ∈ [0,0.5], and that for Coin 2 is 2p.

Hence the corresponding probabilities of a tail (0-reward)
are 1− p and 1− 2p, respectively.
You toss each coin once and see these outcomes.

Coin 1 Coin 2

P{heads} = p P{heads} = 2p

Outcome = 1 Outcome = 0

What is your estimate of p (call it p̂)?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 22

4/22

Estimate p
You have two coins.
You are told that the probability of a head (1-reward) for
Coin 1 is p ∈ [0,0.5], and that for Coin 2 is 2p.
Hence the corresponding probabilities of a tail (0-reward)
are 1− p and 1− 2p, respectively.

You toss each coin once and see these outcomes.

Coin 1 Coin 2

P{heads} = p P{heads} = 2p

Outcome = 1 Outcome = 0

What is your estimate of p (call it p̂)?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 22

4/22

Estimate p
You have two coins.
You are told that the probability of a head (1-reward) for
Coin 1 is p ∈ [0,0.5], and that for Coin 2 is 2p.
Hence the corresponding probabilities of a tail (0-reward)
are 1− p and 1− 2p, respectively.
You toss each coin once and see these outcomes.

Coin 1 Coin 2

P{heads} = p P{heads} = 2p
Outcome = 1 Outcome = 0

What is your estimate of p (call it p̂)?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 22

4/22

Estimate p
You have two coins.
You are told that the probability of a head (1-reward) for
Coin 1 is p ∈ [0,0.5], and that for Coin 2 is 2p.
Hence the corresponding probabilities of a tail (0-reward)
are 1− p and 1− 2p, respectively.
You toss each coin once and see these outcomes.

Coin 1 Coin 2

P{heads} = p P{heads} = 2p
Outcome = 1 Outcome = 0

What is your estimate of p (call it p̂)?
Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 22

5/22

Two Common Estimates
Least-squares estimate.
For q ∈ [0,0.5],

SE(q) = (q − 1)2 + (2q − 0)2.

p̂LS
def
=argmin

q∈[0,0.5]
SE(q) = 0.2.

Maximum likelihood estimate.
For q ∈ [0,0.5],

L(q) = q(1− 2q).

p̂ML
def
=argmax

q∈[0,0.5]
L(q) = 0.25.

Which estimate is “correct”? Neither!
Which estimate is more useful? Depends on the use!
Note that there are other estimates, too.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 22

5/22

Two Common Estimates
Least-squares estimate.
For q ∈ [0,0.5],

SE(q) = (q − 1)2 + (2q − 0)2.

p̂LS
def
=argmin

q∈[0,0.5]
SE(q) = 0.2.

Maximum likelihood estimate.
For q ∈ [0,0.5],

L(q) = q(1− 2q).

p̂ML
def
=argmax

q∈[0,0.5]
L(q) = 0.25.

Which estimate is “correct”? Neither!
Which estimate is more useful? Depends on the use!
Note that there are other estimates, too.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 22

5/22

Two Common Estimates
Least-squares estimate.
For q ∈ [0,0.5],

SE(q) = (q − 1)2 + (2q − 0)2.

p̂LS
def
=argmin

q∈[0,0.5]
SE(q) = 0.2.

Maximum likelihood estimate.
For q ∈ [0,0.5],

L(q) = q(1− 2q).

p̂ML
def
=argmax

q∈[0,0.5]
L(q) = 0.25.

Which estimate is “correct”?

Neither!
Which estimate is more useful? Depends on the use!
Note that there are other estimates, too.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 22

5/22

Two Common Estimates
Least-squares estimate.
For q ∈ [0,0.5],

SE(q) = (q − 1)2 + (2q − 0)2.

p̂LS
def
=argmin

q∈[0,0.5]
SE(q) = 0.2.

Maximum likelihood estimate.
For q ∈ [0,0.5],

L(q) = q(1− 2q).

p̂ML
def
=argmax

q∈[0,0.5]
L(q) = 0.25.

Which estimate is “correct”? Neither!

Which estimate is more useful? Depends on the use!
Note that there are other estimates, too.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 22

5/22

Two Common Estimates
Least-squares estimate.
For q ∈ [0,0.5],

SE(q) = (q − 1)2 + (2q − 0)2.

p̂LS
def
=argmin

q∈[0,0.5]
SE(q) = 0.2.

Maximum likelihood estimate.
For q ∈ [0,0.5],

L(q) = q(1− 2q).

p̂ML
def
=argmax

q∈[0,0.5]
L(q) = 0.25.

Which estimate is “correct”? Neither!
Which estimate is more useful?

Depends on the use!
Note that there are other estimates, too.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 22

5/22

Two Common Estimates
Least-squares estimate.
For q ∈ [0,0.5],

SE(q) = (q − 1)2 + (2q − 0)2.

p̂LS
def
=argmin

q∈[0,0.5]
SE(q) = 0.2.

Maximum likelihood estimate.
For q ∈ [0,0.5],

L(q) = q(1− 2q).

p̂ML
def
=argmax

q∈[0,0.5]
L(q) = 0.25.

Which estimate is “correct”? Neither!
Which estimate is more useful? Depends on the use!

Note that there are other estimates, too.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 22

5/22

Two Common Estimates
Least-squares estimate.
For q ∈ [0,0.5],

SE(q) = (q − 1)2 + (2q − 0)2.

p̂LS
def
=argmin

q∈[0,0.5]
SE(q) = 0.2.

Maximum likelihood estimate.
For q ∈ [0,0.5],

L(q) = q(1− 2q).

p̂ML
def
=argmax

q∈[0,0.5]
L(q) = 0.25.

Which estimate is “correct”? Neither!
Which estimate is more useful? Depends on the use!
Note that there are other estimates, too.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 22

6/22

Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6 / 22

7/22

First-visit MC Again
Assume episodic task with S = {s1, s2, s3}; following π.
Say we start each episode with state s (for illustration s2).

Episode 1: s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s2,2, s1,5, s1,1, s>.
Episode 4: s2,3, s2,3, s1,1, s>

V̂ 1 = G(s2,1,1) = 4.
V̂ 2 = 1

2{G(s2,1,1) + G(s2,2,1)} = 5.5.
V̂ 3 = 1

3{G(s2,1,1) + G(s2,2,1) + G(s2,3,1)} ≈ 6.33.
In general, for t ≥ 1:

V̂ t(s) =
1
t

t∑
i=1

G(s, i ,1).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7 / 22

7/22

First-visit MC Again
Assume episodic task with S = {s1, s2, s3}; following π.
Say we start each episode with state s (for illustration s2).

Episode 1: s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s2,2, s1,5, s1,1, s>.
Episode 4: s2,3, s2,3, s1,1, s>

V̂ 1 = G(s2,1,1) = 4.

V̂ 2 = 1
2{G(s2,1,1) + G(s2,2,1)} = 5.5.

V̂ 3 = 1
3{G(s2,1,1) + G(s2,2,1) + G(s2,3,1)} ≈ 6.33.

In general, for t ≥ 1:

V̂ t(s) =
1
t

t∑
i=1

G(s, i ,1).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7 / 22

7/22

First-visit MC Again
Assume episodic task with S = {s1, s2, s3}; following π.
Say we start each episode with state s (for illustration s2).

Episode 1: s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s2,2, s1,5, s1,1, s>.
Episode 4: s2,3, s2,3, s1,1, s>

V̂ 1 = G(s2,1,1) = 4.
V̂ 2 = 1

2{G(s2,1,1) + G(s2,2,1)} = 5.5.

V̂ 3 = 1
3{G(s2,1,1) + G(s2,2,1) + G(s2,3,1)} ≈ 6.33.

In general, for t ≥ 1:

V̂ t(s) =
1
t

t∑
i=1

G(s, i ,1).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7 / 22

7/22

First-visit MC Again
Assume episodic task with S = {s1, s2, s3}; following π.
Say we start each episode with state s (for illustration s2).

Episode 1: s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s2,2, s1,5, s1,1, s>.
Episode 4: s2,3, s2,3, s1,1, s>.

V̂ 1 = G(s2,1,1) = 4.
V̂ 2 = 1

2{G(s2,1,1) + G(s2,2,1)} = 5.5.
V̂ 3 = 1

3{G(s2,1,1) + G(s2,2,1) + G(s2,3,1)} ≈ 6.33.

In general, for t ≥ 1:

V̂ t(s) =
1
t

t∑
i=1

G(s, i ,1).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7 / 22

7/22

First-visit MC Again
Assume episodic task with S = {s1, s2, s3}; following π.
Say we start each episode with state s (for illustration s2).

Episode 1: s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s2,2, s1,5, s1,1, s>.
Episode 4: s2,3, s2,3, s1,1, s>.

V̂ 1 = G(s2,1,1) = 4.
V̂ 2 = 1

2{G(s2,1,1) + G(s2,2,1)} = 5.5.
V̂ 3 = 1

3{G(s2,1,1) + G(s2,2,1) + G(s2,3,1)} ≈ 6.33.
In general, for t ≥ 1:

V̂ t(s) =
1
t

t∑
i=1

G(s, i ,1).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7 / 22

8/22

An On-line Implementation

V̂ t(s) =
1
t

t∑
i=1

G(s, t ,1)

=
1
t

(
t−1∑
i=1

G(s, i ,1) + G(s, t ,1)

)

=
1
t

(
(t − 1)V̂ t−1(s) + G(s, t ,1)

)
= (1− αt)V̂ t−1(s) + αtG(s, t ,1) for αt =

1
t
.

We already know that limt→∞ V̂ t(s) = V π(s).
Will we get convergence to V π(s) for other choices for αt?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 22

8/22

An On-line Implementation

V̂ t(s) =
1
t

t∑
i=1

G(s, t ,1)

=
1
t

(
t−1∑
i=1

G(s, i ,1) + G(s, t ,1)

)

=
1
t

(
(t − 1)V̂ t−1(s) + G(s, t ,1)

)
= (1− αt)V̂ t−1(s) + αtG(s, t ,1) for αt =

1
t
.

We already know that limt→∞ V̂ t(s) = V π(s).
Will we get convergence to V π(s) for other choices for αt?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 22

8/22

An On-line Implementation

V̂ t(s) =
1
t

t∑
i=1

G(s, t ,1)

=
1
t

(
t−1∑
i=1

G(s, i ,1) + G(s, t ,1)

)

=
1
t

(
(t − 1)V̂ t−1(s) + G(s, t ,1)

)

= (1− αt)V̂ t−1(s) + αtG(s, t ,1) for αt =
1
t
.

We already know that limt→∞ V̂ t(s) = V π(s).
Will we get convergence to V π(s) for other choices for αt?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 22

8/22

An On-line Implementation

V̂ t(s) =
1
t

t∑
i=1

G(s, t ,1)

=
1
t

(
t−1∑
i=1

G(s, i ,1) + G(s, t ,1)

)

=
1
t

(
(t − 1)V̂ t−1(s) + G(s, t ,1)

)
= (1− αt)V̂ t−1(s) + αtG(s, t ,1) for αt =

1
t
.

We already know that limt→∞ V̂ t(s) = V π(s).
Will we get convergence to V π(s) for other choices for αt?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 22

8/22

An On-line Implementation

V̂ t(s) =
1
t

t∑
i=1

G(s, t ,1)

=
1
t

(
t−1∑
i=1

G(s, i ,1) + G(s, t ,1)

)

=
1
t

(
(t − 1)V̂ t−1(s) + G(s, t ,1)

)
= (1− αt)V̂ t−1(s) + αtG(s, t ,1) for αt =

1
t
.

We already know that limt→∞ V̂ t(s) = V π(s).

Will we get convergence to V π(s) for other choices for αt?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 22

8/22

An On-line Implementation

V̂ t(s) =
1
t

t∑
i=1

G(s, t ,1)

=
1
t

(
t−1∑
i=1

G(s, i ,1) + G(s, t ,1)

)

=
1
t

(
(t − 1)V̂ t−1(s) + G(s, t ,1)

)
= (1− αt)V̂ t−1(s) + αtG(s, t ,1) for αt =

1
t
.

We already know that limt→∞ V̂ t(s) = V π(s).
Will we get convergence to V π(s) for other choices for αt?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 22

9/22

Stochastic Approximation
Result due to Robbins and Monro (1951).

Let the sequence (αt)t≥1 satisfy
I
∑∞

t=1 αt =∞.
I
∑∞

t=1(αt)
2 <∞.

For t ≥ 1, set

V̂ t(s)← (1− αt)V̂ t−1(s) + αtG(s, t ,1).

Then limt→∞ V̂ t(s) = V π(s).

(αt)t≥1 is the “learning rate” or “step size”.
Must be large enough, as well as small enough!
No need to store all previous episodes; t and V̂ t suffice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9 / 22

9/22

Stochastic Approximation
Result due to Robbins and Monro (1951).
Let the sequence (αt)t≥1 satisfy

I
∑∞

t=1 αt =∞.
I
∑∞

t=1(αt)
2 <∞.

For t ≥ 1, set

V̂ t(s)← (1− αt)V̂ t−1(s) + αtG(s, t ,1).

Then limt→∞ V̂ t(s) = V π(s).

(αt)t≥1 is the “learning rate” or “step size”.
Must be large enough, as well as small enough!
No need to store all previous episodes; t and V̂ t suffice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9 / 22

9/22

Stochastic Approximation
Result due to Robbins and Monro (1951).
Let the sequence (αt)t≥1 satisfy

I
∑∞

t=1 αt =∞.
I
∑∞

t=1(αt)
2 <∞.

For t ≥ 1, set

V̂ t(s)← (1− αt)V̂ t−1(s) + αtG(s, t ,1).

Then limt→∞ V̂ t(s) = V π(s).

(αt)t≥1 is the “learning rate” or “step size”.
Must be large enough, as well as small enough!
No need to store all previous episodes; t and V̂ t suffice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9 / 22

9/22

Stochastic Approximation
Result due to Robbins and Monro (1951).
Let the sequence (αt)t≥1 satisfy

I
∑∞

t=1 αt =∞.
I
∑∞

t=1(αt)
2 <∞.

For t ≥ 1, set

V̂ t(s)← (1− αt)V̂ t−1(s) + αtG(s, t ,1).

Then limt→∞ V̂ t(s) = V π(s).

(αt)t≥1 is the “learning rate” or “step size”.
Must be large enough, as well as small enough!
No need to store all previous episodes; t and V̂ t suffice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9 / 22

9/22

Stochastic Approximation
Result due to Robbins and Monro (1951).
Let the sequence (αt)t≥1 satisfy

I
∑∞

t=1 αt =∞.
I
∑∞

t=1(αt)
2 <∞.

For t ≥ 1, set

V̂ t(s)← (1− αt)V̂ t−1(s) + αtG(s, t ,1).

Then limt→∞ V̂ t(s) = V π(s).

(αt)t≥1 is the “learning rate” or “step size”.

Must be large enough, as well as small enough!
No need to store all previous episodes; t and V̂ t suffice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9 / 22

9/22

Stochastic Approximation
Result due to Robbins and Monro (1951).
Let the sequence (αt)t≥1 satisfy

I
∑∞

t=1 αt =∞.
I
∑∞

t=1(αt)
2 <∞.

For t ≥ 1, set

V̂ t(s)← (1− αt)V̂ t−1(s) + αtG(s, t ,1).

Then limt→∞ V̂ t(s) = V π(s).

(αt)t≥1 is the “learning rate” or “step size”.
Must be large enough, as well as small enough!

No need to store all previous episodes; t and V̂ t suffice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9 / 22

9/22

Stochastic Approximation
Result due to Robbins and Monro (1951).
Let the sequence (αt)t≥1 satisfy

I
∑∞

t=1 αt =∞.
I
∑∞

t=1(αt)
2 <∞.

For t ≥ 1, set

V̂ t(s)← (1− αt)V̂ t−1(s) + αtG(s, t ,1).

Then limt→∞ V̂ t(s) = V π(s).

(αt)t≥1 is the “learning rate” or “step size”.
Must be large enough, as well as small enough!
No need to store all previous episodes; t and V̂ t suffice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9 / 22

10/22

Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(λ)

5. Control with TD learning

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10 / 22

11/22

Bootstrapping
Suppose V̂ t is our current estimate of state-values.

Say we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.

At what point of time can we update our estimate V̂ t(s2)?

With MC methods, we would wait for s>, and then update
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1M, where
M = 2+ γ · 1+ γ2 · 1+ γ3 · 2+ γ4 · 1. Monte Carlo estimate.

Instead, how about this update as soon as we see s3?
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1B, where
B = 2 + γV̂ t(s3). Bootstrapped estimate.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 22

11/22

Bootstrapping
Suppose V̂ t is our current estimate of state-values.
Say we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.

At what point of time can we update our estimate V̂ t(s2)?

With MC methods, we would wait for s>, and then update
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1M, where
M = 2+ γ · 1+ γ2 · 1+ γ3 · 2+ γ4 · 1. Monte Carlo estimate.

Instead, how about this update as soon as we see s3?
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1B, where
B = 2 + γV̂ t(s3). Bootstrapped estimate.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 22

11/22

Bootstrapping
Suppose V̂ t is our current estimate of state-values.
Say we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.

At what point of time can we update our estimate V̂ t(s2)?

With MC methods, we would wait for s>, and then update
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1M, where
M = 2+ γ · 1+ γ2 · 1+ γ3 · 2+ γ4 · 1. Monte Carlo estimate.

Instead, how about this update as soon as we see s3?
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1B, where
B = 2 + γV̂ t(s3). Bootstrapped estimate.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 22

11/22

Bootstrapping
Suppose V̂ t is our current estimate of state-values.
Say we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.

At what point of time can we update our estimate V̂ t(s2)?

With MC methods, we would wait for s>, and then update
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1M, where
M = 2+ γ · 1+ γ2 · 1+ γ3 · 2+ γ4 · 1.

Monte Carlo estimate.

Instead, how about this update as soon as we see s3?
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1B, where
B = 2 + γV̂ t(s3). Bootstrapped estimate.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 22

11/22

Bootstrapping
Suppose V̂ t is our current estimate of state-values.
Say we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.

At what point of time can we update our estimate V̂ t(s2)?

With MC methods, we would wait for s>, and then update
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1M, where
M = 2+ γ · 1+ γ2 · 1+ γ3 · 2+ γ4 · 1.

Monte Carlo estimate.

Instead, how about this update as soon as we see s3?
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1B, where
B = 2 + γV̂ t(s3).

Bootstrapped estimate.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 22

11/22

Bootstrapping
Suppose V̂ t is our current estimate of state-values.
Say we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.

At what point of time can we update our estimate V̂ t(s2)?

With MC methods, we would wait for s>, and then update
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1M, where
M = 2+ γ · 1+ γ2 · 1+ γ3 · 2+ γ4 · 1. Monte Carlo estimate.

Instead, how about this update as soon as we see s3?
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1B, where
B = 2 + γV̂ t(s3). Bootstrapped estimate.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 22

12/22

Temporal Difference Learning: TD(0)
Assume policy to be evaluated is π.
Initialise V̂ 0 arbitrarily.
Assume that the agent is born in state s0.

For t = 0,1,2, . . . :
Take action at ∼ π(st).
Obtain reward r t , next state st+1.
V̂ t+1(st)← V̂ t(st) + αt+1{r t + γV̂ t(st+1)− V̂ t(st)}.
For s ∈ S\{st}: V̂ t+1(s)← V̂ t(s). //Often left implicit.

V̂ t(st): current estimate; r t + γV̂ t(st+1): new estimate.
r t + γV̂ t(st+1)− V̂ t(st): temporal difference prediction error.
αt+1: learning rate.
Under standard conditions, limt→∞ V̂ t = V π.
In episodic tasks, keep V̂ t(s>) fixed at 0 (no updating).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 22

12/22

Temporal Difference Learning: TD(0)
Assume policy to be evaluated is π.
Initialise V̂ 0 arbitrarily.
Assume that the agent is born in state s0.

For t = 0,1,2, . . . :
Take action at ∼ π(st).
Obtain reward r t , next state st+1.
V̂ t+1(st)← V̂ t(st) + αt+1{r t + γV̂ t(st+1)− V̂ t(st)}.
For s ∈ S\{st}: V̂ t+1(s)← V̂ t(s). //Often left implicit.

V̂ t(st): current estimate; r t + γV̂ t(st+1): new estimate.
r t + γV̂ t(st+1)− V̂ t(st): temporal difference prediction error.
αt+1: learning rate.

Under standard conditions, limt→∞ V̂ t = V π.
In episodic tasks, keep V̂ t(s>) fixed at 0 (no updating).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 22

12/22

Temporal Difference Learning: TD(0)
Assume policy to be evaluated is π.
Initialise V̂ 0 arbitrarily.
Assume that the agent is born in state s0.

For t = 0,1,2, . . . :
Take action at ∼ π(st).
Obtain reward r t , next state st+1.
V̂ t+1(st)← V̂ t(st) + αt+1{r t + γV̂ t(st+1)− V̂ t(st)}.
For s ∈ S\{st}: V̂ t+1(s)← V̂ t(s). //Often left implicit.

V̂ t(st): current estimate; r t + γV̂ t(st+1): new estimate.
r t + γV̂ t(st+1)− V̂ t(st): temporal difference prediction error.
αt+1: learning rate.
Under standard conditions, limt→∞ V̂ t = V π.

In episodic tasks, keep V̂ t(s>) fixed at 0 (no updating).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 22

12/22

Temporal Difference Learning: TD(0)
Assume policy to be evaluated is π.
Initialise V̂ 0 arbitrarily.
Assume that the agent is born in state s0.

For t = 0,1,2, . . . :
Take action at ∼ π(st).
Obtain reward r t , next state st+1.
V̂ t+1(st)← V̂ t(st) + αt+1{r t + γV̂ t(st+1)− V̂ t(st)}.
For s ∈ S\{st}: V̂ t+1(s)← V̂ t(s). //Often left implicit.

V̂ t(st): current estimate; r t + γV̂ t(st+1): new estimate.
r t + γV̂ t(st+1)− V̂ t(st): temporal difference prediction error.
αt+1: learning rate.
Under standard conditions, limt→∞ V̂ t = V π.
In episodic tasks, keep V̂ t(s>) fixed at 0 (no updating).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 22

13/22

Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 22

14/22

First-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Recall that for s ∈ S,

V̂ T
First-visit(s) =

∑T
i=1 G(s, i ,1)∑T
i=1 1(s, i ,1)

.

For s ∈ S, V : S → R, define

ErrorFirst(V , s)
def
=

T∑
i=1

1(s, i ,1) (V (s)−G(s, i ,1))2 .

Observe that for s ∈ S, V̂ T
First-visit(s) = argminV ErrorFirst(V , s).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14 / 22

14/22

First-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Recall that for s ∈ S,

V̂ T
First-visit(s) =

∑T
i=1 G(s, i ,1)∑T
i=1 1(s, i ,1)

.

For s ∈ S, V : S → R, define

ErrorFirst(V , s)
def
=

T∑
i=1

1(s, i ,1) (V (s)−G(s, i ,1))2 .

Observe that for s ∈ S, V̂ T
First-visit(s) = argminV ErrorFirst(V , s).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14 / 22

14/22

First-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Recall that for s ∈ S,

V̂ T
First-visit(s) =

∑T
i=1 G(s, i ,1)∑T
i=1 1(s, i ,1)

.

For s ∈ S, V : S → R, define

ErrorFirst(V , s)
def
=

T∑
i=1

1(s, i ,1) (V (s)−G(s, i ,1))2 .

Observe that for s ∈ S, V̂ T
First-visit(s) = argminV ErrorFirst(V , s).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14 / 22

15/22

Every-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Recall that for s ∈ S,

V̂ T
Every-visit(s) =

∑T
i=1

∑∞
j=1 G(s, i , j)∑T

i=1

∑∞
j=1 1(s, i , j)

.

For s ∈ S, V : S → R, define

ErrorEvery(V , s)
def
=

T∑
i=1

∞∑
j=1

1(s, i , j) (V (s)−G(s, i , j))2 .

Observe for s ∈ S, V̂ T
Every-visit(s) = argminV ErrorEvery(V , s).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15 / 22

15/22

Every-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Recall that for s ∈ S,

V̂ T
Every-visit(s) =

∑T
i=1

∑∞
j=1 G(s, i , j)∑T

i=1

∑∞
j=1 1(s, i , j)

.

For s ∈ S, V : S → R, define

ErrorEvery(V , s)
def
=

T∑
i=1

∞∑
j=1

1(s, i , j) (V (s)−G(s, i , j))2 .

Observe for s ∈ S, V̂ T
Every-visit(s) = argminV ErrorEvery(V , s).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15 / 22

15/22

Every-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Recall that for s ∈ S,

V̂ T
Every-visit(s) =

∑T
i=1

∑∞
j=1 G(s, i , j)∑T

i=1

∑∞
j=1 1(s, i , j)

.

For s ∈ S, V : S → R, define

ErrorEvery(V , s)
def
=

T∑
i=1

∞∑
j=1

1(s, i , j) (V (s)−G(s, i , j))2 .

Observe for s ∈ S, V̂ T
Every-visit(s) = argminV ErrorEvery(V , s).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15 / 22

16/22

Batch TD(0) Estimate

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

After any finite T episodes, the estimate of TD(0) will
depend on the initial estimate V 0.
To “forget” V 0, run the T collected episodes over and over
again, and make TD(0) updates.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16 / 22

16/22

Batch TD(0) Estimate

Episode 1
Episode 2
Episode 3
Episode 4
Episode 5
Episode 6 (= Episode 1)
Episode 7 (= Episode 2)
Episode 8 (= Episode 3)
Episode 9 (= Episode 4)
Episode 10 (= Episode 5)
Episode 11 (= Episode 1)
Episode 12 (= Episode 2)
...

Anneal the learning rate
as usual (αt =

1
t).

limt→∞ V t will not depend
on V̂ 0.

It only depends on T
episodes of real data.

Refer to limt→∞ V̂ t as
V̂ T

Batch-TD(0).

Can we conclude
something relevant about
V̂ T

Batch-TD(0)?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16 / 22

17/22

Batch TD(0) Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

s s1 2

s

s 3

2/6, 5 2/7, 3 2/4, 1

2/6, 2 1/7, 2

2/7, 2 1/4, 2

2/6, 1

2/7, 1

1/4, 1

Let MMLE be the MDP
(S,A, T̂ , R̂, γ) with the
highest likelihood of
generating this data (true
T , R unknown).

V̂ T
Batch-TD(0) is the same as

V π on MMLE !

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17 / 22

17/22

Batch TD(0) Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

s s1 2

s

s 3

2/6, 5 2/7, 3 2/4, 1

2/6, 2 1/7, 2

2/7, 2 1/4, 2

2/6, 1

2/7, 1

1/4, 1

Let MMLE be the MDP
(S,A, T̂ , R̂, γ) with the
highest likelihood of
generating this data (true
T , R unknown).

V̂ T
Batch-TD(0) is the same as

V π on MMLE !

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17 / 22

18/22

Comparison
Data.

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Estimates.
s1 s2 s3

V̂ T
First-visit 7.33 6.25 3

V̂ T
Every-visit 5.83 4.29 3.25

V̂ T
Batch-TD(0) 7.5 7 6

Which estimate is “correct”? Which is more useful?
Is it recommended to bootstrap or not?
Usually a “middle path” works best. Coming up next week!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 18 / 22

18/22

Comparison
Data.

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Estimates.
s1 s2 s3

V̂ T
First-visit 7.33 6.25 3

V̂ T
Every-visit 5.83 4.29 3.25

V̂ T
Batch-TD(0) 7.5 7 6

Which estimate is “correct”? Which is more useful?
Is it recommended to bootstrap or not?

Usually a “middle path” works best. Coming up next week!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 18 / 22

18/22

Comparison
Data.

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,2, s1,1, s>.

Estimates.
s1 s2 s3

V̂ T
First-visit 7.33 6.25 3

V̂ T
Every-visit 5.83 4.29 3.25

V̂ T
Batch-TD(0) 7.5 7 6

Which estimate is “correct”? Which is more useful?
Is it recommended to bootstrap or not?
Usually a “middle path” works best. Coming up next week!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 18 / 22

19/22

Reinforcement Learning

1. Least-squares and Maximum likelihood estimators

2. On-line implementation of First-visit MC

3. TD(0) algorithm

4. Convergence of Batch TD(0)

5. Control with TD learning

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19 / 22

20/22

Sketch
1. Maintain action value function estimate Q̂t : S × A→ R for

t ≥ 0, initialised arbitrarily.
We would like to get Q̂t to converge to Q?.

2. Follow policy πt at time step t ≥ 0, for example one that is
εt -greedy with respect to Q̂t .
Set εt to ensure infinite exploration of every state-action pair
and also being greedy in the limit.

3. Every transition (st ,at , r t , st+1) conveys information about
the underlying MDP. Update Q̂t based on the transition.
Can use TD learning (suitably adapted) to make the update.
We see three different update rules.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 22

20/22

Sketch
1. Maintain action value function estimate Q̂t : S × A→ R for

t ≥ 0, initialised arbitrarily.
We would like to get Q̂t to converge to Q?.

2. Follow policy πt at time step t ≥ 0, for example one that is
εt -greedy with respect to Q̂t .
Set εt to ensure infinite exploration of every state-action pair
and also being greedy in the limit.

3. Every transition (st ,at , r t , st+1) conveys information about
the underlying MDP. Update Q̂t based on the transition.
Can use TD learning (suitably adapted) to make the update.
We see three different update rules.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 22

20/22

Sketch
1. Maintain action value function estimate Q̂t : S × A→ R for

t ≥ 0, initialised arbitrarily.
We would like to get Q̂t to converge to Q?.

2. Follow policy πt at time step t ≥ 0, for example one that is
εt -greedy with respect to Q̂t .
Set εt to ensure infinite exploration of every state-action pair
and also being greedy in the limit.

3. Every transition (st ,at , r t , st+1) conveys information about
the underlying MDP. Update Q̂t based on the transition.
Can use TD learning (suitably adapted) to make the update.

We see three different update rules.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 22

20/22

Sketch
1. Maintain action value function estimate Q̂t : S × A→ R for

t ≥ 0, initialised arbitrarily.
We would like to get Q̂t to converge to Q?.

2. Follow policy πt at time step t ≥ 0, for example one that is
εt -greedy with respect to Q̂t .
Set εt to ensure infinite exploration of every state-action pair
and also being greedy in the limit.

3. Every transition (st ,at , r t , st+1) conveys information about
the underlying MDP. Update Q̂t based on the transition.
Can use TD learning (suitably adapted) to make the update.
We see three different update rules.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 22

21/22

Three Control Algorithms
From state st , action taken is at ∼ πt(st).

Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q? for all three if πt is εt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action
pair infinitely often, then limt→∞ Q̂t is Qπ for Sarsa and
Expected Sarsa, but is Q? for Q-learning!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21 / 22

21/22

Three Control Algorithms
From state st , action taken is at ∼ πt(st).
Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q? for all three if πt is εt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action
pair infinitely often, then limt→∞ Q̂t is Qπ for Sarsa and
Expected Sarsa, but is Q? for Q-learning!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21 / 22

21/22

Three Control Algorithms
From state st , action taken is at ∼ πt(st).
Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q? for all three if πt is εt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action
pair infinitely often, then limt→∞ Q̂t is Qπ for Sarsa and
Expected Sarsa, but is Q? for Q-learning!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21 / 22

21/22

Three Control Algorithms
From state st , action taken is at ∼ πt(st).
Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q? for all three if πt is εt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action
pair infinitely often, then limt→∞ Q̂t is Qπ for Sarsa and
Expected Sarsa, but is Q? for Q-learning!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21 / 22

22/22

Temporal Difference Learning: Review

Temporal difference (TD) learning is at the heart of RL.
An instance of on-line learning (computationally cheap
updates after each interaction).
Applies to both prediction and control.
Q-learning, Sarsa, Expected Sarsa are all model-free (use
θ(|S||A|)-sized memory); can still be optimal in the limit.
Bootstrapping exploits the underlying Markovian structure,
which Monte Carlo methods ignore.
The TD(λ) family of algorithms, λ ∈ [0,1], allows for
controlling the extent of bootstrapping: λ = 0 implements
“full bootstrapping” and λ = 1 is “no bootstrapping.”

Coming up next week.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22 / 22

22/22

Temporal Difference Learning: Review

Temporal difference (TD) learning is at the heart of RL.
An instance of on-line learning (computationally cheap
updates after each interaction).
Applies to both prediction and control.
Q-learning, Sarsa, Expected Sarsa are all model-free (use
θ(|S||A|)-sized memory); can still be optimal in the limit.
Bootstrapping exploits the underlying Markovian structure,
which Monte Carlo methods ignore.
The TD(λ) family of algorithms, λ ∈ [0,1], allows for
controlling the extent of bootstrapping: λ = 0 implements
“full bootstrapping” and λ = 1 is “no bootstrapping.”
Coming up next week.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22 / 22

