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Multi-step Returns
For illustration consider prediction—estimating V π.

Suppose we generate this episode.
s2,2, s3,1, s3,1, s3,2, s2,1, s>.

With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2)+α{2+γ·1+γ2·1+γ3·2+γ4·1−V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.
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n-step Returns
Trajectory: s0, r 0, s1, r 1, . . . .

For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t +γr t+1+γ2r t+2+ · · ·+γn−1r t+n−1+γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is
encountered at t + n′ for 1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st)+α{Gt :t+n−V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping?
Small n means more bootstrapping.
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Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.
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The λ-return
A particular convex combination is the λ-return, λ ∈ [0,1]:

Gλ
t

def
=(1− λ)

T−t−1∑
n=1

λn−1Gt :t+n + λT−t−1Gt :T

where sT = s> (otherwise T =∞).

Observe that G0
t = Gt :t+1, yielding full bootstrapping.

Observe that G1
t = Gt :∞, a Monte Carlo estimate.

In general, λ controls the amount of bootstrapping.

If λ > 0, transition (st , r t , st+1) contributes to the update of
every previously-visited state: that is, s0, s1, s2, . . . , st .

The amount of contribution falls of geometrically.
Updating with the λ-return as target can be implemented
elegantly by keeping track of the “eligibility” of each
previous state to be updated.
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Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)
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TD(λ) algorithm
Maintains an eligibility trace z : S → R.
Implementation often called the backward view.

Initialise V : S → R arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV (s′)− V (s).
z(s)← z(s) + 1.
For all s:

V (s)← V (s) + αδz(s).
z(s)← γλz(s).

s ← s′.
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Effect of λ

Small t

Large t

10 λ

0

V  −  Vtπ

t =

8

Lower λ: more bootstrapping, more bias (less variance).
Higher λ: more dependence on empirical rewards, more
variance (less bias).
For finite t , error is usually lowest for intermediate λ value.
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Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)
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Half Field Offense

Decision-making restricted to offense player with ball.
Based on state, choose among DRIBBLE, PASS, SHOOT.
How many states are there? An infinite number!
What to do?
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Features
State s is defined by positions and velocities of players, ball.

Velocities might not be important for decision making.
Position coordinates might not generalise well.
Define features x : S → R. Idea is that states with similar
features will have similar consequences of actions, values.

x1(s): Distance to
teammate.

x2(s): Distance to nearest
opponent.

x3(s): Largest open angle
to goal.

x4(s): Distance of
teammate to goal.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 26



12/26

Features
State s is defined by positions and velocities of players, ball.
Velocities might not be important for decision making.
Position coordinates might not generalise well.

Define features x : S → R. Idea is that states with similar
features will have similar consequences of actions, values.

x1(s): Distance to
teammate.

x2(s): Distance to nearest
opponent.

x3(s): Largest open angle
to goal.

x4(s): Distance of
teammate to goal.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 26



12/26

Features
State s is defined by positions and velocities of players, ball.
Velocities might not be important for decision making.
Position coordinates might not generalise well.
Define features x : S → R. Idea is that states with similar
features will have similar consequences of actions, values.

x
1

x

x

2

3

x
4

x1(s): Distance to
teammate.

x2(s): Distance to nearest
opponent.

x3(s): Largest open angle
to goal.

x4(s): Distance of
teammate to goal.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 26



13/26

Compact Representation of Q̂
Illustration of Q̂ approximated using a neural network.
Input: (features of) state. One output for each action.
Similar states will have similar Q-values.
Can we learn weights w so that Q̂(s,a) ≈ Q?(s,a)?

x

x

x

2

1

3

,  σ

,  σ

,  σ

,  σ

,  σ
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w

INPUT HIDDEN
LAYER

x4
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,  σ

(s)

(s)

(s)

(s)

s

LAYER

1Q(s, a  )

Q(s, a  )

2
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Q(s, a  )

Might not be able to represent Q?!
Unlike supervised learning, convergence not obvious!
Even if convergent, might induce sub-optimal behaviour!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 26



13/26

Compact Representation of Q̂
Illustration of Q̂ approximated using a neural network.
Input: (features of) state. One output for each action.
Similar states will have similar Q-values.
Can we learn weights w so that Q̂(s,a) ≈ Q?(s,a)?

x

x

x

2

1

3

,  σ

,  σ

,  σ

,  σ

,  σ

,  σ

w

INPUT HIDDEN
LAYER

x4

OUTPUT
LAYER

,  σ

(s)

(s)

(s)

(s)

s

LAYER

1Q(s, a  )

Q(s, a  )

2

3

Q(s, a  )

Might not be able to represent Q?!
Unlike supervised learning, convergence not obvious!
Even if convergent, might induce sub-optimal behaviour!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 26



14/26

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)
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Prediction with a Linear Architecture
Suppose we are to evaluate π on MDP (S,A,T ,R, γ).
Say we choose to approximate V π by V̂ : for s ∈ S,

V̂ (w , s) = w · x(s), where

x : S → Rd is a d-dimensional feature vector, and
w ∈ Rd is the weight/coefficient vector.

Usually d � |S|.
Illustration with |S| = 3,d = 2. Take w = (w1,w2).

s V π(s) x1(s) x2(s) V̂ (w , s)
s1 7 2 −1 2w1 − w2

s2 2 4 0 4w1

s3 −4 2 3 2w1 + 3w2
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The Best Approximation
s V π(s) x1(s) x2(s) V̂ (w , s)
s1 7 2 −1 2w1 − w2

s2 2 4 0 4w1

s3 −4 2 3 2w1 + 3w2

Observe that for all w ∈ R2, V̂ (w , s2) =
3V̂ (w ,s1)+V̂ (w ,s3)

2 .

In general, V̂ cannot be made equal to V π.

Which w provides the best approximation?
A common choice is

w? = argmin
w∈Rd

MSVE(w),

MSVE(w)
def
=

1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w , s)}2,

where µπ : S → [0,1] is the stationary distribution of π.
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Geometric View

V
π

w

s

s
1

s

3

2

(Scaling based on µπ not explicitly shown.)

How to find w??
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Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)
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Gradient Descent
Iteratively take steps in the w space in the direction
minimising MSVE(w).

V
π
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w

s

s
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s
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0w
w

w

w
1

2

3

Feasible here? Sort of.
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Gradient Descent
Initialise w0 ∈ Rd arbitrarily. For t ≥ 0 update as

w t+1 ← w t − αt+1∇w

(
1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}2

)
= w t + αt+1

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}∇w V̂ (w t , s).

But we don’t know µπ(s), V π(s) for all s ∈ S. We’re
learning, remember?
Luckily, stochastic gradient descent allows us to update as

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st)

since st ∼ µπ anyway (as t →∞).
But still, we don’t know V π(st)! What to do?
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Gradient Descent
Although we cannot perform update

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st),

we can do

w t+1 ← w t + αt+1{Gt :∞ − V̂ (w t , st)}∇w V̂ (w t , st),

since E[Gt :∞] = V π(st).

In practice, we also do

w t+1 ← w t + αt+1{Gλ
t − V̂ (w t , st)}∇w V̂ (w t , st),

for λ < 1, even if E[Gλ
t ] 6= V π(st) in general. For example,

Linear TD(0) performs the update

w t+1 ← w t + αt+1{r t + γw t · x(st+1)− w t · x(st)}x(st).

For λ < 1, the process is not true gradient descent. But it
still converges with linear function approximation.
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Linear TD(λ) algorithm
Maintains an eligibility trace z ∈ Rd .
Recall that V̂ (w , s) = w · x(s), hence ∇W V̂ (w , s) = x(s).

Initialise w ∈ Rd arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV̂ (w , s′)− V̂ (w , s).
z ← γλz +∇w V̂ (w , s).
w ← w + αδz.
s ← s′.

See Sutton and Barto (2018) for variations (accumulating,
replacing, and dutch traces).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22 / 26



22/26

Linear TD(λ) algorithm
Maintains an eligibility trace z ∈ Rd .
Recall that V̂ (w , s) = w · x(s), hence ∇W V̂ (w , s) = x(s).

Initialise w ∈ Rd arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV̂ (w , s′)− V̂ (w , s).
z ← γλz +∇w V̂ (w , s).
w ← w + αδz.
s ← s′.

See Sutton and Barto (2018) for variations (accumulating,
replacing, and dutch traces).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22 / 26



22/26

Linear TD(λ) algorithm
Maintains an eligibility trace z ∈ Rd .
Recall that V̂ (w , s) = w · x(s), hence ∇W V̂ (w , s) = x(s).

Initialise w ∈ Rd arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV̂ (w , s′)− V̂ (w , s).
z ← γλz +∇w V̂ (w , s).
w ← w + αδz.
s ← s′.

See Sutton and Barto (2018) for variations (accumulating,
replacing, and dutch traces).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22 / 26



23/26

Convergence of Linear TD(λ)

MSVE(w∞λ ) ≤ 1− γλ
1− γ

MSVE(w?).
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Control with Linear Function Approximation

Linear function approximation is implemented in the control
by approximating Q(s,a) ≈ w · x(s,a).

Linear Sarsa(λ) is a very popular algorithm.
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RL on Half Field Offense
Uses Linear Sarsa(0) with tile coding.
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Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement
Learning Case Study. Shivaram Kalyanakrishnan, Yaxin Liu, and Peter
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Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)
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