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2. Issues in control with function approximation

3. Policy search

4. Case studies
» Humanoid robot soccer
» Railway scheduling
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How Good is Linear Function Approximation?

- \/1
.V, by — 1 if0<x<1,
~ 0 otherwise.
V7t e —
— by — 1 if1<x<2,
W w3 2700 otherwise.
%
‘ 1 if2<x<3,
0 1 2 3 bs = :
N 0 otherwise.

Va(x) = wiby + waobs + wabs.
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How Good is Linear Function Approximation?

V3(x): 18 piece-wise
constants.
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How Good is Linear Function Approximation?

@ Is V2 the obvious choice?
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How Good is Linear Function Approximation?

0 1 AB 2 3

@ Is V3 the obvious choice?
@ V3 has the highest resolution, but does not generalise well.
@ How to achieve high resolution along with generalisation?
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Tile coding

@ Atiling partitions x into equal-width regions called tiles.
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@ Atiling partitions x into equal-width regions called tiles.
@ Multiple tilings (say m) are created, each with an offset
(1/m tile width) from the previous.
@ Each tile has an associated weight.
@ The function value of a point is the sum of the weights of
the tiles intersecting it (one per tiling).
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Tile coding

@ Each tile is a binary feature.

@ Tile width and the number of tilings determine
generalisation, resolution.

@ Observe that two points more than (tile width / number of
tilings) apart can be given arbitrary function values.
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Representing Q

@ Given a feature value x as input, the corresponding set of
tilings T : R — R returns the sum of the weights of the tiles
activated by x.
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Representing Q

@ Given a feature value x as input, the corresponding set of
tilings T : R — R returns the sum of the weights of the tiles
activated by x.

@ The usual practice is to have a separate set of tilings
T4 : R — R for each action a and state feature
j€{1,2,...,d}. Hence

Q(s.a) = ) Toi(x(s))-

J=1
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Representing Q
@ Given a feature value x as input, the corresponding set of
tilings T : R — R returns the sum of the weights of the tiles
activated by x.
@ The usual practice is to have a separate set of tilings
T4 : R — R for each action a and state feature
j€{1,2,...,d}. Hence

d
= Tailx(s
p

@ Usually, tile widths and the number of tilings are configured
specifically for each feature. For example, in soccer, could
use 2m as tile width for “distance” features, and 10° as tile
width for “angle” features.
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2-d Tile coding

@ For representing more complex functions, can also have
tilings on conjunctions of features (see below for 2 features).

@ Introduces more parameters—which could help or hurt.
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Tile Coding: Summary

@ Linear function approximation does not restrict us to a
representation that is linear in the given/raw features.

@ Tile coding a standard approach to discretise input features
and tune both resolution and generalisation.

@ Enjoys many empirical successes, especially in conjunction
with Linear Sarsa(\).

@ Common to store weights in a hash table (collisions don’t
seem to hurt much), whose size is set based on practical
constraints.

@ 1-d tilings most common; rarely see conjunction of 3 or
more features.
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Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. Policy search

4. Case studies
» Humanoid robot soccer
» Railway scheduling
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A Counterexample
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@ Prediction problem (policy ).

@ Episodic, start state is s;.

@ Observe that V™(sy) = V™(s2) = 0.

@ Linear function approximation with single parameter w:
x(s1) =1,x(s2) = 2; hence V(s1) = w, V(s2) = 2w.
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@ Observe that V™(sy) = V™(s2) = 0.

@ Linear function approximation with single parameter w:
x(s1) = 1,x(s2) = 2; hence V(s1) = w, V(sz) = 2w.

@ What'’s the optimal setting of w?
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Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9/35



A Counterexample

€0

10@80
O @  —®

w 2w

@ Prediction problem (policy 7).

@ Episodic, start state is s;.

@ Observe that V™(sy) = V™(s2) = 0.

@ Linear function approximation with single parameter w:
x(s1) = 1,x(s2) = 2; hence V(s1) = w, V(sz) = 2w.

@ What'’s the optimal setting of w?

@ w = 0 gives the exact answer!

@ We design an iteration wyp — wy — wo — ..., and see if it
converges to 0 (due to Tsitsiklis and Van Roy, 1996).
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A Counterexample
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@ From state s, let &/, r be the (random) next state, reward.
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@ From state s, let s, r be the (random) next state, reward.
@ If our current estimate of V™ is V, the bootstrapping idea
suggests E.[r + vV(s')] as a “better estimate” of V7(s).
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@ From state s, let &/, r be the (random) next state, reward.
@ If our current estimate of V7 is V, the bootstrapping idea
suggests E.[r + vV(s)] as a “better estimate” of V7(s).

@ We update w so it best-fits the bootstrapped estimate in

terms of squared error on the states.
@ We begin with arbitrary wy, and for k > 0 set

W1 <— argmin Z <]E,r[r + 4 V(wi, x(s))] — V(w, X(S))>2-

weR G
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@ From state s, let &/, r be the (random) next state, reward.
@ If our current estimate of V7 is V, the bootstrapping idea
suggests E.[r + vV(s)] as a “better estimate” of V7(s).

@ We update w so it best-fits the bootstrapped estimate in

terms of squared error on the states.
@ We begin with arbitrary wy, and for k > 0 set

W1 <— argmin Z <]E,r[r + 4 V(wi, x(s))] — V(w, X(S))>2-

weR G

@ Is limg_,oo Wy = 07?
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@ From state s, let &/, r be the (random) next state, reward.
@ If our current estimate of V7 is V, the bootstrapping idea
suggests E.[r + vV(s)] as a “better estimate” of V7(s).

@ We update w so it best-fits the bootstrapped estimate in

terms of squared error on the states.
@ We begin with arbitrary wy, and for k > 0 set

W1 <— argmin Z <]E,r[r + 4 V(wi, x(s))] — V(w, X(S))>2-

weR G

@ Is limg_,oo Wx = 0? Let’s see.
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A Counterexample
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Wit —argmmz (Belr + 7 ¥ (e x(8))] — V(w.x(s)))”

weR

= argmin ((2ywi — w)® + (2y(1 — e)wi — 2w)?) = 76 — 4

Wy.
weR 5
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Wit —argmmz (Belr + 7 ¥ (e x(8))] — V(w.x(s)))”

weR

= argmin ((2ywi — w)® + (2y(1 — e)wi — 2w)?) = 76 — 4
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weR 5

@ Forwp=1,e=0.1,v =0.99, limk_,,, Wy = oo; divergence!
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Wit —argmmz (Belr + 7 ¥ (e x(8))] — V(w.x(s)))”

weR

= argmin ((2ywi — w)® + (2y(1 — e)wi — 2w)?) = 76 — 4 W .

weR 5
@ Forwp=1,e=0.1,v =0.99, limk_,,, Wy = oo; divergence!

@ The failure owes to the combination of three factors:
off-policy updating, generalisation, bootstrapping.
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A Counterexample
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iy = argin 3 (Bl 49 V(0 X() = V. X(5)

weR

— argmin (29w, — W) + (29(1 — )wy — 2w)?) = 22— .

weR 5

@ Forwp=1,e=0.1,v =0.99, limk_,,, Wy = oo; divergence!

@ The failure owes to the combination of three factors:
off-policy updating, generalisation, bootstrapping.

@ But these are almost always used together in practice!
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Summary of Theoretical Results*

Method Tabular Linear FA Non-linear FA
TD(0) C,0 C NK

TD(N), A € (0,1) C,0 C NK

TD(1) C,0 C, “Best”  C, Local optimum
Sarsa(0) C,0 Chattering NK

Sarsa(M), A € (0,1) NK Chattering NK

Sarsa(1) NK NK NK

Q-learning(0) C,0 NK NK

(C: Convergent; O: Optimal; NK: Not known.)

*: to the best of your instructor’s knowledge.
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Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. Policy search

4. Case studies
» Humanoid robot soccer
» Railway scheduling
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So Near, Yet So Far

Q*(x, RED)

rnRED X + CRED

mBLUEX + CBLUE
Q*(x, BLUE)

X

@ (mREP CcREP mpPUE cBLUE) g “good” approximation of Q.
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@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.
But induces non-optimal actions for x € (A, B).

@ (MREP CREP mPLUE gBLUE) g “bad” approximation of Q.
But induces optimal actions for all x!
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So Near, Yet So Far

Al B
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Q*(x, RED)

rnRED X + CRED

mBLUEx 4 (BLUE

mRED —<RED

X+cC
-- mBLUE BLUE

X +C

X

@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.
But induces non-optimal actions for x € (A, B).
@ (MREP CREP mPLUE gBLUE) g “bad” approximation of Q.

But induces optimal actions for all x!

@ Perhaps we found (mRE°, cREP ) mP-UE ¢BLUE) by Q-learning.
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So Near, Yet So Far

Al B

%Q*(x, BLUE)

-- mBLUE

X

@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.
But induces non-optimal actions for x € (A, B).
@ (MREP CREP mPLUE gBLUE) g “bad” approximation of Q.

Q*(x, RED)

rnRED X + CRED

mBLUEx 4 (BLUE

RED
BLUE

mREPx +¢

X +C

But induces optimal actions for all x!

@ Perhaps we found (mRE°, cREP ) mP-UE ¢BLUE) by Q-learning.

(* ] HOW to flnd (mRED’ ERED’ mBLUE, aBLUE)?
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Black Box Optimisation
@ An abstract model:
Input w = (wq, wa, ..., wy) — | System | — Output f(w).
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Black Box Optimisation
@ An abstract model:

Input w = (wq, s, ..., wy) — | System

— Output f(w).

For what input w is output f(w) maximum?

@ System: chemical manufacturing plant.

w: process parameters (temperature, ratio of chemical

mixture, time duration, pressure, etc.)
f(w): product yield.
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@ System: chemical manufacturing plant.

w: process parameters (temperature, ratio of chemical

mixture, time duration, pressure, etc.)
f(w): product yield.

@ System: Your MDP!
w: parameters defining your policy.

f(w): expected long-term reward (as a scalar).
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Black Box Optimisation
@ An abstract model:

Input w = (wq, s, ..., wy) — | System

— Output f(w).

For what input w is output f(w) maximum?

@ System: chemical manufacturing plant.

w: process parameters (temperature, ratio of chemical

mixture, time duration, pressure, etc.)
f(w): product yield.

@ System: Your MDP!
w: parameters defining your policy.

f(w): expected long-term reward (as a scalar).

@ Is finding the optimal w easy? Why is this approach called

black box optimisation?
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Typical Context for Black Box Optimisation

@ Little/nothing known/assumed about f—can be
discontinuous, non-linear, “erratic”.

@ Given w, evaluating f(w) is relatively efficient.

@ Calculating f(w) usually involves a computer simulation.
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@ Calculating f(w) usually involves a computer simulation.
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Typical Context for Black Box Optimisation

@ Little/nothing known/assumed about f—can be
discontinuous, non-linear, “erratic”.

@ Given w, evaluating f(w) is relatively efficient.

@ Calculating f(w) usually involves a computer simulation.

High

W2

@ How to find a “relatively good” w?
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Some Natural Approaches

Random weight guessing Grid search

High
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@ No method can be expected to work well for very large d
(1000’s or higher).
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Some Natural Approaches

Random weight guessing Grid search

High

@ These approaches work for small dimensions d (say d < 5).

@ No method can be expected to work well for very large d
(1000’s or higher).

@ Local search works for intermediate d (10’s, 100’s).
17/35



Local Search

@ lllustrative method: Hill Climbing.
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Local Search

@ lllustrative method: Hill Climbing.
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Local Search

@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms, .. ..

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19/35



Local Search

@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms, . ...

No decided winner among these (depends on problem, not
much guidance).
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@ Several other local search variants: simulated annealing,
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@ All instances of the generate and test paradigm.
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@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms, . ...

No decided winner among these (depends on problem, not
much guidance).

@ All instances of the generate and test paradigm.
— Ignores the structure of f.
+ Highly parallelisable.
+ Allow easy integration of domain knowledge.
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@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms, . ...

No decided winner among these (depends on problem, not
much guidance).

@ All instances of the generate and test paradigm.
— Ignores the structure of f.
+ Highly parallelisable.
+ Allow easy integration of domain knowledge.
Validation/successes primarily empirical; not much
theoretical justification.
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Local Search

@ Several other local search variants: simulated annealing,
ant-colony optimisation, particle swarm optimisation,
evolutionary algorithms, . ...

No decided winner among these (depends on problem, not
much guidance).

@ All instances of the generate and test paradigm.
— Ignores the structure of f.
+ Highly parallelisable.
+ Allow easy integration of domain knowledge.
Validation/successes primarily empirical; not much
theoretical justification.

@ Called Policy search when applied on the RL problem.
19/35



Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation

3. Policy search

4. Case studies

» Humanoid robot soccer
Joint work with Patrick MacAlpine, Yinon Bentor, Daniel
Urieli, and Peter Stone (UT Austin Villa robot soccer team).
» Railway scheduling
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Gait Optimisation: Policy Parameters

[ Notation |

Description ]

maxStep;

Maximum step sizes allowed for x, y, and 6

*

L Yenir

Side to side shift amount with no side velocity

*
lel’SO
*

Height of the torso from the ground

zstep

Maximum height of the foot from the ground

fg

Fraction of a phase that the swing
foot spends on the ground before lifting

fa

Fraction that the swing foot spends in the air

fs

Fraction before the swing foot starts moving

fm

Fraction that the swing foot spends moving

*
¢ length

Duration of a single step

Factors of how fast the step sizes change

Separation between the feet

*
Xoﬁset

Constant offset between the torso and feet

*
Xfactor

Factor of the step size applied to
the forwards position of the torso

err;kwrm

Maximum COM error before the steps are slowed

eIl fax

Maximum COM error before all velocity reach 0

Design and Optimization of an Omnidirectional Humanoid Walk: A WinningApproach at the RoboCup 2011 3D
Simulation Competition. Patrick MacAlpine, Samuel Barrett, Daniel Urieli, Victor Vu, and Peter Stone. In Proceedings
of the Twenty-Sixth AAAI Conference on Atrtificial Intelligence (AAAI 2012), AAAI Press, 2012.
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Progress of Forward Speed Optimisation
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0 10 20 30 40 50
generation

On Optimizing Interdependent Skills: A Case Study in Simulated 3D Humanoid Robot Soccer. Daniel Urieli,
Patrick MacAlpine, Shivaram Kalyanakrishnan, Yinon Bentor, and Peter Stone. In Proceedings of the Tenth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 769-776, IFAAMAS, 2011.
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RoboCup 2011 3D Simulation Competition

@ UT Austin Villa combined score: 136—0 (over 24 games).

| Rank | Team | Goal Difference |

3 apollo3d 1.45 (0.11)
5-8 boldhearts 2.00 (0.11)
5-8 robocanes 2.40 (0.10)
2 cit3d 3.33 (0.12)
5-8 fcportugal3d 3.75(0.11)
9-12 | magmaoffenburg 4.77 (0.12)
9-12 oxblue 4.83 (0.10)
4 kylinsky 5.52 (0.14)
9-12 dreamwing3d 6.22 (0.13)
5-8 seuredsun 6.79 (0.13)
13-18 karachikoalas 6.79 (0.09)
9-12 beestanbul 7.12 (0.11)

UT Austin Villa 2011: A Champion Agent in the RoboCup 3D Soccer Simulation Competition. Patrick MacAlpine,
Daniel Urieli, Samuel Barrett, Shivaram Kalyanakrishnan, Francisco Barrera, Adrian Lopez-Mobilia, Nicolae Stiurca,
Victor Vu, and Peter Stone. In Proceedings of the Eleventh International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2012), pp. 129-136, IFAAMAS, 2012.
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Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. Policy search

4. Case studies
» Humanoid robot soccer
» Railway scheduling
Joint work with Rohit Prasad and Harshad Khadilkar.
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Railways and the Economy

@ Indian Railways, 20000+ trains, 9.1 billion yearly ridership.
@ Delay incurs economic costs

[1] https://pixabay.com/photos/transportation-system-travel-vehicle-3351330/.
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Railway Rescheduling Problem

Train Station Timetable Timetable Minimum Minimum Scheduled Scheduled Delay

Arrival Departure Halt Run Arrival Departure
Time Time Time Time Time Time
101 Alpha 4:30 4:40 10 30
102 Alpha 0:00 0:05 5 10
601 Echo 9:15 9:16 1 60
401 Delta 3:20 3:35 15 20

Given an initial timetable

compute a feasible timetable

subject to resource allocation and time constraints
minimising

Priority-weighted departure delay
B Z Delay of train t at resource r
B Priority of train t

Train t, Resource r
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lllustration

A hypothetical railway line with 8 trains and 5 stations
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lllustration

A hypothetical railway line with 8 trains and 5 stations
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lllustration

A hypothetical railway line with 8 trains and 5 stations
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lllustration

A hypothetical railway line with 8 trains and 5 stations
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Our Solution

Sort trains by
resource occupancy
& priority

l Start l

\
List of
train
events

Pick next train

v

Compute decision
& update event list

Set time to
earliest
event time

@ The wrapper layer picks a potential train to move.
@ We optimise the module that decides MOVE / STOP.
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State Space

. Horizon considered for state formation
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Policy Representation

10-dim State Vector

Weights being minimised using CMA-ES

d =352.
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Benchmark Railway Lines

Scenario Type Stations Trains Events Timetable span
HYP-2 Line 11 60 1320 4 hours
HYP-3 Line 11 120 2640 7 hours
KRCL Line 59 85 5418 3 days
Kanpur Line 27 190 7716 3 days
Ajmer Line 52 444 26258 7 days
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Results
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Summary of Results

Priority-weighted departure delay.

Policy search RL TAH-FP TAH-CF Naive GWP PTD
HYP-2 4.28 (0) 4.78 (0) 4.58 (0) 5.93(0) 11.16(2) 4.35(0) 714.00 (0)
HYP-3 15.50 (0) 18.54 (0) 61.89 (97) 140.14 (95) -(100) 16.35(0) 2003.98 (0)
KRCL 42.34 (0) 43.04 (0) 46.41(8) 47.02 (0) -(100) 42.40 (0) 4714.08 (0)
Ajmer 3.92(0) 4.65(0) 10.76(3) 5.99 (0) 9.25(76) 3.99 (3) 8304.84 (0)
Kanpur 1.54(0) 1.66(0) 2.19 (0) 228(0) 1.85(0) 1.54(0) 313.60(0)
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Comparison with RL (Q-learning)
Priority-weighted departure delay.
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Summary

@ Initial lectures assumed finite state spaces.
Seldom seen in practice!
@ Need to generalise over states (sometimes actions).

Function approximation has many empirical successes, yet
is often problematic, especially for control.

@ Quality of features/representation determines the validity of
Markovian assumption.

@ Policy search ignores Markovian structure—which
sometimes works to its advantage!

Conceptually simple; also has many empirical successes.
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@ Quality of features/representation determines the validity of
Markovian assumption.

@ Policy search ignores Markovian structure—which
sometimes works to its advantage!

Conceptually simple; also has many empirical successes.
@ Next week: policy gradient methods.
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