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Reinforcement Learning

1. Tile coding

2. Issues in control with function approximation

3. Policy search

4. Case studies
I Humanoid robot soccer
I Railway scheduling
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How Good is Linear Function Approximation?
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V̂1(x) = w1x + w2.

Is V̂ 3 the obvious choice?
V̂ 3 has the highest resolution, but does not generalise well.
How to achieve high resolution along with generalisation?
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b1 =

{
1 if 0 ≤ x < 1,
0 otherwise.

b2 =

{
1 if 1 ≤ x < 2,
0 otherwise.

b3 =

{
1 if 2 ≤ x < 3,
0 otherwise.

V̂2(x) = w1b1 + w2b2 + w3b3.
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Tile coding

x
0 1 2 3

Tiling 1
Tiling 2
Tiling 3
Tiling 4
Tiling 5
Tiling 6

A tiling partitions x into equal-width regions called tiles.

Multiple tilings (say m) are created, each with an offset
(1/m tile width) from the previous.
Each tile has an associated weight.
The function value of a point is the sum of the weights of
the tiles intersecting it (one per tiling).
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Tile coding

x

0 1 2 3

Each tile is a binary feature.
Tile width and the number of tilings determine
generalisation, resolution.
Observe that two points more than (tile width / number of
tilings) apart can be given arbitrary function values.
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Representing Q̂
Given a feature value x as input, the corresponding set of
tilings T : R→ R returns the sum of the weights of the tiles
activated by x .

The usual practice is to have a separate set of tilings
Taj : R→ R for each action a and state feature
j ∈ {1,2, . . . ,d}. Hence

Q̂(s,a) =
d∑

j=1

Taj(xj(s)).

Usually, tile widths and the number of tilings are configured
specifically for each feature. For example, in soccer, could
use 2m as tile width for “distance” features, and 10◦ as tile
width for “angle” features.
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2-d Tile coding
For representing more complex functions, can also have
tilings on conjunctions of features (see below for 2 features).
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Introduces more parameters—which could help or hurt.
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Tile Coding: Summary

Linear function approximation does not restrict us to a
representation that is linear in the given/raw features.
Tile coding a standard approach to discretise input features
and tune both resolution and generalisation.
Enjoys many empirical successes, especially in conjunction
with Linear Sarsa(λ).
Common to store weights in a hash table (collisions don’t
seem to hurt much), whose size is set based on practical
constraints.
1-d tilings most common; rarely see conjunction of 3 or
more features.
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Reinforcement Learning

1. Tile coding

2. Issues in control with function approximation

3. Policy search

4. Case studies
I Humanoid robot soccer
I Railway scheduling
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A Counterexample

s s1 2 s

w 2w

1, 0

1 − ε, 0

ε, 0

Prediction problem (policy π).
Episodic, start state is s1.
Observe that V π(s1) = V π(s2) = 0.
Linear function approximation with single parameter w :
x(s1) = 1, x(s2) = 2; hence V̂ (s1) = w , V̂ (s2) = 2w .

What’s the optimal setting of w?
w = 0 gives the exact answer!
We design an iteration w0 → w1 → w2 → . . . , and see if it
converges to 0 (due to Tsitsiklis and Van Roy, 1996).
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A Counterexample

s s1 2 s

w 2w

1, 0

1 − ε, 0

ε, 0

From state s, let s′, r be the (random) next state, reward.

If our current estimate of V π is V̂ , the bootstrapping idea
suggests Eπ[r + γV̂ (s′)] as a “better estimate” of V π(s).
We update w so it best-fits the bootstrapped estimate in
terms of squared error on the states.
We begin with arbitrary w0, and for k ≥ 0 set

wk+1 ← argmin
w∈R

∑
s

(
Eπ[r + γV̂ (wk , x(s′))]− V̂ (w , x(s))

)2
.

Is limk→∞wk = 0? Let’s see.
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A Counterexample

s s1 2 s
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wk+1 = argmin
w∈R

∑
s

(
Eπ[r + γV̂ (wk , x(s′))]− V̂ (w , x(s))

)2

= argmin
w∈R

(
(2γwk − w)2 + (2γ(1− ε)wk − 2w)2) = γ

6− 4ε
5

wk .

For w0 = 1, ε = 0.1, γ = 0.99, limk→∞wk =∞; divergence!
The failure owes to the combination of three factors:
off-policy updating, generalisation, bootstrapping.
But these are almost always used together in practice!
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Summary of Theoretical Results?

Method Tabular Linear FA Non-linear FA
TD(0) C, O C NK
TD(λ), λ ∈ (0,1) C, O C NK
TD(1) C, O C, “Best” C, Local optimum

Sarsa(0) C, 0 Chattering NK
Sarsa(λ), λ ∈ (0,1) NK Chattering NK
Sarsa(1) NK NK NK

Q-learning(0) C, 0 NK NK

(C: Convergent; O: Optimal; NK: Not known.)

?: to the best of your instructor’s knowledge.
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So Near, Yet So Far
Q*(x, RED)

Q*(x, BLUE)

REDm       x + cRED

x

BLUEm        x + cBLUE

(mRED, cRED,mBLUE, cBLUE) a “good” approximation of Q?.

But induces non-optimal actions for x ∈ (A,B).
(m̄RED, c̄RED, m̄BLUE, c̄BLUE) a “bad” approximation of Q?.
But induces optimal actions for all x !
Perhaps we found (mRED, cRED,mBLUE, cBLUE) by Q-learning.
How to find (m̄RED, c̄RED, m̄BLUE, c̄BLUE)?
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Black Box Optimisation
An abstract model:

Input w = (w1,w2, . . . ,wd ) −→ System −→ Output f (w).

For what input w is output f (w) maximum?

System: chemical manufacturing plant.
w : process parameters (temperature, ratio of chemical
mixture, time duration, pressure, etc.)
f (w): product yield.

System: Your MDP!
w : parameters defining your policy.
f (w): expected long-term reward (as a scalar).

Is finding the optimal w easy? Why is this approach called
black box optimisation?
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f (w): product yield.

System: Your MDP!
w : parameters defining your policy.
f (w): expected long-term reward (as a scalar).

Is finding the optimal w easy? Why is this approach called
black box optimisation?
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Typical Context for Black Box Optimisation

Little/nothing known/assumed about f—can be
discontinuous, non-linear, “erratic”.
Given w , evaluating f (w) is relatively efficient.
Calculating f (w) usually involves a computer simulation.

w1

w2

f(
w

1
, 

w
2
)

Low

High

How to find a “relatively good” w?
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Some Natural Approaches

Random weight guessing Grid search
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These approaches work for small dimensions d (say d ≤ 5).
No method can be expected to work well for very large d
(1000’s or higher).
Local search works for intermediate d (10’s, 100’s).
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Local Search

Illustrative method: Hill Climbing.
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Local Search

Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms, . . . .

No decided winner among these (depends on problem, not
much guidance).

All instances of the generate and test paradigm.
− Ignores the structure of f .
+ Highly parallelisable.
+ Allow easy integration of domain knowledge.
Validation/successes primarily empirical; not much
theoretical justification.

Called Policy search when applied on the RL problem.
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Reinforcement Learning

1. Tile coding

2. Issues in control with function approximation

3. Policy search

4. Case studies
I Humanoid robot soccer

Joint work with Patrick MacAlpine, Yinon Bentor, Daniel
Urieli, and Peter Stone (UT Austin Villa robot soccer team).

I Railway scheduling
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Gait Optimisation: Policy Parameters
Notation Description

maxStep∗
i Maximum step sizes allowed for x , y , and θ

y∗
shift Side to side shift amount with no side velocity

z∗
torso Height of the torso from the ground

z∗
step Maximum height of the foot from the ground

f∗g
Fraction of a phase that the swing

foot spends on the ground before lifting
fa Fraction that the swing foot spends in the air
f∗s Fraction before the swing foot starts moving
fm Fraction that the swing foot spends moving

φ∗length Duration of a single step
δ∗ Factors of how fast the step sizes change

ysep Separation between the feet
x∗

offset Constant offset between the torso and feet

x∗
factor

Factor of the step size applied to
the forwards position of the torso

err∗norm Maximum COM error before the steps are slowed
err∗max Maximum COM error before all velocity reach 0

Design and Optimization of an Omnidirectional Humanoid Walk: A WinningApproach at the RoboCup 2011 3D
Simulation Competition. Patrick MacAlpine, Samuel Barrett, Daniel Urieli, Victor Vu, and Peter Stone. In Proceedings
of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2012), AAAI Press, 2012.
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Progress of Forward Speed Optimisation
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On Optimizing Interdependent Skills: A Case Study in Simulated 3D Humanoid Robot Soccer. Daniel Urieli,
Patrick MacAlpine, Shivaram Kalyanakrishnan, Yinon Bentor, and Peter Stone. In Proceedings of the Tenth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 769–776, IFAAMAS, 2011.
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RoboCup 2011 3D Simulation Competition
UT Austin Villa combined score: 136–0 (over 24 games).

Rank Team Goal Difference
3 apollo3d 1.45 (0.11)

5-8 boldhearts 2.00 (0.11)
5-8 robocanes 2.40 (0.10)
2 cit3d 3.33 (0.12)

5-8 fcportugal3d 3.75 (0.11)
9-12 magmaoffenburg 4.77 (0.12)
9-12 oxblue 4.83 (0.10)

4 kylinsky 5.52 (0.14)
9-12 dreamwing3d 6.22 (0.13)
5-8 seuredsun 6.79 (0.13)

13-18 karachikoalas 6.79 (0.09)
9-12 beestanbul 7.12 (0.11)

. . .

UT Austin Villa 2011: A Champion Agent in the RoboCup 3D Soccer Simulation Competition. Patrick MacAlpine,
Daniel Urieli, Samuel Barrett, Shivaram Kalyanakrishnan, Francisco Barrera, Adrian Lopez-Mobilia, Nicolae Ştiurcă,
Victor Vu, and Peter Stone. In Proceedings of the Eleventh International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2012), pp. 129–136, IFAAMAS, 2012.
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Reinforcement Learning

1. Tile coding

2. Issues in control with function approximation

3. Policy search

4. Case studies
I Humanoid robot soccer
I Railway scheduling

Joint work with Rohit Prasad and Harshad Khadilkar.
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Railways and the Economy

[1]

Indian Railways, 20000+ trains, 9.1 billion yearly ridership.
Delay incurs economic costs
[1] https://pixabay.com/photos/transportation-system-travel-vehicle-3351330/.
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Railway Rescheduling Problem
Train Station Timetable Timetable Minimum Minimum Scheduled Scheduled Delay

Arrival Departure Halt Run Arrival Departure
Time Time Time Time Time Time

101 Alpha 4:30 4:40 10 30
102 Alpha 0:00 0:05 5 10
601 Echo 9:15 9:16 1 60
401 Delta 3:20 3:35 15 20

Given an initial timetable
compute a feasible timetable
subject to resource allocation and time constraints
minimising

Priority-weighted departure delay

=
∑

Train t, Resource r

Delay of train t at resource r
Priority of train t

.
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Illustration

A hypothetical railway line with 8 trains and 5 stations

Alpha Bravo Charlie Delta Echo

Moving trains
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Illustration

A hypothetical railway line with 8 trains and 5 stations
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Illustration

A hypothetical railway line with 8 trains and 5 stations

Alpha Bravo Charlie Delta Echo

Deadlock!
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Illustration

A hypothetical railway line with 8 trains and 5 stations

Alpha Bravo Charlie Delta Echo

No Deadlock!
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Our Solution

List of 
train 

events

Set time to
earliest

event time

Sort trains by 
resource occupancy 

& priority

Pick next train

Compute decision 
& update event list

Yes No

Yes

No
More 
events 
at this 
time?

Empty 
or 

Time 
out?

Start

Stop

The wrapper layer picks a potential train to move.
We optimise the module that decides MOVE / STOP.
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State Space

Fairly Empty

Nearly Full

Totally Full

Horizon considered for state formation

Current
resource

0 0 0 0112 2 21

Current
train

Priority of 
current train

State vector: 
(1,0,2,0,1,0,1,0,2,2)
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Policy Representation

Move

Stop

[
]

10
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Weights being minimised using CMA-ES

d = 352.
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Benchmark Railway Lines

Scenario Type Stations Trains Events Timetable span
HYP-2 Line 11 60 1320 4 hours
HYP-3 Line 11 120 2640 7 hours
KRCL Line 59 85 5418 3 days
Kanpur Line 27 190 7716 3 days
Ajmer Line 52 444 26258 7 days
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Results
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Summary of Results

Priority-weighted departure delay.

Policy search RL TAH-FP TAH-CF Naive GWP PTD
HYP-2 4.28 (0) 4.78 (0) 4.58 (0) 5.93 (0) 11.16 (2) 4.35 (0) 714.00 (0)
HYP-3 15.50 (0) 18.54 (0) 61.89 (97) 140.14 (95) - (100) 16.35 (0) 2003.98 (0)
KRCL 42.34 (0) 43.04 (0) 46.41 (8) 47.02 (0) - (100) 42.40 (0) 4714.08 (0)
Ajmer 3.92 (0) 4.65 (0) 10.76 (3) 5.99 (0) 9.25 (76) 3.99 (3) 8304.84 (0)
Kanpur 1.54 (0) 1.66 (0) 2.19 (0) 2.28 (0) 1.85 (0) 1.54 (0) 313.60 (0)
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Comparison with RL (Q-learning)
Priority-weighted departure delay.
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Summary

Initial lectures assumed finite state spaces.
Seldom seen in practice!
Need to generalise over states (sometimes actions).
Function approximation has many empirical successes, yet
is often problematic, especially for control.
Quality of features/representation determines the validity of
Markovian assumption.
Policy search ignores Markovian structure—which
sometimes works to its advantage!
Conceptually simple; also has many empirical successes.

Next week: policy gradient methods.
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