
1/26

CS 747, Autumn 2020: Week 10, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2020

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 1 / 26

2/26

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 26

2/26

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 26

3/26

Multi-step Returns
For illustration consider prediction—estimating V π.

Suppose we generate this episode.
s2,2, s3,1, s3,1, s3,2, s2,1, s>.

With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2)+α{2+γ·1+γ2·1+γ3·2+γ4·1−V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 26

3/26

Multi-step Returns
For illustration consider prediction—estimating V π.
Suppose we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.

With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2)+α{2+γ·1+γ2·1+γ3·2+γ4·1−V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 26

3/26

Multi-step Returns
For illustration consider prediction—estimating V π.
Suppose we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.
With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2)+α{2+γ·1+γ2·1+γ3·2+γ4·1−V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 26

3/26

Multi-step Returns
For illustration consider prediction—estimating V π.
Suppose we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.
With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2)+α{2+γ·1+γ2·1+γ3·2+γ4·1−V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 26

3/26

Multi-step Returns
For illustration consider prediction—estimating V π.
Suppose we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.
With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2)+α{2+γ·1+γ2·1+γ3·2+γ4·1−V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 26

3/26

Multi-step Returns
For illustration consider prediction—estimating V π.
Suppose we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s>.
With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2)+α{2+γ·1+γ2·1+γ3·2+γ4·1−V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.
Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 26

4/26

n-step Returns
Trajectory: s0, r 0, s1, r 1,

For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t +γr t+1+γ2r t+2+ · · ·+γn−1r t+n−1+γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is
encountered at t + n′ for 1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st)+α{Gt :t+n−V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping?
Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 26

4/26

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t +γr t+1+γ2r t+2+ · · ·+γn−1r t+n−1+γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is
encountered at t + n′ for 1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st)+α{Gt :t+n−V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping?
Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 26

4/26

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t +γr t+1+γ2r t+2+ · · ·+γn−1r t+n−1+γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is
encountered at t + n′ for 1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st)+α{Gt :t+n−V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping?
Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 26

4/26

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t +γr t+1+γ2r t+2+ · · ·+γn−1r t+n−1+γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is
encountered at t + n′ for 1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st)+α{Gt :t+n−V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping?
Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 26

4/26

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t +γr t+1+γ2r t+2+ · · ·+γn−1r t+n−1+γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is
encountered at t + n′ for 1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st)+α{Gt :t+n−V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.

What is the effect of n on bootstrapping?
Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 26

4/26

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t +γr t+1+γ2r t+2+ · · ·+γn−1r t+n−1+γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is
encountered at t + n′ for 1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st)+α{Gt :t+n−V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping?

Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 26

4/26

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t +γr t+1+γ2r t+2+ · · ·+γn−1r t+n−1+γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is
encountered at t + n′ for 1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st)+α{Gt :t+n−V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping?
Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3.

Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes.

Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1.

Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.

Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
.

Yes.
2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
.

Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
.

No.
Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
.

No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

5/26

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 26

6/26

The λ-return
A particular convex combination is the λ-return, λ ∈ [0,1]:

Gλ
t

def
=(1− λ)

T−t−1∑
n=1

λn−1Gt :t+n + λT−t−1Gt :T

where sT = s> (otherwise T =∞).

Observe that G0
t = Gt :t+1, yielding full bootstrapping.

Observe that G1
t = Gt :∞, a Monte Carlo estimate.

In general, λ controls the amount of bootstrapping.

If λ > 0, transition (st , r t , st+1) contributes to the update of
every previously-visited state: that is, s0, s1, s2, . . . , st .

The amount of contribution falls of geometrically.
Updating with the λ-return as target can be implemented
elegantly by keeping track of the “eligibility” of each
previous state to be updated.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6 / 26

6/26

The λ-return
A particular convex combination is the λ-return, λ ∈ [0,1]:

Gλ
t

def
=(1− λ)

T−t−1∑
n=1

λn−1Gt :t+n + λT−t−1Gt :T

where sT = s> (otherwise T =∞).
Observe that G0

t = Gt :t+1, yielding full bootstrapping.
Observe that G1

t = Gt :∞, a Monte Carlo estimate.
In general, λ controls the amount of bootstrapping.

If λ > 0, transition (st , r t , st+1) contributes to the update of
every previously-visited state: that is, s0, s1, s2, . . . , st .

The amount of contribution falls of geometrically.
Updating with the λ-return as target can be implemented
elegantly by keeping track of the “eligibility” of each
previous state to be updated.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6 / 26

6/26

The λ-return
A particular convex combination is the λ-return, λ ∈ [0,1]:

Gλ
t

def
=(1− λ)

T−t−1∑
n=1

λn−1Gt :t+n + λT−t−1Gt :T

where sT = s> (otherwise T =∞).
Observe that G0

t = Gt :t+1, yielding full bootstrapping.
Observe that G1

t = Gt :∞, a Monte Carlo estimate.
In general, λ controls the amount of bootstrapping.

If λ > 0, transition (st , r t , st+1) contributes to the update of
every previously-visited state: that is, s0, s1, s2, . . . , st .

The amount of contribution falls of geometrically.
Updating with the λ-return as target can be implemented
elegantly by keeping track of the “eligibility” of each
previous state to be updated.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6 / 26

7/26

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7 / 26

8/26

TD(λ) algorithm
Maintains an eligibility trace z : S → R.
Implementation often called the backward view.

Initialise V : S → R arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV (s′)− V (s).
z(s)← z(s) + 1.
For all s:

V (s)← V (s) + αδz(s).
z(s)← γλz(s).

s ← s′.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 26

8/26

TD(λ) algorithm
Maintains an eligibility trace z : S → R.
Implementation often called the backward view.

Initialise V : S → R arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV (s′)− V (s).
z(s)← z(s) + 1.
For all s:

V (s)← V (s) + αδz(s).
z(s)← γλz(s).

s ← s′.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 26

9/26

Effect of λ

Small t

Large t

10 λ

0

V − Vtπ

t =

8

Lower λ: more bootstrapping, more bias (less variance).
Higher λ: more dependence on empirical rewards, more
variance (less bias).
For finite t , error is usually lowest for intermediate λ value.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9 / 26

10/26

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10 / 26

11/26

Half Field Offense

Decision-making restricted to offense player with ball.
Based on state, choose among DRIBBLE, PASS, SHOOT.
How many states are there? An infinite number!
What to do?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 26

11/26

Half Field Offense

Decision-making restricted to offense player with ball.
Based on state, choose among DRIBBLE, PASS, SHOOT.

How many states are there? An infinite number!
What to do?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 26

11/26

Half Field Offense

Decision-making restricted to offense player with ball.
Based on state, choose among DRIBBLE, PASS, SHOOT.
How many states are there?

An infinite number!
What to do?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 26

11/26

Half Field Offense

Decision-making restricted to offense player with ball.
Based on state, choose among DRIBBLE, PASS, SHOOT.
How many states are there? An infinite number!

What to do?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 26

11/26

Half Field Offense

Decision-making restricted to offense player with ball.
Based on state, choose among DRIBBLE, PASS, SHOOT.
How many states are there? An infinite number!
What to do?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 26

12/26

Features
State s is defined by positions and velocities of players, ball.

Velocities might not be important for decision making.
Position coordinates might not generalise well.
Define features x : S → R. Idea is that states with similar
features will have similar consequences of actions, values.

x1(s): Distance to
teammate.

x2(s): Distance to nearest
opponent.

x3(s): Largest open angle
to goal.

x4(s): Distance of
teammate to goal.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 26

12/26

Features
State s is defined by positions and velocities of players, ball.
Velocities might not be important for decision making.
Position coordinates might not generalise well.

Define features x : S → R. Idea is that states with similar
features will have similar consequences of actions, values.

x1(s): Distance to
teammate.

x2(s): Distance to nearest
opponent.

x3(s): Largest open angle
to goal.

x4(s): Distance of
teammate to goal.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 26

12/26

Features
State s is defined by positions and velocities of players, ball.
Velocities might not be important for decision making.
Position coordinates might not generalise well.
Define features x : S → R. Idea is that states with similar
features will have similar consequences of actions, values.

x
1

x

x

2

3

x
4

x1(s): Distance to
teammate.

x2(s): Distance to nearest
opponent.

x3(s): Largest open angle
to goal.

x4(s): Distance of
teammate to goal.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 26

13/26

Compact Representation of Q̂
Illustration of Q̂ approximated using a neural network.
Input: (features of) state. One output for each action.
Similar states will have similar Q-values.
Can we learn weights w so that Q̂(s,a) ≈ Q?(s,a)?

x

x

x

2

1

3

, σ

, σ

, σ

, σ

, σ

, σ

w

INPUT HIDDEN
LAYER

x4

OUTPUT
LAYER

, σ

(s)

(s)

(s)

(s)

s

LAYER

1Q(s, a)

Q(s, a)

2

3

Q(s, a)

Might not be able to represent Q?!
Unlike supervised learning, convergence not obvious!
Even if convergent, might induce sub-optimal behaviour!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 26

13/26

Compact Representation of Q̂
Illustration of Q̂ approximated using a neural network.
Input: (features of) state. One output for each action.
Similar states will have similar Q-values.
Can we learn weights w so that Q̂(s,a) ≈ Q?(s,a)?

x

x

x

2

1

3

, σ

, σ

, σ

, σ

, σ

, σ

w

INPUT HIDDEN
LAYER

x4

OUTPUT
LAYER

, σ

(s)

(s)

(s)

(s)

s

LAYER

1Q(s, a)

Q(s, a)

2

3

Q(s, a)

Might not be able to represent Q?!
Unlike supervised learning, convergence not obvious!
Even if convergent, might induce sub-optimal behaviour!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 26

14/26

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14 / 26

15/26

Prediction with a Linear Architecture
Suppose we are to evaluate π on MDP (S,A,T ,R, γ).
Say we choose to approximate V π by V̂ : for s ∈ S,

V̂ (w , s) = w · x(s), where

x : S → Rd is a d-dimensional feature vector, and
w ∈ Rd is the weight/coefficient vector.

Usually d � |S|.
Illustration with |S| = 3,d = 2. Take w = (w1,w2).

s V π(s) x1(s) x2(s) V̂ (w , s)
s1 7 2 −1 2w1 − w2

s2 2 4 0 4w1

s3 −4 2 3 2w1 + 3w2

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15 / 26

15/26

Prediction with a Linear Architecture
Suppose we are to evaluate π on MDP (S,A,T ,R, γ).
Say we choose to approximate V π by V̂ : for s ∈ S,

V̂ (w , s) = w · x(s), where

x : S → Rd is a d-dimensional feature vector, and
w ∈ Rd is the weight/coefficient vector.
Usually d � |S|.
Illustration with |S| = 3,d = 2. Take w = (w1,w2).

s V π(s) x1(s) x2(s) V̂ (w , s)
s1 7 2 −1 2w1 − w2

s2 2 4 0 4w1

s3 −4 2 3 2w1 + 3w2

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15 / 26

16/26

The Best Approximation
s V π(s) x1(s) x2(s) V̂ (w , s)
s1 7 2 −1 2w1 − w2

s2 2 4 0 4w1

s3 −4 2 3 2w1 + 3w2

Observe that for all w ∈ R2, V̂ (w , s2) =
3V̂ (w ,s1)+V̂ (w ,s3)

2 .

In general, V̂ cannot be made equal to V π.

Which w provides the best approximation?
A common choice is

w? = argmin
w∈Rd

MSVE(w),

MSVE(w)
def
=

1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w , s)}2,

where µπ : S → [0,1] is the stationary distribution of π.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16 / 26

16/26

The Best Approximation
s V π(s) x1(s) x2(s) V̂ (w , s)
s1 7 2 −1 2w1 − w2

s2 2 4 0 4w1

s3 −4 2 3 2w1 + 3w2

Observe that for all w ∈ R2, V̂ (w , s2) =
3V̂ (w ,s1)+V̂ (w ,s3)

2 .

In general, V̂ cannot be made equal to V π.
Which w provides the best approximation?

A common choice is

w? = argmin
w∈Rd

MSVE(w),

MSVE(w)
def
=

1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w , s)}2,

where µπ : S → [0,1] is the stationary distribution of π.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16 / 26

16/26

The Best Approximation
s V π(s) x1(s) x2(s) V̂ (w , s)
s1 7 2 −1 2w1 − w2

s2 2 4 0 4w1

s3 −4 2 3 2w1 + 3w2

Observe that for all w ∈ R2, V̂ (w , s2) =
3V̂ (w ,s1)+V̂ (w ,s3)

2 .

In general, V̂ cannot be made equal to V π.
Which w provides the best approximation?
A common choice is

w? = argmin
w∈Rd

MSVE(w),

MSVE(w)
def
=

1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w , s)}2,

where µπ : S → [0,1] is the stationary distribution of π.
Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16 / 26

17/26

Geometric View

V
π

w

s

s
1

s

3

2

(Scaling based on µπ not explicitly shown.)

How to find w??

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17 / 26

17/26

Geometric View

V
π

w*

w

s

s
1

s

3

2

(Scaling based on µπ not explicitly shown.)

How to find w??

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17 / 26

17/26

Geometric View

V
π

w*

w

s

s
1

s

3

2

(Scaling based on µπ not explicitly shown.)

How to find w??

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17 / 26

17/26

Geometric View

V
π

w*

w

s

s
1

s

3

2

(Scaling based on µπ not explicitly shown.)

How to find w??
Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17 / 26

18/26

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 18 / 26

19/26

Gradient Descent
Iteratively take steps in the w space in the direction
minimising MSVE(w).

V
π

w*

w

s

s
1

s

3

2

0w
w

w

w
1

2

3

Feasible here? Sort of.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19 / 26

19/26

Gradient Descent
Iteratively take steps in the w space in the direction
minimising MSVE(w).

V
π

w*

w

s

s
1

s

3

2

0w
w

w

w
1

2

3

Feasible here?

Sort of.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19 / 26

19/26

Gradient Descent
Iteratively take steps in the w space in the direction
minimising MSVE(w).

V
π

w*

w

s

s
1

s

3

2

0w
w

w

w
1

2

3

Feasible here? Sort of.
Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19 / 26

20/26

Gradient Descent
Initialise w0 ∈ Rd arbitrarily. For t ≥ 0 update as

w t+1 ← w t − αt+1∇w

(
1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}2

)
= w t + αt+1

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}∇w V̂ (w t , s).

But we don’t know µπ(s), V π(s) for all s ∈ S. We’re
learning, remember?
Luckily, stochastic gradient descent allows us to update as

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st)

since st ∼ µπ anyway (as t →∞).
But still, we don’t know V π(st)! What to do?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 26

20/26

Gradient Descent
Initialise w0 ∈ Rd arbitrarily. For t ≥ 0 update as

w t+1 ← w t − αt+1∇w

(
1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}2

)
= w t + αt+1

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}∇w V̂ (w t , s).

But we don’t know µπ(s), V π(s) for all s ∈ S. We’re
learning, remember?

Luckily, stochastic gradient descent allows us to update as

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st)

since st ∼ µπ anyway (as t →∞).
But still, we don’t know V π(st)! What to do?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 26

20/26

Gradient Descent
Initialise w0 ∈ Rd arbitrarily. For t ≥ 0 update as

w t+1 ← w t − αt+1∇w

(
1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}2

)
= w t + αt+1

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}∇w V̂ (w t , s).

But we don’t know µπ(s), V π(s) for all s ∈ S. We’re
learning, remember?
Luckily, stochastic gradient descent allows us to update as

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st)

since st ∼ µπ anyway (as t →∞).

But still, we don’t know V π(st)! What to do?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 26

20/26

Gradient Descent
Initialise w0 ∈ Rd arbitrarily. For t ≥ 0 update as

w t+1 ← w t − αt+1∇w

(
1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}2

)
= w t + αt+1

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}∇w V̂ (w t , s).

But we don’t know µπ(s), V π(s) for all s ∈ S. We’re
learning, remember?
Luckily, stochastic gradient descent allows us to update as

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st)

since st ∼ µπ anyway (as t →∞).
But still, we don’t know V π(st)! What to do?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 26

21/26

Gradient Descent
Although we cannot perform update

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st),

we can do

w t+1 ← w t + αt+1{Gt :∞ − V̂ (w t , st)}∇w V̂ (w t , st),

since E[Gt :∞] = V π(st).

In practice, we also do

w t+1 ← w t + αt+1{Gλ
t − V̂ (w t , st)}∇w V̂ (w t , st),

for λ < 1, even if E[Gλ
t] 6= V π(st) in general. For example,

Linear TD(0) performs the update

w t+1 ← w t + αt+1{r t + γw t · x(st+1)− w t · x(st)}x(st).

For λ < 1, the process is not true gradient descent. But it
still converges with linear function approximation.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21 / 26

21/26

Gradient Descent
Although we cannot perform update

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st),

we can do

w t+1 ← w t + αt+1{Gt :∞ − V̂ (w t , st)}∇w V̂ (w t , st),

since E[Gt :∞] = V π(st).
In practice, we also do

w t+1 ← w t + αt+1{Gλ
t − V̂ (w t , st)}∇w V̂ (w t , st),

for λ < 1, even if E[Gλ
t] 6= V π(st) in general.

For example,
Linear TD(0) performs the update

w t+1 ← w t + αt+1{r t + γw t · x(st+1)− w t · x(st)}x(st).

For λ < 1, the process is not true gradient descent. But it
still converges with linear function approximation.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21 / 26

21/26

Gradient Descent
Although we cannot perform update

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st),

we can do

w t+1 ← w t + αt+1{Gt :∞ − V̂ (w t , st)}∇w V̂ (w t , st),

since E[Gt :∞] = V π(st).
In practice, we also do

w t+1 ← w t + αt+1{Gλ
t − V̂ (w t , st)}∇w V̂ (w t , st),

for λ < 1, even if E[Gλ
t] 6= V π(st) in general. For example,

Linear TD(0) performs the update

w t+1 ← w t + αt+1{r t + γw t · x(st+1)− w t · x(st)}x(st).

For λ < 1, the process is not true gradient descent. But it
still converges with linear function approximation.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21 / 26

21/26

Gradient Descent
Although we cannot perform update

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st),

we can do

w t+1 ← w t + αt+1{Gt :∞ − V̂ (w t , st)}∇w V̂ (w t , st),

since E[Gt :∞] = V π(st).
In practice, we also do

w t+1 ← w t + αt+1{Gλ
t − V̂ (w t , st)}∇w V̂ (w t , st),

for λ < 1, even if E[Gλ
t] 6= V π(st) in general. For example,

Linear TD(0) performs the update

w t+1 ← w t + αt+1{r t + γw t · x(st+1)− w t · x(st)}x(st).

For λ < 1, the process is not true gradient descent. But it
still converges with linear function approximation.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21 / 26

22/26

Linear TD(λ) algorithm
Maintains an eligibility trace z ∈ Rd .
Recall that V̂ (w , s) = w · x(s), hence ∇W V̂ (w , s) = x(s).

Initialise w ∈ Rd arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV̂ (w , s′)− V̂ (w , s).
z ← γλz +∇w V̂ (w , s).
w ← w + αδz.
s ← s′.

See Sutton and Barto (2018) for variations (accumulating,
replacing, and dutch traces).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22 / 26

22/26

Linear TD(λ) algorithm
Maintains an eligibility trace z ∈ Rd .
Recall that V̂ (w , s) = w · x(s), hence ∇W V̂ (w , s) = x(s).

Initialise w ∈ Rd arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV̂ (w , s′)− V̂ (w , s).
z ← γλz +∇w V̂ (w , s).
w ← w + αδz.
s ← s′.

See Sutton and Barto (2018) for variations (accumulating,
replacing, and dutch traces).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22 / 26

22/26

Linear TD(λ) algorithm
Maintains an eligibility trace z ∈ Rd .
Recall that V̂ (w , s) = w · x(s), hence ∇W V̂ (w , s) = x(s).

Initialise w ∈ Rd arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV̂ (w , s′)− V̂ (w , s).
z ← γλz +∇w V̂ (w , s).
w ← w + αδz.
s ← s′.

See Sutton and Barto (2018) for variations (accumulating,
replacing, and dutch traces).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22 / 26

23/26

Convergence of Linear TD(λ)

MSVE(w∞λ) ≤ 1− γλ
1− γ

MSVE(w?).

V
π

w*

w

s

s
1

s

3

2

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 23 / 26

23/26

Convergence of Linear TD(λ)

MSVE(w∞λ) ≤ 1− γλ
1− γ

MSVE(w?).

V
π

w*

w

s

s
1

s

3

2

8

λ
w

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 23 / 26

24/26

Control with Linear Function Approximation

Linear function approximation is implemented in the control
by approximating Q(s,a) ≈ w · x(s,a).

Linear Sarsa(λ) is a very popular algorithm.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 24 / 26

25/26

RL on Half Field Offense
Uses Linear Sarsa(0) with tile coding.

0 5,000 10,000 15,000 20,000 25,000 30,000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Learning Performance

Number of Episodes

A
v
e
ra

g
e
 G

o
a
ls

 S
c
o
re

d
 p

e
r

E
p
is

o
d
e

With Communication

Without Communication

UvA Offense

Handcoded

Random

Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement
Learning Case Study. Shivaram Kalyanakrishnan, Yaxin Liu, and Peter
Stone. RoboCup 2006: Robot Soccer World Cup X, pp. 72–85, Springer,

2007.Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 25 / 26

26/26

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Generalisation and Function Approximation

4. Linear function approximation

5. Linear TD(λ)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 26 / 26

