CS 747, Autumn 2020: Week 11, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2020

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 1/35

Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation

3. Policy search

4. Case studies
» Humanoid robot soccer
» Railway scheduling

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2/35

Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. Policy search

4. Case studies
» Humanoid robot soccer
» Railway scheduling

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2/35

How Good is Linear Function Approximation?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

How Good is Linear Function Approximation?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3/35

How Good is Linear Function Approximation?

- \/1
.V, by — 1 if0<x<1,
~ 0 otherwise.
V7t e —
— by — 1 if1<x<2,
W w3 2700 otherwise.
%
‘ 1 if2<x<3,
0 1 2 3 bs = :
N 0 otherwise.

Va(x) = wiby + waobs + wabs.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

3/35

How Good is Linear Function Approximation?

V3(x): 18 piece-wise
constants.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3/35

How Good is Linear Function Approximation?

@ Is V2 the obvious choice?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3/35

How Good is Linear Function Approximation?

0 1 AB 2 3

@ Is /3 the obvious choice?
@ V3 has the highest resolution, but does not generalise well.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3/35

How Good is Linear Function Approximation?

0 1 AB 2 3

@ Is V3 the obvious choice?
@ V3 has the highest resolution, but does not generalise well.
@ How to achieve high resolution along with generalisation?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3/35

Tile coding

@ Atiling partitions x into equal-width regions called tiles.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

4/35

Tile coding

>

@ Atiling partitions x into equal-width regions called tiles.
@ Multiple tilings (say m) are created, each with an offset
(1/m tile width) from the previous.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4/35

Tile coding

>

@ Atiling partitions x into equal-width regions called tiles.

@ Multiple tilings (say m) are created, each with an offset
(1/m tile width) from the previous.

@ Each tile has an associated weight.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4/35

Tile coding

- !

(e}
—
o+
w

@ Atiling partitions x into equal-width regions called tiles.
@ Multiple tilings (say m) are created, each with an offset
(1/m tile width) from the previous.
@ Each tile has an associated weight.
@ The function value of a point is the sum of the weights of
the tiles intersecting it (one per tiling).
4/35

Tile coding

@ Atiling partitions x into equal-width regions called tiles.
@ Multiple tilings (say m) are created, each with an offset
(1/m tile width) from the previous.
@ Each tile has an associated weight.
@ The function value of a point is the sum of the weights of
the tiles intersecting it (one per tiling).
4/35

Tile coding

@ Each tile is a binary feature.

@ Tile width and the number of tilings determine
generalisation, resolution.

@ Observe that two points more than (tile width / number of
tilings) apart can be given arbitrary function values.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4/35

Representing Q

@ Given a feature value x as input, the corresponding set of
tilings T : R — R returns the sum of the weights of the tiles
activated by x.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/35

Representing Q

@ Given a feature value x as input, the corresponding set of
tilings T : R — R returns the sum of the weights of the tiles
activated by x.

@ The usual practice is to have a separate set of tilings
T4 : R — R for each action a and state feature
j€{1,2,...,d}. Hence

Q(s.a) =) Toi(x(s))-

J=1

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/35

Representing Q
@ Given a feature value x as input, the corresponding set of
tilings T : R — R returns the sum of the weights of the tiles
activated by x.
@ The usual practice is to have a separate set of tilings
T4 : R — R for each action a and state feature
j€{1,2,...,d}. Hence

d
= Tailx(s
p

@ Usually, tile widths and the number of tilings are configured
specifically for each feature. For example, in soccer, could
use 2m as tile width for “distance” features, and 10° as tile
width for “angle” features.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5/35

2-d Tile coding

@ For representing more complex functions, can also have
tilings on conjunctions of features (see below for 2 features).

@ Introduces more parameters—which could help or hurt.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6/35

Tile Coding: Summary

@ Linear function approximation does not restrict us to a
representation that is linear in the given/raw features.

@ Tile coding a standard approach to discretise input features
and tune both resolution and generalisation.

@ Enjoys many empirical successes, especially in conjunction
with Linear Sarsa(\).

@ Common to store weights in a hash table (collisions don’t
seem to hurt much), whose size is set based on practical
constraints.

@ 1-d tilings most common; rarely see conjunction of 3 or
more features.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7/35

Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. Policy search

4. Case studies
» Humanoid robot soccer
» Railway scheduling

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8/35

A Counterexample

€0

10@&:0
O O ©

w 2w

@ Prediction problem (policy).

@ Episodic, start state is s;.

@ Observe that V™(sy) = V™(s2) = 0.

@ Linear function approximation with single parameter w:
x(s1) =1,x(s2) = 2; hence V(s1) = w, V(s2) = 2w.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9/35

A Counterexample

€0

10@&:0
O O ©

w 2w

@ Prediction problem (policy).

@ Episodic, start state is s;.

@ Observe that V™(sy) = V™(s2) = 0.

@ Linear function approximation with single parameter w:
x(s1) =1,x(s2) = 2; hence V(s1) = w, V(s2) = 2w.

@ What'’s the optimal setting of w?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9/35

A Counterexample

€0

10@80
O @ —®

w 2w

@ Prediction problem (policy 7).

@ Episodic, start state is s;.

@ Observe that V™(sy) = V™(s2) = 0.

@ Linear function approximation with single parameter w:
x(s1) = 1,x(s2) = 2; hence V(s1) = w, V(sz) = 2w.

@ What'’s the optimal setting of w?

@ w = 0 gives the exact answer!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9/35

A Counterexample

€0

10@80
O @ —®

w 2w

@ Prediction problem (policy 7).

@ Episodic, start state is s;.

@ Observe that V™(sy) = V™(s2) = 0.

@ Linear function approximation with single parameter w:
x(s1) = 1,x(s2) = 2; hence V(s1) = w, V(sz) = 2w.

@ What'’s the optimal setting of w?

@ w = 0 gives the exact answer!

@ We design an iteration wyp — wy — wo — ..., and see if it
converges to 0 (due to Tsitsiklis and Van Roy, 1996).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9/35

A Counterexample

1-¢,0

1,0 <? g, 0
O O O

w 2w

@ From state s, let &/, r be the (random) next state, reward.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10/35

A Counterexample

1-¢,0

1,0 <? g, 0
O O O

w 2w

@ From state s, let s, r be the (random) next state, reward.
@ If our current estimate of V™ is V, the bootstrapping idea
suggests E.[r + vV(s')] as a “better estimate” of V7(s).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10/35

A Counterexample

1-¢,0

o
O @ @

w 2w

@ From state s, let &/, r be the (random) next state, reward.
@ If our current estimate of V7 is V, the bootstrapping idea
suggests E.[r + vV(s)] as a “better estimate” of V7(s).

@ We update w so it best-fits the bootstrapped estimate in

terms of squared error on the states.
@ We begin with arbitrary wy, and for k > 0 set

W1 <— argmin Z <]E,r[r + 4 V(wi, x(s))] — V(w, X(S))>2-

weR G

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10/35

A Counterexample

1-¢,0

o
O @ @

w 2w

@ From state s, let &/, r be the (random) next state, reward.
@ If our current estimate of V7 is V, the bootstrapping idea
suggests E.[r + vV(s)] as a “better estimate” of V7(s).

@ We update w so it best-fits the bootstrapped estimate in

terms of squared error on the states.
@ We begin with arbitrary wy, and for k > 0 set

W1 <— argmin Z <]E,r[r + 4 V(wi, x(s))] — V(w, X(S))>2-

weR G

@ Is limg_,oo Wy = 07?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10/35

A Counterexample

1-¢,0

o
O @ @

w 2w

@ From state s, let &/, r be the (random) next state, reward.
@ If our current estimate of V7 is V, the bootstrapping idea
suggests E.[r + vV(s)] as a “better estimate” of V7(s).

@ We update w so it best-fits the bootstrapped estimate in

terms of squared error on the states.
@ We begin with arbitrary wy, and for k > 0 set

W1 <— argmin Z <]E,r[r + 4 V(wi, x(s))] — V(w, X(S))>2-

weR G

@ Is limg_,oo Wx = 0? Let’s see.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10/35

A Counterexample

-¢0

IOOEO
O @ —®

w 2w

Wit —argmmz (Belr + 7 ¥ (e x(8))] — V(w.x(s)))”

weR

= argmin ((2ywi — w)® + (2y(1 — e)wi — 2w)?) = 76 — 4

Wy.
weR 5

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11/35

A Counterexample

-¢0

IOQEO
O (O ©

w 2w

Wit —argmmz (Belr + 7 ¥ (e x(8))] — V(w.x(s)))”

weR

= argmin ((2ywi — w)® + (2y(1 — e)wi — 2w)?) = 76 — 4

W .
weR 5

@ Forwp=1,e=0.1,v =0.99, limk_,,, Wy = oo; divergence!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11/35

A Counterexample

-¢0

10<1?80
O (O ©

w 2w

Wit —argmmz (Belr + 7 ¥ (e x(8))] — V(w.x(s)))”

weR

= argmin ((2ywi — w)® + (2y(1 — e)wi — 2w)?) = 76 — 4 W .

weR 5
@ Forwp=1,e=0.1,v =0.99, limk_,,, Wy = oo; divergence!

@ The failure owes to the combination of three factors:
off-policy updating, generalisation, bootstrapping.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11/35

A Counterexample

-¢0

10<1?80
O @ —®

w 2w

iy = argin 3 (Bl 49 V(0 X() = V. X(5)

weR

— argmin (29w, — W) + (29(1 —)wy — 2w)?) = 22— .

weR 5

@ Forwp=1,e=0.1,v =0.99, limk_,,, Wy = oo; divergence!

@ The failure owes to the combination of three factors:
off-policy updating, generalisation, bootstrapping.

@ But these are almost always used together in practice!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11/35

Summary of Theoretical Results*

Method Tabular Linear FA Non-linear FA
TD(0) C,0 C NK

TD(N), A € (0,1) C,0 C NK

TD(1) C,0 C, “Best” C, Local optimum
Sarsa(0) C,0 Chattering NK

Sarsa(M), A € (0,1) NK Chattering NK

Sarsa(1) NK NK NK

Q-learning(0) C,0 NK NK

(C: Convergent; O: Optimal; NK: Not known.)

*: to the best of your instructor’s knowledge.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12/35

Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. Policy search

4. Case studies
» Humanoid robot soccer
» Railway scheduling

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13/35

So Near, Yet So Far

Q*(x, RED)

rnRED X + CRED

mBLUEX + CBLUE
Q*(x, BLUE)

X

@ (mREP CcREP mpPUE cBLUE) g “good” approximation of Q.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14/35

So Near, Yet So Far

A B Q*(x, RED)

mRED X + CRED

mBLUEX + CBLUE
Q*(x, BLUE)

X

@ (mREP CcREP mpPUE cBLUE) g “good” approximation of Q.
But induces non-optimal actions for x € (A, B).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14/35

So Near, Yet So Far

Al 'B Q*(x, RED)

rnRED X + CRED

3 mBLUEy | (BLUE
Q*(x, BLUE)
| . FREDy [GRED

X+cC
-- mBLUE BLUE

X +C

X

@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.
But induces non-optimal actions for x € (A, B).

@ (MREP CREP mPLUE gBLUE) g “bad” approximation of Q.
But induces optimal actions for all x!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

14/35

So Near, Yet So Far

Al B

%Q*(x, BLUE)

Q*(x, RED)

rnRED X + CRED

mBLUEx 4 (BLUE

mRED —<RED

X+cC
-- mBLUE BLUE

X +C

X

@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.
But induces non-optimal actions for x € (A, B).
@ (MREP CREP mPLUE gBLUE) g “bad” approximation of Q.

But induces optimal actions for all x!

@ Perhaps we found (mRE°, cREP) mP-UE ¢BLUE) by Q-learning.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

14/35

So Near, Yet So Far

Al B

%Q*(x, BLUE)

-- mBLUE

X

@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.
But induces non-optimal actions for x € (A, B).
@ (MREP CREP mPLUE gBLUE) g “bad” approximation of Q.

Q*(x, RED)

rnRED X + CRED

mBLUEx 4 (BLUE

RED
BLUE

mREPx +¢

X +C

But induces optimal actions for all x!

@ Perhaps we found (mRE°, cREP) mP-UE ¢BLUE) by Q-learning.

(*] HOW to flnd (mRED’ ERED’ mBLUE, aBLUE)?

14/35

Black Box Optimisation
@ An abstract model:
Input w = (wq, wa, ..., wy) — | System | — Output f(w).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15/35

Black Box Optimisation
@ An abstract model:
Input w = (wq, wa, ..., wy) — | System | — Output f(w).
For what input w is output f(w) maximum?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15/35

Black Box Optimisation
@ An abstract model:

Input w = (wq, s, ..., wy) — | System

— Output f(w).

For what input w is output f(w) maximum?

@ System: chemical manufacturing plant.

w: process parameters (temperature, ratio of chemical

mixture, time duration, pressure, etc.)
f(w): product yield.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

15/35

Black Box Optimisation
@ An abstract model:

Input w = (wq, s, ..., wy) — | System

— Output f(w).

For what input w is output f(w) maximum?

@ System: chemical manufacturing plant.

w: process parameters (temperature, ratio of chemical

mixture, time duration, pressure, etc.)
f(w): product yield.

@ System: Your MDP!
w: parameters defining your policy.

f(w): expected long-term reward (as a scalar).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

15/35

Black Box Optimisation
@ An abstract model:

Input w = (wq, s, ..., wy) — | System

— Output f(w).

For what input w is output f(w) maximum?

@ System: chemical manufacturing plant.

w: process parameters (temperature, ratio of chemical

mixture, time duration, pressure, etc.)
f(w): product yield.

@ System: Your MDP!
w: parameters defining your policy.

f(w): expected long-term reward (as a scalar).

@ Is finding the optimal w easy? Why is this approach called

black box optimisation?

15/35

Typical Context for Black Box Optimisation

@ Little/nothing known/assumed about f—can be
discontinuous, non-linear, “erratic”.

@ Given w, evaluating f(w) is relatively efficient.

@ Calculating f(w) usually involves a computer simulation.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

16/35

Typical Context for Black Box Optimisation

@ Little/nothing known/assumed about f—can be
discontinuous, non-linear, “erratic”.

@ Given w, evaluating f(w) is relatively efficient.

@ Calculating f(w) usually involves a computer simulation.

High

W2

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16/35

Typical Context for Black Box Optimisation

@ Little/nothing known/assumed about f—can be
discontinuous, non-linear, “erratic”.

@ Given w, evaluating f(w) is relatively efficient.

@ Calculating f(w) usually involves a computer simulation.

High

W2

@ How to find a “relatively good” w?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16/35

Some Natural Approaches

Random weight guessing Grid search

High

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17/35

Some Natural Approaches

Random weight guessing Grid search

High

@ These approaches work for small dimensions d (say d < 5).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17/35

Some Natural Approaches

Random weight guessing Grid search

High

@ These approaches work for small dimensions d (say d < 5).

@ No method can be expected to work well for very large d
(1000’s or higher).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17/35

Some Natural Approaches

Random weight guessing Grid search

High

@ These approaches work for small dimensions d (say d < 5).

@ No method can be expected to work well for very large d
(1000’s or higher).

@ Local search works for intermediate d (10’s, 100’s).
17/35

Local Search

@ lllustrative method: Hill Climbing.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

Local Search

@ lllustrative method: Hill Climbing.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

High

Low

18/35

Local Search

@ lllustrative method: Hill Climbing.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

High

Low

18/35

Local Search

@ lllustrative method: Hill Climbing.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

High

Low

18/35

Local Search

@ lllustrative method: Hill Climbing.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

High

Low

18/35

Local Search

@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms,

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19/35

Local Search

@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms,

No decided winner among these (depends on problem, not
much guidance).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19/35

Local Search

@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms,

No decided winner among these (depends on problem, not
much guidance).

@ All instances of the generate and test paradigm.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19/35

Local Search

@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms,

No decided winner among these (depends on problem, not
much guidance).

@ All instances of the generate and test paradigm.
— Ignores the structure of f.
+ Highly parallelisable.
+ Allow easy integration of domain knowledge.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19/35

Local Search

@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms,

No decided winner among these (depends on problem, not
much guidance).

@ All instances of the generate and test paradigm.
— Ignores the structure of f.
+ Highly parallelisable.
+ Allow easy integration of domain knowledge.
Validation/successes primarily empirical; not much
theoretical justification.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19/35

Local Search

@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms,

No decided winner among these (depends on problem, not
much guidance).

@ All instances of the generate and test paradigm.
— Ignores the structure of f.
+ Highly parallelisable.
+ Allow easy integration of domain knowledge.
Validation/successes primarily empirical; not much
theoretical justification.

@ Called Policy search when applied on the RL problem.
19/35

Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation

3. Policy search

4. Case studies

» Humanoid robot soccer
Joint work with Patrick MacAlpine, Yinon Bentor, Daniel
Urieli, and Peter Stone (UT Austin Villa robot soccer team).
» Railway scheduling

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20/35

Gait Optimisation: Policy Parameters

[Notation |

Description]

maxStep;

Maximum step sizes allowed for x, y, and 6

*

L Yenir

Side to side shift amount with no side velocity

*
lel’SO
*

Height of the torso from the ground

zstep

Maximum height of the foot from the ground

fg

Fraction of a phase that the swing
foot spends on the ground before lifting

fa

Fraction that the swing foot spends in the air

fs

Fraction before the swing foot starts moving

fm

Fraction that the swing foot spends moving

*
¢ length

Duration of a single step

Factors of how fast the step sizes change

Separation between the feet

*
Xoﬁset

Constant offset between the torso and feet

*
Xfactor

Factor of the step size applied to
the forwards position of the torso

err;kwrm

Maximum COM error before the steps are slowed

eIl fax

Maximum COM error before all velocity reach 0

Design and Optimization of an Omnidirectional Humanoid Walk: A WinningApproach at the RoboCup 2011 3D
Simulation Competition. Patrick MacAlpine, Samuel Barrett, Daniel Urieli, Victor Vu, and Peter Stone. In Proceedings
of the Twenty-Sixth AAAI Conference on Atrtificial Intelligence (AAAI 2012), AAAI Press, 2012.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

21/35

Progress of Forward Speed Optimisation

14

%

TIAR

Ll

—_
(=)

Fitness / m
o0

[#avg=10 pop-size=30 ~—+]

0 10 20 30 40 50
generation

On Optimizing Interdependent Skills: A Case Study in Simulated 3D Humanoid Robot Soccer. Daniel Urieli,
Patrick MacAlpine, Shivaram Kalyanakrishnan, Yinon Bentor, and Peter Stone. In Proceedings of the Tenth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 769-776, IFAAMAS, 2011.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 22/35

RoboCup 2011 3D Simulation Competition

@ UT Austin Villa combined score: 136—0 (over 24 games).

| Rank | Team | Goal Difference |

3 apollo3d 1.45 (0.11)
5-8 boldhearts 2.00 (0.11)
5-8 robocanes 2.40 (0.10)
2 cit3d 3.33 (0.12)
5-8 fcportugal3d 3.75(0.11)
9-12 | magmaoffenburg 4.77 (0.12)
9-12 oxblue 4.83 (0.10)
4 kylinsky 5.52 (0.14)
9-12 dreamwing3d 6.22 (0.13)
5-8 seuredsun 6.79 (0.13)
13-18 karachikoalas 6.79 (0.09)
9-12 beestanbul 7.12 (0.11)

UT Austin Villa 2011: A Champion Agent in the RoboCup 3D Soccer Simulation Competition. Patrick MacAlpine,
Daniel Urieli, Samuel Barrett, Shivaram Kalyanakrishnan, Francisco Barrera, Adrian Lopez-Mobilia, Nicolae Stiurca,
Victor Vu, and Peter Stone. In Proceedings of the Eleventh International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2012), pp. 129-136, IFAAMAS, 2012.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 23/35

Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. Policy search

4. Case studies
» Humanoid robot soccer
» Railway scheduling
Joint work with Rohit Prasad and Harshad Khadilkar.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 24/35

Railways and the Economy

@ Indian Railways, 20000+ trains, 9.1 billion yearly ridership.
@ Delay incurs economic costs

[1] https://pixabay.com/photos/transportation-system-travel-vehicle-3351330/.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 25/35

https://pixabay.com/photos/transportation-system-travel-vehicle-3351330/

Railway Rescheduling Problem

Train Station Timetable Timetable Minimum Minimum Scheduled Scheduled Delay

Arrival Departure Halt Run Arrival Departure
Time Time Time Time Time Time
101 Alpha 4:30 4:40 10 30
102 Alpha 0:00 0:05 5 10
601 Echo 9:15 9:16 1 60
401 Delta 3:20 3:35 15 20

Given an initial timetable

compute a feasible timetable

subject to resource allocation and time constraints
minimising

Priority-weighted departure delay
B Z Delay of train t at resource r
B Priority of train t

Train t, Resource r

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 26/35

Railway Rescheduling Problem

Train Station Timetable Timetable Minimum Minimum Scheduled Scheduled Delay

Arrival Departure Halt Run Arrival Departure
Time Time Time Time Time Time
101 Alpha 4:30 4:40 10 30
102 Alpha 0:00 0:05 5 10
601 Echo 9:15 9:16 1 60
401 Delta 3:20 3:35 15 20

Given an initial timetable

compute a feasible timetable

subject to resource allocation and time constraints
minimising

Priority-weighted departure delay
B Z Delay of train t at resource r
B Priority of train t

Train t, Resource r

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 26/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

A

Bravo Charlie Delta Echo

= vy

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

= > — — = %I
| ==
Alpha Bravo Charlie Delta Echo

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

- =]

Bravo Charlie Delta Echo

= T
A

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

| o | .
> — — =
— =

=

Bravo Charlie Delta Echo

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

- e =] - —g
— =

=

Bravo Charlie Delta Echo

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

- = @ @ - @«

— ===

Bravo Charlie Delta Echo

=

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

o | = o -l .
— > — P —] — - —
| = . - - |

Alpha Bravo Charlie Delta Echo

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

\
AY
A

| ==
Alpha Bravo Charlie Delta Echo

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

-

\
|
AY

| ==
Alpha Bravo Charlie Delta Echo

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

—_ — b=
| ==
Alpha Bravo Charlie Delta Echo

- — _ 2 —

AY

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

— B — B - —

AY
A

Alpha Bravo Charlie Delta Echo

Moving trains

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

Y
AV
A

Alpha Bravo Charlie Delta Echo

Intermediate state

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

Alpha Bravo Charlie Delta Echo

Deadlock!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

Y
AV
A

Alpha Bravo Charlie Delta Echo

Intermediate state

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

lllustration

A hypothetical railway line with 8 trains and 5 stations

_ = S - .
Alpha Bravo Charlie Delta Echo
No Deadlock!

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 27/35

Our Solution

Sort trains by
resource occupancy
& priority

l Start l

\
List of
train
events

Pick next train

v

Compute decision
& update event list

Set time to
earliest
event time

@ The wrapper layer picks a potential train to move.
@ We optimise the module that decides MOVE / STOP.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 28/35

State Space

. Horizon considered for state formation

. Current .

! train % V- '

' 3 — | X
— ===
I—

'@ ® @ ®!

: Current :

resource
1 0 2 0 2

Fairly Empty

Priority of State vector: gy ol
e (1,0,2,0,1,0,1,0,2,2) Totally Full

®@O

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 29/35

Policy Representation

10-dim State Vector

Weights being minimised using CMA-ES

d =352.

Shivaram Kalyanakrish CS 747, Autumn 202

Benchmark Railway Lines

Scenario Type Stations Trains Events Timetable span
HYP-2 Line 11 60 1320 4 hours
HYP-3 Line 11 120 2640 7 hours
KRCL Line 59 85 5418 3 days
Kanpur Line 27 190 7716 3 days
Ajmer Line 52 444 26258 7 days

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

31/35

Results

T T
\ Network |
\ —— KRCL

—— Ajmer |
—=— Kanpur

=
o
o
l
]

(o)} (0]
o o
[

Population Mean Delay (in mins)

40]
e
20 \\
A
o\“>A o
0 l>l—'l|'—l—i —l——l—,—'l—lﬁ:=>I4$2ﬁ—
2.5 5.0 7.5 10.0 125 15.0
Generation

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

Summary of Results

Priority-weighted departure delay.

Policy search RL TAH-FP TAH-CF Naive GWP PTD
HYP-2 4.28 (0) 4.78 (0) 4.58 (0) 5.93(0) 11.16(2) 4.35(0) 714.00 (0)
HYP-3 15.50 (0) 18.54 (0) 61.89 (97) 140.14 (95) -(100) 16.35(0) 2003.98 (0)
KRCL 42.34 (0) 43.04 (0) 46.41(8) 47.02 (0) -(100) 42.40 (0) 4714.08 (0)
Ajmer 3.92(0) 4.65(0) 10.76(3) 5.99 (0) 9.25(76) 3.99 (3) 8304.84 (0)
Kanpur 1.54(0) 1.66(0) 2.19 (0) 228(0) 1.85(0) 1.54(0) 313.60(0)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 33/35

Comparison with RL (Q-learning)
Priority-weighted departure delay.

100 T
o
80 <
60 *
- o
4
40
20 KRCL -
y Ajmer
= Kanpur _
0 Il Il

0 20 40 60 80 100
Policy Search (CMA-ES)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

Summary

@ Initial lectures assumed finite state spaces.
Seldom seen in practice!
@ Need to generalise over states (sometimes actions).

Function approximation has many empirical successes, yet
is often problematic, especially for control.

@ Quality of features/representation determines the validity of
Markovian assumption.

@ Policy search ignores Markovian structure—which
sometimes works to its advantage!

Conceptually simple; also has many empirical successes.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 35/35

Summary

@ Initial lectures assumed finite state spaces.
Seldom seen in practice!
@ Need to generalise over states (sometimes actions).

Function approximation has many empirical successes, yet
is often problematic, especially for control.

@ Quality of features/representation determines the validity of
Markovian assumption.

@ Policy search ignores Markovian structure—which
sometimes works to its advantage!

Conceptually simple; also has many empirical successes.
@ Next week: policy gradient methods.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 35/35

