CS 747, Autumn 2020: Week 10, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2020

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 1/26

Reinforcement Learning

—

. Multi-step returns

2. TD(\)

3. Generalisation and Function Approximation
4. Linear function approximation

5. Linear TD())

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2/26

Reinforcement Learning

—

. Multi-step returns

2. TD(\)

3. Generalisation and Function Approximation
4. Linear function approximation

5. Linear TD())

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2/26

Multi-step Returns
@ For illustration consider prediction—estimating V.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3/26

Multi-step Returns
@ For illustration consider prediction—estimating V.
@ Suppose we generate this episode.

S, 27 S3, 1 , 83, 17 S3, 27 So, 17 ST1.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3/26

Multi-step Returns
@ For illustration consider prediction—estimating V.
@ Suppose we generate this episode.

32,2, S3, 1 , S3, 1,83,2, So, 1,ST.‘

@ With TD(0), our first update would be:

VW (s,) +— VO(s) + af2 4 7 V9(s5) — VO9(sy)}.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3/26

Multi-step Returns
@ For illustration consider prediction—estimating V.
@ Suppose we generate this episode.

32,2, S3, 1 , S3, 1,83,2, So, 1,ST.‘

@ With TD(0), our first update would be:

VW (s,) +— VO(s) + af2 4 7 V9(s5) — VO9(sy)}.

@ With First-visit Monte Carlo, our update would be
V'W(55) « VO(sp)+af2+~-1+92-14~3.249%1 = VOl(s,)}.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3/26

Multi-step Returns
@ For illustration consider prediction—estimating V™.
@ Suppose we generate this episode.

‘ 827273371733717337273271781—-‘
@ With TD(0), our first update would be:

V" (55) V(s2) + a2 + 7 V9(s3) - VO¥(s2)).

@ With First-visit Monte Carlo, our update would be
V'W(55) « VO(sp)+af2+~-1+92-14~3.249%1 = VOl(s,)}.

@ Can we make this update instead?
V¥ (sp) = VO(sp) + a2+ 7 - 1 4+ 72V (s5) — VOsp)}.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3/26

Multi-step Returns
@ For illustration consider prediction—estimating V™.
@ Suppose we generate this episode.

‘ 827273371733717337273271781—-‘
@ With TD(0), our first update would be:

V" (55) V(s2) + a2 + 7 V9(s3) - VO¥(s2)).

@ With First-visit Monte Carlo, our update would be
V'W(55) « VO(sp)+af2+~-1+92-14~3.249%1 = VOl(s,)}.

@ Can we make this update instead?
V¥(sp) = VO(8p) + {2 + 7 - 1 + 72V (s3) — Vo(s2)}.

Yes. It uses a 2-step return as target.
3/26

n-step Returns
@ Trajectory: s, r% s' . r'

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

n-step Returns
@ Trajectory: s, r% s' . r'
@ Fort>0,n> 1, the n-step return Gy.;,, is

Gt:t+n def ft+’yft+1 +’y2ft+2 N +,7n—1 -1 _'_,yn V-1 (St+n)'

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4/26

n-step Returns
@ Trajectory: s, r% s' . r'
@ Fort>0,n> 1, the n-step return Gy.;,, is

Gt.t1n = rt+7ft+1 +72rt+2 I _|_7”—1 -1 +A" yin—1 (St+n)'

@ Convention: on episodic tasks, if a terminal state is
encountered at t + ' for 1 < r’ < n, take Gyt n = Grrin-

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4/26

n-step Returns
@ Trajectory: s, r% s' . r'
@ Fort>0,n> 1, the n-step return Gy.;,, is

Gt:t+n = rt-|—ﬁ/l't+1 +72rt+2 4. _|_,7’7—1 rt+n—1 +,yn Vt+n—1 (St+n)'

@ Convention: on episodic tasks, if a terminal state is
encountered at t + ' for 1 < r’ < n, take Gyt n = Grrin-

@ n-step TD makes updates of the form

Vt—l—n(st) — Vt+n—1 (St)+a{Gt;t+n— Vt+n—1 (St)}.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4/26

n-step Returns
@ Trajectory: s, r% s' . r'
@ Fort>0,n> 1, the n-step return Gy.;,, is

Gt:t+n = rt-|—ﬁ/l't+1 +72rt+2 4. _|_,7’7—1 rt+n—1 +,yn Vt+n—1 (St+n)'

@ Convention: on episodic tasks, if a terminal state is
encountered at t + ' for 1 < r’ < n, take Gyt n = Grrin-

@ n-step TD makes updates of the form

Vt—l—n(st) — Vt+n—1 (St)+(1{Gt;t+n— Vt+n—1 (St)}.

@ Foreach n> 1, we have lim;_., V! = V7.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4/26

n-step Returns
@ Trajectory: s, r% s' . r'
@ Fort>0,n> 1, the n-step return Gy.;,, is

Gt:t+n d:ef rt+7ft+1 +72rt+2 4. _|_7’7—1 rt+n—1 +,yn Vt+n—1 (St+n)'

@ Convention: on episodic tasks, if a terminal state is
encountered at t + ' for 1 < r’ < n, take Gyt n = Grrin-

@ n-step TD makes updates of the form

Vt+n(St) — Vt+n—1 (St)+a{Gt:t+n_ Vt+n—1 (St)}.

@ Foreach n> 1, we have lim;_., V! = V7.
@ What is the effect of n on bootstrapping?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4/26

n-step Returns
@ Trajectory: s, r% s' . r'
@ Fort>0,n> 1, the n-step return Gy.;,, is

Gt:t+n dZEf rt+7ft+1 +72rt+2 4. _|_7’7—1 rt+n—1 +,yn Vt+n—1 (SH'”).

@ Convention: on episodic tasks, if a terminal state is
encountered at t + ' for 1 < r’ < n, take Gyt n = Grrin-

@ n-step TD makes updates of the form

VH—n(St) — Vt+n—1 (St)+a{Gt:t+n_ Vt+n—1 (St)}.

@ Foreach n> 1, we have lim;_., V! = V7.
@ What is the effect of n on bootstrapping?
Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

GI:H-S-

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt;H_g. Yes.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt.ty3. Yes. Grti1-

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.
Grt+1 + Griyo

2

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.

Gi.111 + G
t:t+1 t.t+2. Yes.

2

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.
Gr.t11 + Grise2 v 2Gtt+1 + 3Grti2 + Grirs
> . Yes. 5 .

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.
G141 —2F Gt:t+2. Yes. 2Gri11 + SGGt:tJrZ + Gt:t+3‘ Yes.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt:H—S- Yes. Gt:t+1 . Yes.
Gr.t+1 —2F Gt:t+2. Yes. 2Gt.t1 + SGGt:tJrZ + Gt:t+3‘ Yes.
Gt.t41 + Gripe + 3Gy

2 .

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.
Gr.t+1 —2F Gt:t+2. Yes. 2Gt.t1 + SGGt:tJrZ + Gt:t+3‘ Yes.
Grt1 + Gz:;jz + 3Gt:t+3. No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt:H—S- Yes. Gt:t+1 . Yes.
Gt.t+1 —2F Gt:t+2. Yes. 2Gt.141 + SGGt:tJrZ + Gt:t+3‘ Yes.
Gt.t+1 + Grtr2 + 3Griss N Grtr1 — 2Grii2 +4Griis

4 . INO. 3 .

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt:H—S- Yes. Gt:t+1 . Yes.
Gr.t41 —2F Gt:t+2. Yes. 2Gp11 + SGGt:tJrZ &= Gt:t+3‘ Yes.
Grt1 + Gz:;jz + SGt:H-S. No. Gt — 26t:3:+2 + 4Gt:t+3. No.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

Combining Returns

@ Consider updating the estimate of s at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V*2(s)}.

@ Can we use this as our target?

Gt:H—S- Yes. Gt:t+1 . Yes.
G141 —; Gt:t+2. Ve, 2Gri11 + 366t:t+2 + Gt:t+3' Yes.
Gr.t+1 + Gz::rz + 3Gt:t+3. No. Gri41 — 2Gt‘\:’;rz + 4Gt:t+3. No.

@ Can use any convex combination of the applicable G's.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/26

The \-return

@ A particular convex combination is the A-return, A € [0, 1]:
T—t-1

G E(1=X) Y N 'Grpn+ AT Ger
n=1

where s” = st (otherwise T = o).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6/26

The A-return
@ A particular convex combination is the A-return, A € [0, 1]:
T—t—1
Gi\ g(‘l =)\) Z)\n71 Gt:t+n +)\T7t71 C-;t‘:T
n=1
where s” = st (otherwise T = o).
@ Observe that G? = Gy, +, yielding full bootstrapping.
@ Observe that G} = G..., a Monte Carlo estimate.
@ In general, A controls the amount of bootstrapping.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6/26

The A-return
@ A particular convex combination is the A-return, A € [0, 1]:
T—t—1
Gi\ d:m(1 -)\) Z)\n71 Gl‘:l‘Jrn +)\T7t71 Gt:T
n=1
where s” = st (otherwise T = o).
@ Observe that G? = Gy, +, yielding full bootstrapping.
@ Observe that G} = G..., a Monte Carlo estimate.
@ In general, A controls the amount of bootstrapping.

@ If A > 0, transition (s!, r!, s'*) contributes to the update of
every previously-visited state: that is, s°, s', s2,..., s.

@ The amount of contribution falls of geometrically.

@ Updating with the A-return as target can be implemented
elegantly by keeping track of the “eligibility” of each
previous state to be updated.

Shivaram Kalyanakrishnan (2020) 6/26

Reinforcement Learning

—

. Multi-step returns

2. TD())

3. Generalisation and Function Approximation
4. Linear function approximation

5. Linear TD())

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7126

TD(\) algorithm
@ Maintains an eligibility trace z: S — R.
@ Implementation often called the backward view.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8/26

TD(\) algorithm
@ Maintains an eligibility trace z: S — R.
@ Implementation often called the backward view.

Initialise V : S — R arbitrarily.
Repeat for each episode:
Set z — 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:
Take action a; obtain reward r, next state s'.
d—r+~V(s)— V(s).
z(s) < z(s) + 1.
For all s:
V(s) + V(s)+ adz(s).
Z(8) < v z(s).
S« §.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8/26

Effect of \

W

T

V|
0 t=o0

0 A 1

@ Lower \: more bootstrapping, more bias (less variance).

@ Higher A\: more dependence on empirical rewards, more
variance (less bias).

@ For finite t, error is usually lowest for intermediate A value.
9/26

Reinforcement Learning

—

. Multi-step returns

2. TD(\)

3. Generalisation and Function Approximation
4. Linear function approximation

5. Linear TD())

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10/26

Half Field Offense

Offense 0 0 Defense

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11/26

Half Field Offense

Offense 0 0 Defense

@ Decision-making restricted to offense player with ball.
@ Based on state, choose among DRIBBLE, PASS, SHOOT.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11/26

Half Field Offense

Offense 0 0 Defense

@ Decision-making restricted to offense player with ball.
@ Based on state, choose among DRIBBLE, PASS, SHOOT.
@ How many states are there?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11/26

Half Field Offense

Offense 0 0 Defense

@ Decision-making restricted to offense player with ball.
@ Based on state, choose among DRIBBLE, PASS, SHOOT.
@ How many states are there? An infinite number!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11/26

Half Field Offense

Offense 0 0 Defense

@ Decision-making restricted to offense player with ball.
@ Based on state, choose among DRIBBLE, PASS, SHOOT.
@ How many states are there? An infinite number!
@ What to do?
11/26

Features
@ State s is defined by positions and velocities of players, ball.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

Features
@ State s is defined by positions and velocities of players, ball.
@ Velocities might not be important for decision making.
@ Position coordinates might not generalise well.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

Features
@ State s is defined by positions and velocities of players, ball.
@ Velocities might not be important for decision making.
@ Position coordinates might not generalise well.

@ Define features x : S — R. |dea is that states with similar
features will have similar consequences of actions, values.

@ xi(s): Distance to
teammate.

@ x»(s): Distance to nearest
opponent.

@ Xx3(s): Largest open angle
to goal.

@ x4(s): Distance of
teammate to goal.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12/26

Compact Representation of Q
@ lllustration of Q approximated using a neural network.
@ Input: (features of) state. One output for each action.
@ Similar states will have similar Q-values.
@ Can we learn weights w so that Q(s, a) ~ Q*(s, a)?

6(&, a)

6(& ay)

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13/26

Compact Representation of Q
@ lllustration of Q approximated using a neural network.
@ Input: (features of) state. One output for each action.
@ Similar states will have similar Q-values.
@ Can we learn weights w so that Q(s, a) ~ Q*(s, a)?

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

@ Might not be able to represent Q*!
@ Unlike supervised learning, convergence not obvious!
@ Even if convergent, might induce sub-optimal behaviour!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13/26

Reinforcement Learning

—

. Multi-step returns

2. TD(\)

3. Generalisation and Function Approximation
4. Linear function approximation

5. Linear TD())

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14/26

Prediction with a Linear Architecture

@ Suppose we are to evaluate m on MDP (S, A, T, R, 7).
@ Say we choose to approximate V= by V/: for s € S,

A

V(w,s) =w- x(s), where

x : S — R%is a d-dimensional feature vector, and
w € RY is the weight/coefficient vector.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15/26

Prediction with a Linear Architecture

@ Suppose we are to evaluate m on MDP (S, A, T, R, 7).
@ Say we choose to approximate V= by V/: for s € S,

x : S — R%is a d-dimensional feature vector, and

A

V(w,s) =w- x(s), where

w € RY is the weight/coefficient vector.
@ Usually d < |S|.

@ lllustration with |S| = 3,d = 2. Take w = (w;, Ws).

s | V7(s) | xi(s) | x2(s) | V(w,s)
Sq 7 2 —1 2wy — W
So 2 4 0 4w,

S3 —4 2 3 2wq + 3w,

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

15/26

The Best Approximation

s | V™(s) | xi(8) | x2(s) | V(w,5s)
Sq 7 2 —1 2wy — W
So 2 4 0 4w,

S3 -4 2 3 2wy + 3w,

@ Observe that for all w € R?, V/(w, s,) = 2V V(ws)

@ In general, V cannot be made equal to V™.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16/26

The Best Approximation

s | V™(s) | xi(8) | x2(s) | V(w,5s)
Sq 7 2 —1 2wy — W
So 2 4 0 4w,

S3 -4 2 3 2wy + 3w,

@ Observe that for all w € R?, V/(w, s,) = 2V V(ws)

@ In general, V cannot be made equal to V™.
@ Which w provides the best approximation?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16/26

The Best Approximation

s | V7(s) | xi(s) | x2(s) | V(w,s)
Sq 7 2 —1 2wy — W
So 2 4 0 4w,

S3 —4 2 3 2wy + 3w,

@ Observe that for all w € R?, V/(w, s,) = 2V V(ws)

@ In general, ¥ cannot be made equal to V.
@ Which w provides the best approximation?
@ A common choice is

w* = argmin MSVE(w),
weRd
f 1 T T \/
MSVEwW)= L 3" i (s)(V7(s) - V(w.5))2
seS

where ™ : S — [0, 1] is the stationary distribution of 7.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16/26

Geometric View

57

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

Geometric View

Eo

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

Geometric View

Eo

B

(Scaling based on p™ not explicitly shown.)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

Geometric View

Eo

B

(Scaling based on p™ not explicitly shown.)

How to find w*?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

Reinforcement Learning

—

. Multi-step returns

2. TD(\)

3. Generalisation and Function Approximation
4. Linear function approximation

5. Linear TD())

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 18/26

Gradient Descent
@ lteratively take steps in the w space in the direction
minimising MSVE (w).

2

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19/26

Gradient Descent
@ lteratively take steps in the w space in the direction
minimising MSVE (w).

2

@ Feasible here?

Gradient Descent
@ lteratively take steps in the w space in the direction
minimising MSVE (w).

2

83

@ Feasible here? Sort of.
19/26

Gradient Descent
@ Initialise w® € R arbitrarily. For t > 0 update as

Wt Wt — a4V (% Zuﬂ(s){vﬂ(s) — \A/(Wf’ s)}2>

seS

=w'+a Y i (S){V(s) - V(w' s)}V, V(W' s).

seS

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20/26

Gradient Descent
@ Initialise w® € R arbitrarily. For t > 0 update as

W — wh — a1V (PNAHOIAE — V(w, s)}2>

seS

=w'+a Y i (S){V(s) - V(w' s)}V, V(W' s).

seS

@ But we don’t know u"(s), V7(s) for all s € S. We're
learning, remember?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20/26

Gradient Descent
@ Initialise w® € R arbitrarily. For t > 0 update as

W — wh — a1V < Zu V™ (s) — V(w!, S)}2>

seS

=w'+a Y i (S){V(s) - V(w' s)}V, V(W' s).

seS

@ But we don’t know u"(s), V7(s) for all s € S. We're
learning, remember?

@ Luckily, stochastic gradient descent allows us to update as
Wt — wh + a1 {V7(s) — V(w!, sV, V(w!, s!)

since s' ~ u™ anyway (as t — oo).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20/26

Gradient Descent
@ Initialise w® € R arbitrarily. For t > 0 update as

W — wh — a1V < Zu V™ (s) — V(w!, S)}2>

seS

=w'+a Y i (S){V(s) - V(w' s)}V, V(W' s).

seS

@ But we don’t know u"(s), V7(s) for all s € S. We're
learning, remember?

@ Luckily, stochastic gradient descent allows us to update as
Wt — wh + a1 {V7(s) — V(w!, sV, V(w!, s!)

since s' ~ u™ anyway (as t — oo).
@ But still, we don’t know V™ (s!)! What to do?
20/26

Gradient Descent
@ Although we cannot perform update

W — w4 g {VT(sY) — V(w!, sV, V(W) s,
we can do
Wt W+ a1 {Groo — V(W')}V, V(W S,

since E[G;.] = V™(s!).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21/26

Gradient Descent
@ Although we cannot perform update

W — w4 g {VT(sY) — V(w!, sV, V(W) s,
we can do
Wt W+ a1 {Groo — V(W')}V, V(W S,

since E[G;.] = V™(s!).
@ In practice, we also do

W — w! + a1 {G) — V(w!, sV, V(W) s!),

for A < 1, even if E[G}] # V7(s!) in general.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21/26

Gradient Descent
@ Although we cannot perform update

Wt — wh o {V7 (s = V(w!, s v, V(w!, st),
we can do
Wt W+ a1 {Groo — V(W')}V, V(W S,
since E[G.»] = V7 (s).
@ In practice, we also do
Wt — w0 1 {G) — V(w!, s}V, V(W' sh),

for A < 1, even if E[G}] # V7 (s!) in general. For example,
Linear TD(0) performs the update

W wh F g {rf+ awt - x(sTT) — wh - x(sh)}x(sh).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21/26

Gradient Descent
@ Although we cannot perform update

Wt — wh o {V7 (s = V(w!, s v, V(w!, st),
we can do
Wt W+ a1 {Groo — V(W')}V, V(W S,
since E[G.»] = V7 (s).
@ In practice, we also do
Wt — w0 1 {G) — V(w!, s}V, V(W' sh),

for A < 1, even if E[G}] # V7 (s!) in general. For example,
Linear TD(0) performs the update

W wh F g {rf+ awt - x(sTT) — wh - x(sh)}x(sh).

@ For X < 1, the process is not true gradient descent. But it
still converges with linear function approximation.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21/26

Linear TD()\) algorithm

@ Maintains an eligibility trace z € RY.
@ Recall that V(w, s) = w - x(s), hence Vi V(w, s) = x(s).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22/26

Linear TD()\) algorithm

@ Maintains an eligibility trace z € RY.
@ Recall that V(w, s) = w - x(s), hence Vy V(w, s) = x(s).

Initialise w € RY arbitrarily.
Repeat for each episode:
Set z — 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:
Take action a; obtain reward r, next state s'.
§—r+yV(w,s)— V(w,s).
Z A2+ Vi, V(w,s).
W< W+ adz.
S« §.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22/26

Linear TD(\) algorithm
@ Maintains an eligibility trace z € RY.
@ Recall that V(w, s) = w - x(s), hence Vy V(w, s) = x(s).

Initialise w € RY arbitrarily.
Repeat for each episode:
Set z — 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:
Take action a; obtain reward r, next state s'.
§—r+yV(w,s)— V(w,s).
Z YAz + VY, V(w,s).
W< W+ adz.
S« §.
@ See Sutton and Barto (2018) for variations (accumulating,
replacing, and dutch traces).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22/26

Convergence of Linear TD())

MSVE (W) < 11_ ?MSVE(W*).

S
2
VTE

By

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 23/26

Convergence of Linear TD())

MSVE (W) < 11_ ?MSVE(W*).

S
2
V‘lt

W m

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 23/26

Control with Linear Function Approximation

@ Linear function approximation is implemented in the control
by approximating Q(s, a) ~ w - x(s, a).

@ Linear Sarsa()\) is a very popular algorithm.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 24/26

RL on Half Field Offense
@ Uses Linear Sarsa(0) with tile coding.

Learning Performance
0.35 T T

With Communication

o
%)
T

o

N

o
T

Without Communication|

o
n
T

UvA Offense

¢
o

o

Handcoded

Average Goals Scored per Episode

o

=)

o
T

Random

0
0 5,000 10,000 15,000 20,000 25,000 30,000

Number of Episodes

Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement
Learning Case Study. Shivaram Kalyanakrishnan, Yaxin Liu, and Peter
Stone. RoboCup 2006: Robot Soccer World Cup X, pp. 72—85, Springer,

a¥a
Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 25/26

Reinforcement Learning

—

. Multi-step returns

2. TD(\)

3. Generalisation and Function Approximation
4. Linear function approximation

5. Linear TD())

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 26/26

