

CS 747, Autumn 2020: Week 10, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2020

Reinforcement Learning

1. Multi-step returns
2. $TD(\lambda)$
3. Generalisation and Function Approximation
4. Linear function approximation
5. Linear $TD(\lambda)$

Reinforcement Learning

1. Multi-step returns
2. $\text{TD}(\lambda)$
3. Generalisation and Function Approximation
4. Linear function approximation
5. Linear $\text{TD}(\lambda)$

Multi-step Returns

- For illustration consider **prediction**—estimating V^π .

Multi-step Returns

- For illustration consider **prediction**—estimating V^π .
- Suppose we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top.$$

Multi-step Returns

- For illustration consider **prediction**—estimating V^π .
- Suppose we generate this episode.

$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top$.

- With **TD(0)**, our first update would be:

$$V^{\text{new}}(s_2) \leftarrow V^{\text{old}}(s_2) + \alpha \{ 2 + \gamma V^{\text{old}}(s_3) - V^{\text{old}}(s_2) \}.$$

Multi-step Returns

- For illustration consider **prediction**—estimating V^π .
- Suppose we generate this episode.

$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top$.

- With **TD(0)**, our first update would be:

$$V^{\text{new}}(s_2) \leftarrow V^{\text{old}}(s_2) + \alpha \{ 2 + \gamma V^{\text{old}}(s_3) - V^{\text{old}}(s_2) \}.$$

- With **First-visit Monte Carlo**, our update would be

$$V^{\text{new}}(s_2) \leftarrow V^{\text{old}}(s_2) + \alpha \{ 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1 - V^{\text{old}}(s_2) \}.$$

Multi-step Returns

- For illustration consider **prediction**—estimating V^π .
- Suppose we generate this episode.

$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top$.

- With **TD(0)**, our first update would be:

$$V^{\text{new}}(s_2) \leftarrow V^{\text{old}}(s_2) + \alpha \{ 2 + \gamma V^{\text{old}}(s_3) - V^{\text{old}}(s_2) \}.$$

- With **First-visit Monte Carlo**, our update would be

$$V^{\text{new}}(s_2) \leftarrow V^{\text{old}}(s_2) + \alpha \{ 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1 - V^{\text{old}}(s_2) \}.$$

- Can we make **this update** instead?

$$V^{\text{new}}(s_2) \leftarrow V^{\text{old}}(s_2) + \alpha \{ 2 + \gamma \cdot 1 + \gamma^2 V^{\text{old}}(s_3) - V^{\text{old}}(s_2) \}.$$

Multi-step Returns

- For illustration consider **prediction**—estimating V^π .
- Suppose we generate this episode.

$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top$.

- With **TD(0)**, our first update would be:

$$V^{\text{new}}(s_2) \leftarrow V^{\text{old}}(s_2) + \alpha \{ 2 + \gamma V^{\text{old}}(s_3) - V^{\text{old}}(s_2) \}.$$

- With **First-visit Monte Carlo**, our update would be

$$V^{\text{new}}(s_2) \leftarrow V^{\text{old}}(s_2) + \alpha \{ 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1 - V^{\text{old}}(s_2) \}.$$

- Can we make **this update** instead?

$$V^{\text{new}}(s_2) \leftarrow V^{\text{old}}(s_2) + \alpha \{ 2 + \gamma \cdot 1 + \gamma^2 V^{\text{old}}(s_3) - V^{\text{old}}(s_2) \}.$$

Yes. It uses a **2-step** return as target.

n-step Returns

- Trajectory: $s^0, r^0, s^1, r^1, \dots$

n -step Returns

- Trajectory: $s^0, r^0, s^1, r^1, \dots$
- For $t \geq 0, n \geq 1$, the n -step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \dots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1}(s^{t+n}).$$

n-step Returns

- Trajectory: $s^0, r^0, s^1, r^1, \dots$
- For $t \geq 0, n \geq 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \dots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1}(s^{t+n}).$$

- Convention: on episodic tasks, if a terminal state is encountered at $t + n'$ for $1 \leq n' < n$, take $G_{t:t+n} = G_{t:t+n'}$.

n-step Returns

- Trajectory: $s^0, r^0, s^1, r^1, \dots$
- For $t \geq 0, n \geq 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \dots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1}(s^{t+n}).$$

- Convention: on episodic tasks, if a terminal state is encountered at $t + n'$ for $1 \leq n' < n$, take $G_{t:t+n} = G_{t:t+n'}$.
- *n*-step TD makes updates of the form

$$V^{t+n}(s^t) \leftarrow V^{t+n-1}(s^t) + \alpha \{ G_{t:t+n} - V^{t+n-1}(s^t) \}.$$

n-step Returns

- Trajectory: $s^0, r^0, s^1, r^1, \dots$
- For $t \geq 0, n \geq 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \dots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1}(s^{t+n}).$$

- Convention: on episodic tasks, if a terminal state is encountered at $t + n'$ for $1 \leq n' < n$, take $G_{t:t+n} = G_{t:t+n'}$.
- *n*-step TD makes updates of the form

$$V^{t+n}(s^t) \leftarrow V^{t+n-1}(s^t) + \alpha \{ G_{t:t+n} - V^{t+n-1}(s^t) \}.$$

- For each $n \geq 1$, we have $\lim_{t \rightarrow \infty} V^t = V^\pi$.

n-step Returns

- Trajectory: $s^0, r^0, s^1, r^1, \dots$
- For $t \geq 0, n \geq 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \dots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1}(s^{t+n}).$$

- Convention: on episodic tasks, if a terminal state is encountered at $t + n'$ for $1 \leq n' < n$, take $G_{t:t+n} = G_{t:t+n'}$.
- *n*-step TD makes updates of the form

$$V^{t+n}(s^t) \leftarrow V^{t+n-1}(s^t) + \alpha \{ G_{t:t+n} - V^{t+n-1}(s^t) \}.$$

- For each $n \geq 1$, we have $\lim_{t \rightarrow \infty} V^t = V^\pi$.
- What is the effect of n on bootstrapping?

n-step Returns

- Trajectory: $s^0, r^0, s^1, r^1, \dots$
- For $t \geq 0, n \geq 1$, the *n*-step return $G_{t:t+n}$ is

$$G_{t:t+n} \stackrel{\text{def}}{=} r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \dots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1}(s^{t+n}).$$

- Convention: on episodic tasks, if a terminal state is encountered at $t + n'$ for $1 \leq n' < n$, take $G_{t:t+n} = G_{t:t+n'}$.
- *n*-step TD makes updates of the form

$$V^{t+n}(s^t) \leftarrow V^{t+n-1}(s^t) + \alpha \{ G_{t:t+n} - V^{t+n-1}(s^t) \}.$$

- For each $n \geq 1$, we have $\lim_{t \rightarrow \infty} V^t = V^\pi$.
- What is the effect of n on bootstrapping?
Small n means more bootstrapping.

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$$G_{t:t+3}.$$

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$G_{t:t+3}$. Yes.

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$G_{t:t+3}$. Yes.

$G_{t:t+1}$.

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$G_{t:t+3}$. Yes.

$G_{t:t+1}$. Yes.

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$G_{t:t+3}$. Yes.

$$\frac{G_{t:t+1} + G_{t:t+2}}{2}.$$

$G_{t:t+1}$. Yes.

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$G_{t:t+3}$. Yes.

$G_{t:t+1}$. Yes.

$\frac{G_{t:t+1} + G_{t:t+2}}{2}$. Yes.

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$G_{t:t+3}$. Yes.

$\frac{G_{t:t+1} + G_{t:t+2}}{2}$. Yes.

$G_{t:t+1}$. Yes.

$\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}$.

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$G_{t:t+3}$. Yes.

$\frac{G_{t:t+1} + G_{t:t+2}}{2}$. Yes.

$G_{t:t+1}$. Yes.

$\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}$. Yes.

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$$G_{t:t+3}.$$

$$G_{t:t+1}.$$

$$\frac{G_{t:t+1} + G_{t:t+2}}{2}.$$

$$\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}.$$

$$\frac{G_{t:t+1} + G_{t:t+2} + 3G_{t:t+3}}{4}.$$

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$G_{t:t+3}$. Yes.

$\frac{G_{t:t+1} + G_{t:t+2}}{2}$. Yes.

$\frac{G_{t:t+1} + G_{t:t+2} + 3G_{t:t+3}}{4}$. No.

$G_{t:t+1}$. Yes.

$\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}$. Yes.

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$$G_{t:t+3}$$

$$G_{t:t+1}$$

$$\frac{G_{t:t+1} + G_{t:t+2}}{2}$$

$$\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}$$

$$\frac{G_{t:t+1} + G_{t:t+2} + 3G_{t:t+3}}{4}$$

$$\frac{G_{t:t+1} - 2G_{t:t+2} + 4G_{t:t+3}}{3}$$

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$$G_{t:t+3}$$

$$G_{t:t+1}$$

$$\frac{G_{t:t+1} + G_{t:t+2}}{2}$$

$$\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}$$

$$\frac{G_{t:t+1} + G_{t:t+2} + 3G_{t:t+3}}{4}$$

$$\frac{G_{t:t+1} - 2G_{t:t+2} + 4G_{t:t+3}}{3}$$

Combining Returns

- Consider updating the estimate of s^t at step $t + 3$ using

$$V^{t+3}(s^t) \leftarrow V^{t+2}(s^t) + \alpha \{\text{Target} - V^{t+2}(s^t)\}.$$

- Can we use this as our target?

$G_{t:t+3}$. Yes.

$\frac{G_{t:t+1} + G_{t:t+2}}{2}$. Yes.

$\frac{G_{t:t+1} + G_{t:t+2} + 3G_{t:t+3}}{4}$. No.

$G_{t:t+1}$. Yes.

$\frac{2G_{t:t+1} + 3G_{t:t+2} + G_{t:t+3}}{6}$. Yes.

$\frac{G_{t:t+1} - 2G_{t:t+2} + 4G_{t:t+3}}{3}$. No.

- Can use any convex combination of the applicable G 's.

The λ -return

- A particular convex combination is the λ -return, $\lambda \in [0, 1]$:

$$G_t^\lambda \stackrel{\text{def}}{=} (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_{t:T}$$

where $s^T = s_\top$ (otherwise $T = \infty$).

The λ -return

- A particular convex combination is the λ -return, $\lambda \in [0, 1]$:

$$G_t^\lambda \stackrel{\text{def}}{=} (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_{t:T}$$

where $s^T = s_\top$ (otherwise $T = \infty$).

- Observe that $G_t^0 = G_{t:t+1}$, yielding full bootstrapping.
- Observe that $G_t^1 = G_{t:\infty}$, a Monte Carlo estimate.
- In general, λ controls the amount of bootstrapping.

The λ -return

- A particular convex combination is the λ -return, $\lambda \in [0, 1]$:

$$G_t^\lambda \stackrel{\text{def}}{=} (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_{t:T}$$

where $s^T = s_\top$ (otherwise $T = \infty$).

- Observe that $G_t^0 = G_{t:t+1}$, yielding full bootstrapping.
- Observe that $G_t^1 = G_{t:\infty}$, a Monte Carlo estimate.
- In general, λ controls the amount of bootstrapping.
- If $\lambda > 0$, transition (s^t, r^t, s^{t+1}) contributes to the update of **every previously-visited state**: that is, $s^0, s^1, s^2, \dots, s^t$.
- The amount of contribution falls off geometrically.
- Updating with the λ -return as target can be implemented elegantly by keeping track of the “eligibility” of each previous state to be updated.

Reinforcement Learning

1. Multi-step returns
2. $TD(\lambda)$
3. Generalisation and Function Approximation
4. Linear function approximation
5. Linear $TD(\lambda)$

TD(λ) algorithm

- Maintains an **eligibility trace** $z : S \rightarrow \mathbb{R}$.
- Implementation often called the **backward view**.

TD(λ) algorithm

- Maintains an **eligibility trace** $z : S \rightarrow \mathbb{R}$.
- Implementation often called the **backward view**.

Initialise $V : S \rightarrow \mathbb{R}$ arbitrarily.

Repeat for each episode:

 Set $z \rightarrow \mathbf{0}$.//Eligibility trace vector.

 Assume the agent is born in state s .

 Repeat for each step of episode:

 Take action a ; obtain reward r , next state s' .

$\delta \leftarrow r + \gamma V(s') - V(s)$.

$z(s) \leftarrow z(s) + 1$.

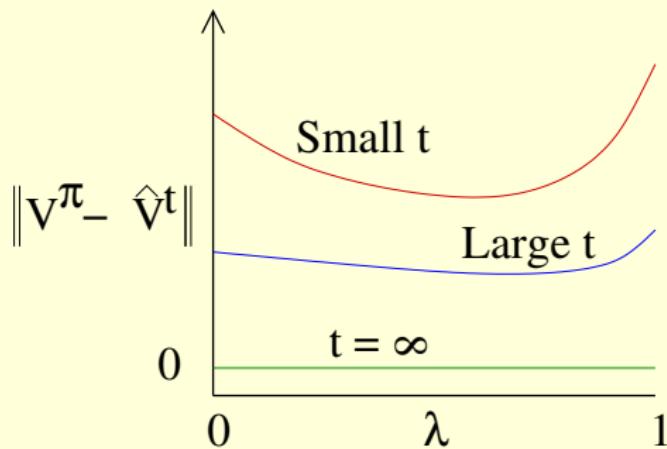
 For all s :

$V(s) \leftarrow V(s) + \alpha \delta z(s)$.

$z(s) \leftarrow \gamma \lambda z(s)$.

$s \leftarrow s'$.

Effect of λ



- Lower λ : more bootstrapping, more bias (less variance).
- Higher λ : more dependence on empirical rewards, more variance (less bias).
- For finite t , error is usually lowest for intermediate λ value.

Reinforcement Learning

1. Multi-step returns
2. $\text{TD}(\lambda)$
3. Generalisation and Function Approximation
4. Linear function approximation
5. Linear $\text{TD}(\lambda)$

Half Field Offense

Half Field Offense

- Decision-making restricted to offense player with ball.
- Based on state, choose among DRIBBLE, PASS, SHOOT.

Half Field Offense

- Decision-making restricted to offense player with ball.
- Based on state, choose among DRIBBLE, PASS, SHOOT.
- How many states are there?

Half Field Offense

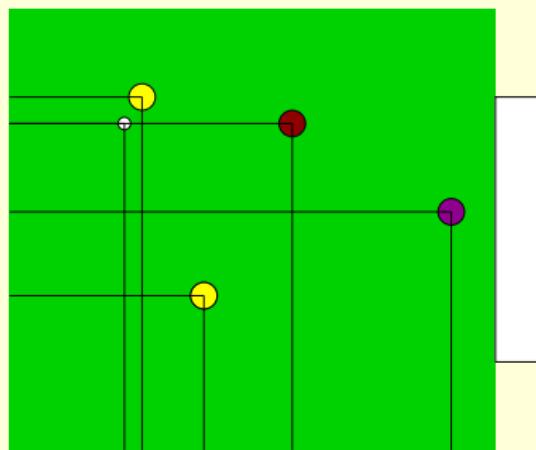
- Decision-making restricted to offense player with ball.
- Based on state, choose among DRIBBLE, PASS, SHOOT.
- How many states are there? **An infinite number!**

Half Field Offense

- Decision-making restricted to offense player with ball.
- Based on state, choose among DRIBBLE, PASS, SHOOT.
- How many states are there? **An infinite number!**
- What to do?

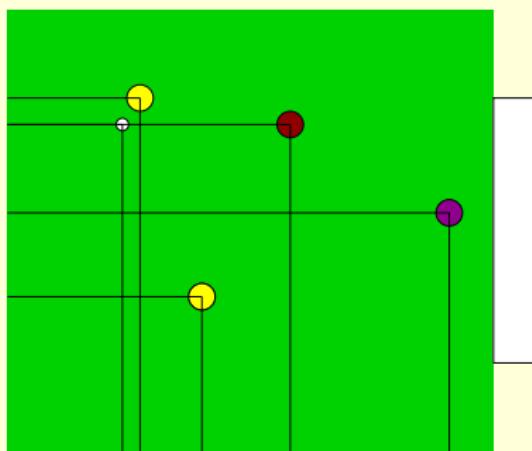
Features

- State s is defined by positions and velocities of players, ball.



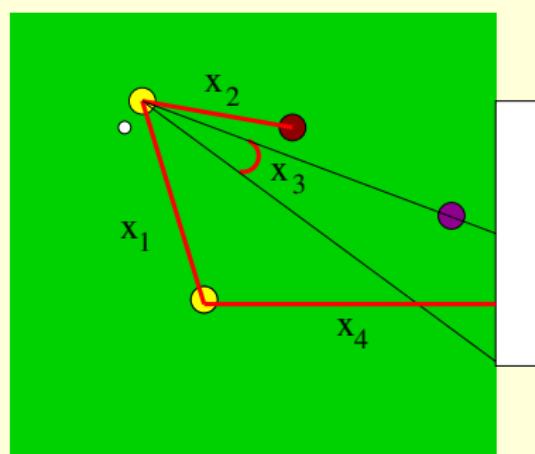
Features

- State s is defined by positions and velocities of players, ball.
- Velocities might not be important for decision making.
- Position coordinates might not **generalise** well.



Features

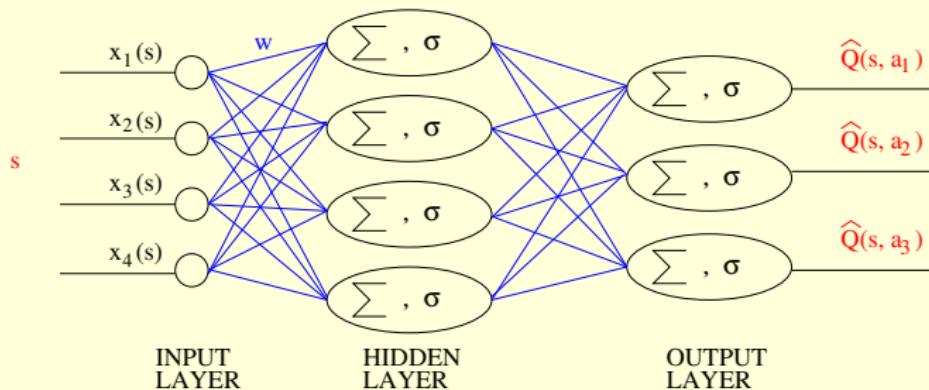
- State s is defined by positions and velocities of players, ball.
- Velocities might not be important for decision making.
- Position coordinates might not **generalise** well.
- Define **features** $x : S \rightarrow \mathbb{R}$. Idea is that states with similar features will have similar consequences of actions, values.



- $x_1(s)$: Distance to teammate.
- $x_2(s)$: Distance to nearest opponent.
- $x_3(s)$: Largest open angle to goal.
- $x_4(s)$: Distance of teammate to goal.

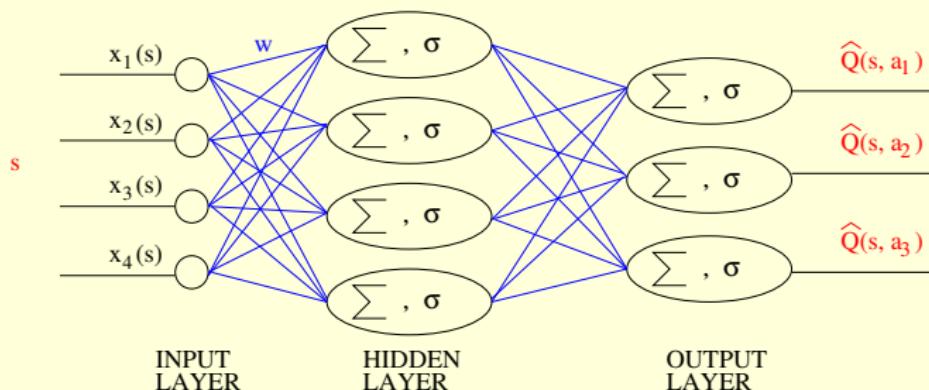
Compact Representation of \hat{Q}

- Illustration of \hat{Q} approximated using a neural network.
- Input: (features of) state. One output for each action.
- Similar states will have similar Q -values.
- Can we learn weights w so that $\hat{Q}(s, a) \approx Q^*(s, a)$?



Compact Representation of \hat{Q}

- Illustration of \hat{Q} approximated using a neural network.
- Input: (features of) state. One output for each action.
- Similar states will have similar Q -values.
- Can we learn weights w so that $\hat{Q}(s, a) \approx Q^*(s, a)$?



- Might not be able to represent Q^* !
- Unlike supervised learning, convergence not obvious!
- Even if convergent, might induce sub-optimal behaviour!

Reinforcement Learning

1. Multi-step returns
2. $TD(\lambda)$
3. Generalisation and Function Approximation
4. Linear function approximation
5. Linear $TD(\lambda)$

Prediction with a Linear Architecture

- Suppose we are to evaluate π on MDP (S, A, T, R, γ) .
- Say we choose to approximate V^π by \hat{V} : for $s \in S$,

$$\hat{V}(w, s) = w \cdot x(s), \text{ where}$$

$x : S \rightarrow \mathbb{R}^d$ is a d -dimensional feature vector, and
 $w \in \mathbb{R}^d$ is the weight/coefficients vector.

Prediction with a Linear Architecture

- Suppose we are to evaluate π on MDP (S, A, T, R, γ) .
- Say we choose to approximate V^π by \hat{V} : for $s \in S$,

$$\hat{V}(w, s) = w \cdot x(s), \text{ where}$$

$x : S \rightarrow \mathbb{R}^d$ is a d -dimensional feature vector, and
 $w \in \mathbb{R}^d$ is the weight/coefficients vector.

- Usually $d \ll |S|$.
- Illustration with $|S| = 3, d = 2$. Take $w = (w_1, w_2)$.

s	$V^\pi(s)$	$x_1(s)$	$x_2(s)$	$\hat{V}(w, s)$
s_1	7	2	-1	$2w_1 - w_2$
s_2	2	4	0	$4w_1$
s_3	-4	2	3	$2w_1 + 3w_2$

The Best Approximation

s	$V^\pi(s)$	$x_1(s)$	$x_2(s)$	$\hat{V}(w, s)$
s_1	7	2	-1	$2w_1 - w_2$
s_2	2	4	0	$4w_1$
s_3	-4	2	3	$2w_1 + 3w_2$

- Observe that for all $w \in \mathbb{R}^2$, $\hat{V}(w, s_2) = \frac{3\hat{V}(w, s_1) + \hat{V}(w, s_3)}{2}$.
- In general, \hat{V} cannot be made equal to V^π .

The Best Approximation

s	$V^\pi(s)$	$x_1(s)$	$x_2(s)$	$\hat{V}(w, s)$
s_1	7	2	-1	$2w_1 - w_2$
s_2	2	4	0	$4w_1$
s_3	-4	2	3	$2w_1 + 3w_2$

- Observe that for all $w \in \mathbb{R}^2$, $\hat{V}(w, s_2) = \frac{3\hat{V}(w, s_1) + \hat{V}(w, s_3)}{2}$.
- In general, \hat{V} cannot be made equal to V^π .
- Which w provides the **best approximation**?

The Best Approximation

s	$V^\pi(s)$	$x_1(s)$	$x_2(s)$	$\hat{V}(w, s)$
s_1	7	2	-1	$2w_1 - w_2$
s_2	2	4	0	$4w_1$
s_3	-4	2	3	$2w_1 + 3w_2$

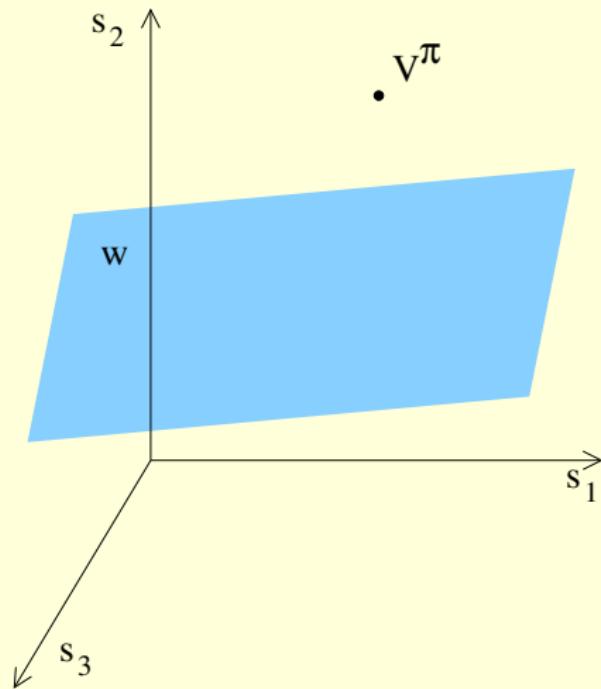
- Observe that for all $w \in \mathbb{R}^2$, $\hat{V}(w, s_2) = \frac{3\hat{V}(w, s_1) + \hat{V}(w, s_3)}{2}$.
- In general, \hat{V} cannot be made equal to V^π .
- Which w provides the **best approximation**?
- A common choice is

$$w^* = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} MSVE(w),$$

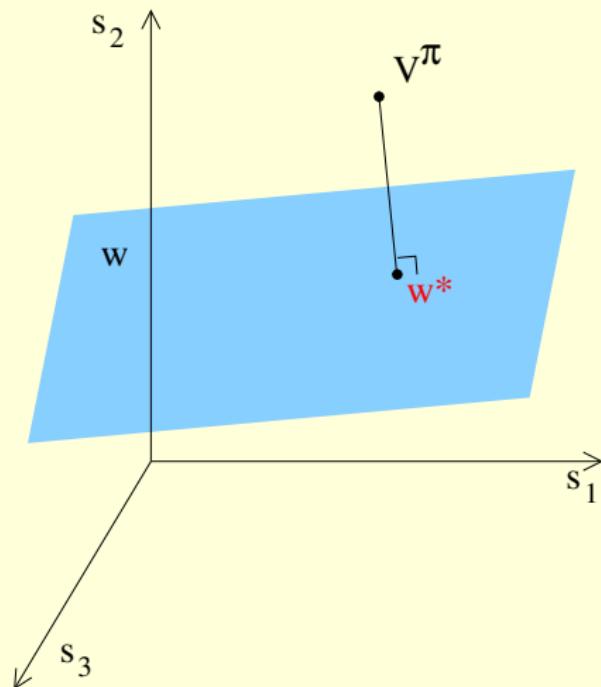
$$MSVE(w) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w, s) \}^2,$$

where $\mu^\pi : S \rightarrow [0, 1]$ is the stationary distribution of π .

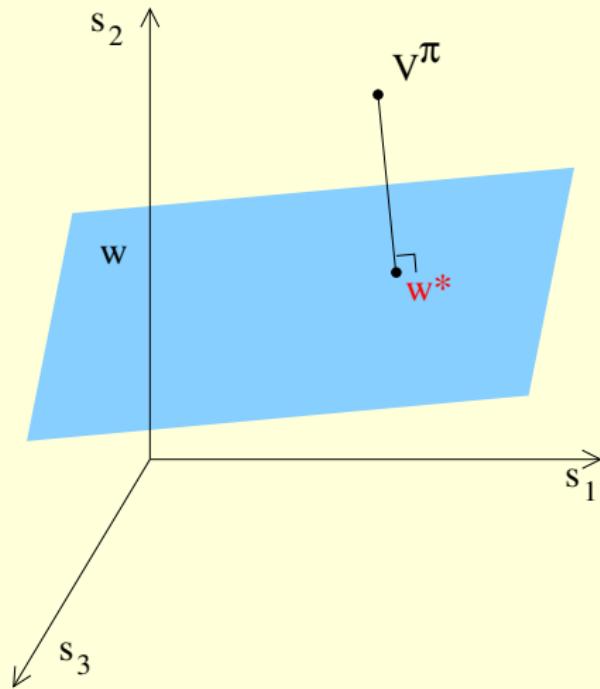
Geometric View



Geometric View

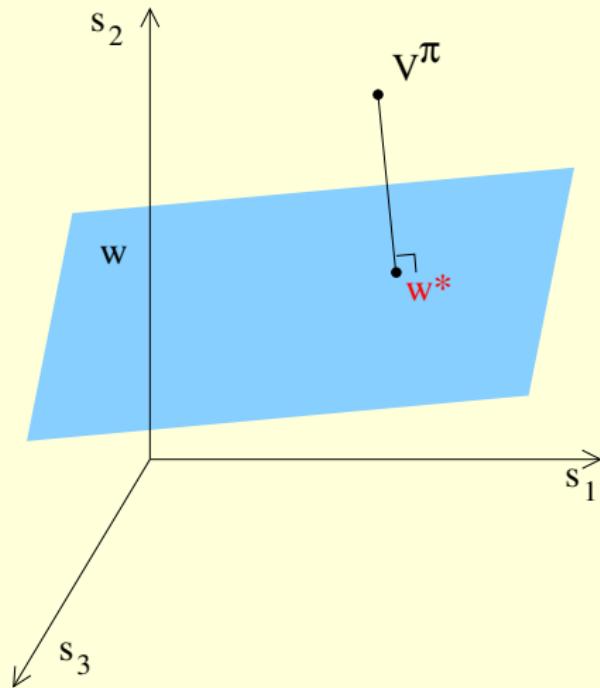


Geometric View



(Scaling based on μ^π not explicitly shown.)

Geometric View



(Scaling based on μ^π not explicitly shown.)

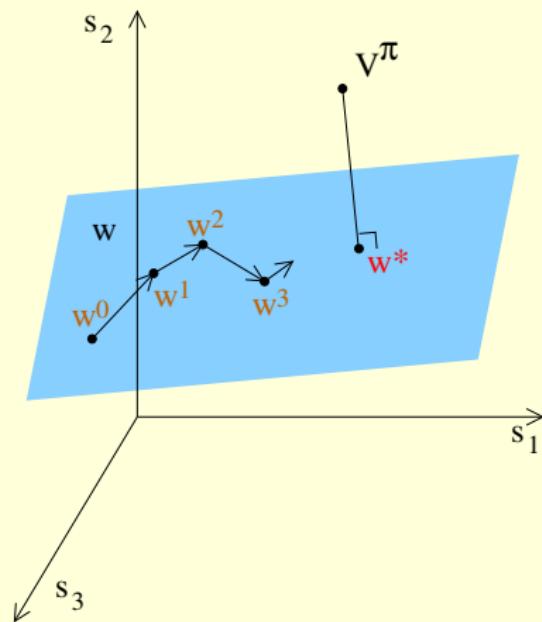
How to find w^* ?

Reinforcement Learning

1. Multi-step returns
2. $TD(\lambda)$
3. Generalisation and Function Approximation
4. Linear function approximation
5. Linear $TD(\lambda)$

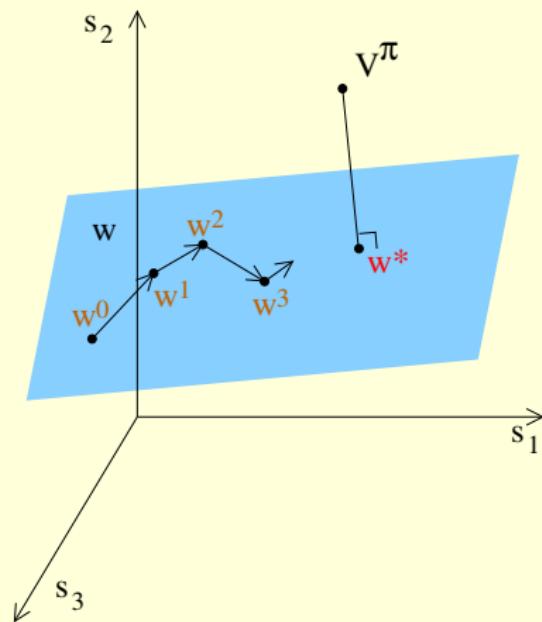
Gradient Descent

- Iteratively take steps in the w space in the direction minimising $MSVE(w)$.



Gradient Descent

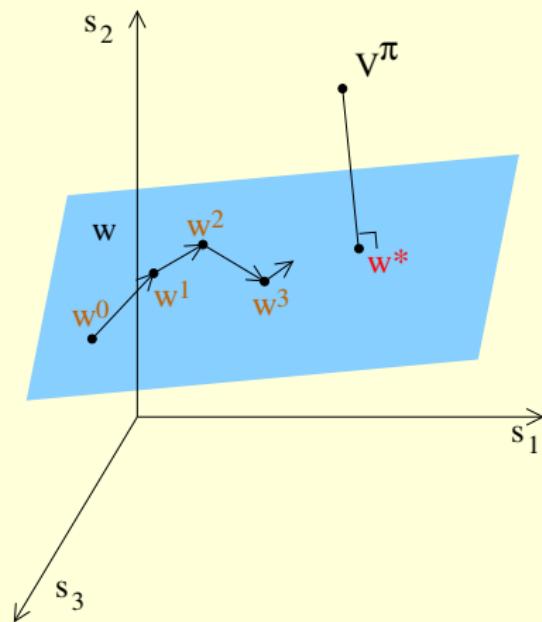
- Iteratively take steps in the w space in the direction minimising $MSVE(w)$.



- Feasible here?

Gradient Descent

- Iteratively take steps in the w space in the direction minimising $MSVE(w)$.



- Feasible here? Sort of.

Gradient Descent

- Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \geq 0$ update as

$$\begin{aligned} w^{t+1} &\leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \}^2 \right) \\ &= w^t + \alpha_{t+1} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s). \end{aligned}$$

Gradient Descent

- Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \geq 0$ update as

$$\begin{aligned} w^{t+1} &\leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \}^2 \right) \\ &= w^t + \alpha_{t+1} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s). \end{aligned}$$

- But we don't know $\mu^\pi(s)$, $V^\pi(s)$ for all $s \in S$. We're learning, remember?

Gradient Descent

- Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \geq 0$ update as

$$\begin{aligned} w^{t+1} &\leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \}^2 \right) \\ &= w^t + \alpha_{t+1} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s). \end{aligned}$$

- But we don't know $\mu^\pi(s)$, $V^\pi(s)$ for all $s \in S$. We're learning, remember?
- Luckily, stochastic gradient descent allows us to update as

$$w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ V^\pi(s^t) - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t)$$

since $s^t \sim \mu^\pi$ anyway (as $t \rightarrow \infty$).

Gradient Descent

- Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \geq 0$ update as

$$\begin{aligned} w^{t+1} &\leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \}^2 \right) \\ &= w^t + \alpha_{t+1} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s). \end{aligned}$$

- But we don't know $\mu^\pi(s)$, $V^\pi(s)$ for all $s \in S$. We're learning, remember?
- Luckily, stochastic gradient descent allows us to update as

$$w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ V^\pi(s^t) - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t)$$

since $s^t \sim \mu^\pi$ anyway (as $t \rightarrow \infty$).

- But still, we don't know $V^\pi(s^t)$! What to do?

Gradient Descent

- Although we cannot perform update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{V}^\pi(\mathbf{s}^t) - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

we can do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{G}_{t:\infty} - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

since $\mathbb{E}[\mathcal{G}_{t:\infty}] = V^\pi(\mathbf{s}^t)$.

Gradient Descent

- Although we cannot perform update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{V}^\pi(\mathbf{s}^t) - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

we can do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{G}_{t:\infty} - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

since $\mathbb{E}[\mathcal{G}_{t:\infty}] = V^\pi(\mathbf{s}^t)$.

- In practice, we also do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{G}_t^\lambda - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

for $\lambda < 1$, even if $\mathbb{E}[\mathcal{G}_t^\lambda] \neq V^\pi(\mathbf{s}^t)$ in general.

Gradient Descent

- Although we cannot perform update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{V}^\pi(\mathbf{s}^t) - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

we can do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{G}_{t:\infty} - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

since $\mathbb{E}[\mathcal{G}_{t:\infty}] = V^\pi(\mathbf{s}^t)$.

- In practice, we also do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{G}_t^\lambda - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

for $\lambda < 1$, even if $\mathbb{E}[\mathcal{G}_t^\lambda] \neq V^\pi(\mathbf{s}^t)$ in general. For example, Linear TD(0) performs the update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ r^t + \gamma \mathbf{w}^t \cdot \mathbf{x}(\mathbf{s}^{t+1}) - \mathbf{w}^t \cdot \mathbf{x}(\mathbf{s}^t) \} \mathbf{x}(\mathbf{s}^t).$$

Gradient Descent

- Although we cannot perform update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{V}^\pi(\mathbf{s}^t) - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

we can do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{G}_{t:\infty} - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

since $\mathbb{E}[\mathcal{G}_{t:\infty}] = V^\pi(\mathbf{s}^t)$.

- In practice, we also do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ \mathcal{G}_t^\lambda - \hat{V}(\mathbf{w}^t, \mathbf{s}^t) \} \nabla_{\mathbf{w}} \hat{V}(\mathbf{w}^t, \mathbf{s}^t),$$

for $\lambda < 1$, even if $\mathbb{E}[\mathcal{G}_t^\lambda] \neq V^\pi(\mathbf{s}^t)$ in general. For example, Linear TD(0) performs the update

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \alpha_{t+1} \{ r^t + \gamma \mathbf{w}^t \cdot \mathbf{x}(\mathbf{s}^{t+1}) - \mathbf{w}^t \cdot \mathbf{x}(\mathbf{s}^t) \} \mathbf{x}(\mathbf{s}^t).$$

- For $\lambda < 1$, the process is **not true gradient descent**. But it still converges with linear function approximation.

Linear TD(λ) algorithm

- Maintains an **eligibility trace** $z \in \mathbb{R}^d$.
- Recall that $\hat{V}(w, s) = w \cdot x(s)$, hence $\nabla_w \hat{V}(w, s) = x(s)$.

Linear TD(λ) algorithm

- Maintains an **eligibility trace** $z \in \mathbb{R}^d$.
- Recall that $\hat{V}(w, s) = w \cdot x(s)$, hence $\nabla_w \hat{V}(w, s) = x(s)$.

Initialise $w \in \mathbb{R}^d$ arbitrarily.

Repeat for each episode:

 Set $z \rightarrow \mathbf{0}$ // Eligibility trace vector.

 Assume the agent is born in state s .

 Repeat for each step of episode:

 Take action a ; obtain reward r , next state s' .

$$\delta \leftarrow r + \gamma \hat{V}(w, s') - \hat{V}(w, s).$$

$$z \leftarrow \gamma \lambda z + \nabla_w \hat{V}(w, s).$$

$$w \leftarrow w + \alpha \delta z.$$

$$s \leftarrow s'.$$

Linear TD(λ) algorithm

- Maintains an **eligibility trace** $z \in \mathbb{R}^d$.
- Recall that $\hat{V}(w, s) = w \cdot x(s)$, hence $\nabla_w \hat{V}(w, s) = x(s)$.

Initialise $w \in \mathbb{R}^d$ arbitrarily.

Repeat for each episode:

 Set $z \rightarrow \mathbf{0}$ // Eligibility trace vector.

 Assume the agent is born in state s .

 Repeat for each step of episode:

 Take action a ; obtain reward r , next state s' .

$$\delta \leftarrow r + \gamma \hat{V}(w, s') - \hat{V}(w, s).$$

$$z \leftarrow \gamma \lambda z + \nabla_w \hat{V}(w, s).$$

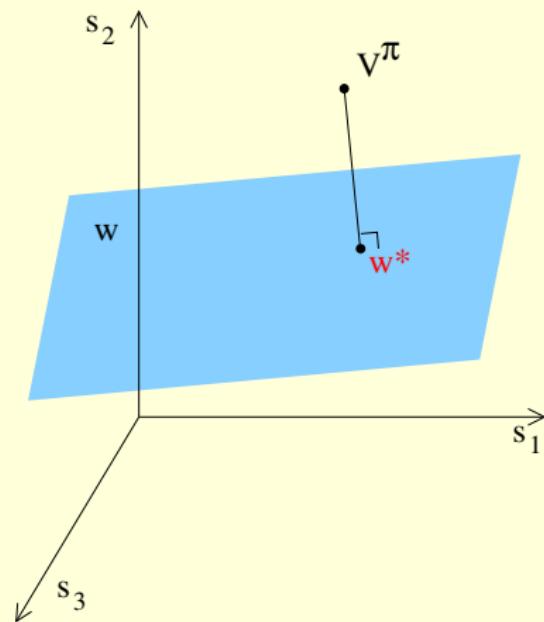
$$w \leftarrow w + \alpha \delta z.$$

$$s \leftarrow s'.$$

- See Sutton and Barto (2018) for variations (accumulating, replacing, and dutch traces).

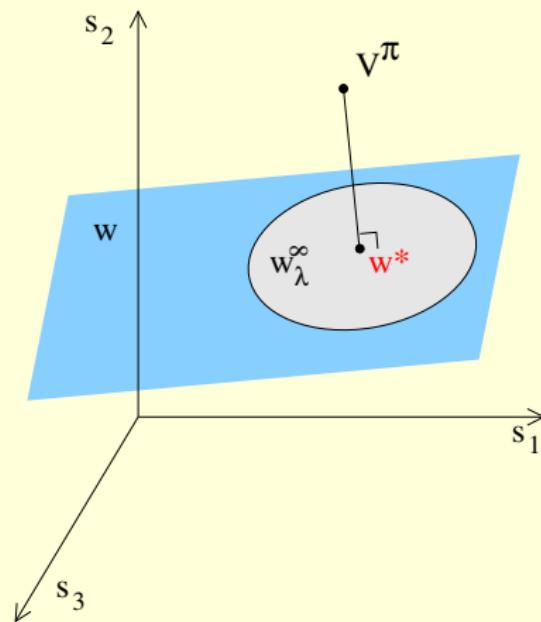
Convergence of Linear TD(λ)

$$MSVE(w_\lambda^\infty) \leq \frac{1 - \gamma\lambda}{1 - \gamma} MSVE(w^*).$$



Convergence of Linear TD(λ)

$$MSVE(w_\lambda^\infty) \leq \frac{1 - \gamma\lambda}{1 - \gamma} MSVE(w^*).$$

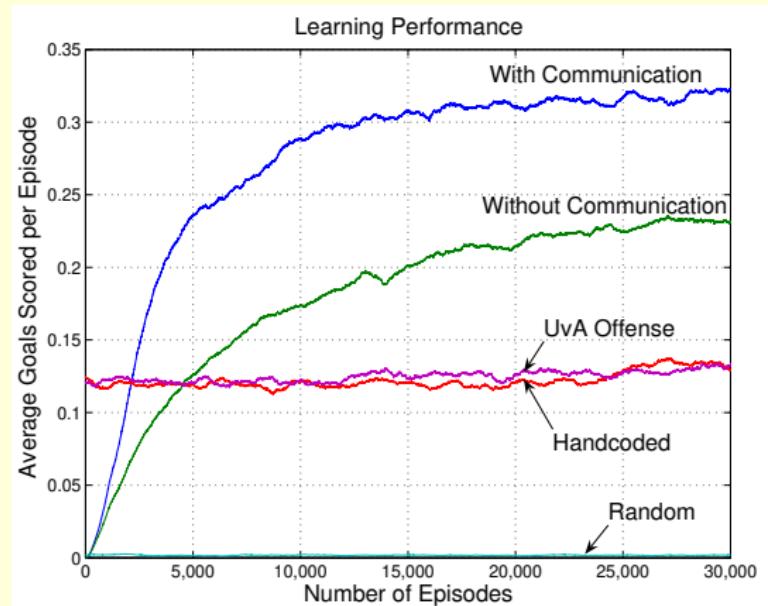


Control with Linear Function Approximation

- Linear function approximation is implemented in the control by approximating $Q(s, a) \approx w \cdot x(s, a)$.
- Linear Sarsa(λ) is a very popular algorithm.

RL on Half Field Offense

- Uses Linear Sarsa(0) with tile coding.



Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case Study. Shivaram Kalyanakrishnan, Yixin Liu, and Peter Stone. RoboCup 2006: Robot Soccer World Cup X, pp. 72–85, Springer, 2007.

Reinforcement Learning

1. Multi-step returns
2. $TD(\lambda)$
3. Generalisation and Function Approximation
4. Linear function approximation
5. Linear $TD(\lambda)$