CS 748, Spring 2021: Week 1, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Spring 2021

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 1/17

Multiagent Reinforcement Learning

This lecture is based on:

Markov games as a framework for multiagent reinforcement
learning, Michael L. Littman. In Proceedings of the Eleventh
International Conference on Machine Learning (ICML
1994), pp. 157-163, Morgan Kaufmann, 1994.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 2/17

Rock-Paper-Scissors
@ 2 players: A and O.
@ Each has action set {Rock, Paper, Scissors}.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 3/17

Rock-Paper-Scissors
@ 2 players: A and O.
@ Each has action set {Rock, Paper, Scissors}.

Rock Scissors

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

Rock-Paper-Scissors
@ 2 players: A and O.
@ Each has action set {Rock, Paper, Scissors}.

Rock Paper Scissors

@ A and O choose their action simultaneously.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 3/17

Rock-Paper-Scissors
@ 2 players: A and O.
@ Each has action set {Rock, Paper, Scissors}.

Rock Paper Scissors

@ A and O choose their action simultaneously.
@ No winner if both players play same action.
@ Rock beats Scissors.

@ Scissors beats Paper.

@ Paper beats Rock.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 3/17

[llustration
Game A’s action O’s action Winner

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

[llustration
Game A’s action O’s action Winner

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

[llustration
Game A’s action O’s action Winner

1 A
2 -
3 A

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

[llustration
Game A’s action O’s action Winner

1 A
2 -
3 A
4 O

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

[llustration
Game A’s action O’s action Winner

1 A
2 -
3 A
4 O

How to play this game?!

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

Multiagent Reinforcement Learning

@ Matrix game
@ Markov game (Stochastic game)
@ Minimax-Q learning algorithm

@ Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 5/17

Matrix Games: Examples
@ Row denotes A’s action.
@ Column denotes O’s action.
@ Entry denotes A’s reward, O’s reward.

Rock-Paper-Scissors

R[P]S
R[00 |-1,1 1,1
P[1,1]00 1,1
S{-11[1,-1]0,

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6/17

Matrix Games: Examples
@ Row denotes A’s action.
@ Column denotes O’s action.

@ Entry denotes A’s reward, O’s reward.

Rock-Paper-Scissors

Prisoner’s Dilemma

R[P]S
R[00 |-1,1 1,1
P[1,1]00 1,1
S{-11[1,-1]0,

Silent | Betray
Silent | -1,-1 -3,0
Betray | 0,-3 | -2,-2

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

6/17

Matrix Games: Examples
@ Row denotes A’s action.
@ Column denotes O’s action.
@ Entry denotes A’s reward, O’s reward.

Rock-Paper-Scissors Prisoner’s Dilemma
R P S Silent | Betray
R[00 |[-1,1]1,1 Silent | -1,-1 -3,0
Pl11]00 |-11 Betray | 0,-3 | -2,-2
S|-1,1]1,-1] 0,
Chicken
Swerve Straight
Swerve 0,0 -1,1
Straight| 1,-1 | —107,—10™

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6/17

Matrix Games: Examples
@ Row denotes A’s action.
@ Column denotes O’s action.
@ Entry denotes A’s reward, O’s reward.

Rock-Paper-Scissors Prisoner’s Dilemma
R P S Silent | Betray
R[00 |[-1,1]1,1 Silent | -1,-1 -3,0
Pl11]00 |-11 Betray | 0,-3 | -2,-2
S|-1,1]1,-1] 0,
Chicken
Swerve Straight
Swerve 0,0 -1,1
Straight| 1,-1 | —107,—10™

@ We restrict our attention to zero-sum games such as
Rock-Paper-Scissors.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6/17

Two Player Zero-Sum Matrix Game

@ A: setof A’s actions.

@ O: set of O’s actions.

@ p: AX O — [—Rmax, Rmaxl-

@ Is there such a thing as an
“optimal” policy (for A)?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

RIP[S
RO [-1]1
P[1]0]-1
S[-1]1]0

7117

Two Player Zero-Sum Matrix Game

@ A: setof A’s actions.

@ O :set of O’s actions.

@ p: AX O — [—Rmax, Rmaxl-

@ Is there such a thing as an
“optimal” policy (for A)?

@ Assume A is going to execute a piece of code to play the
game (might depend on history, might be stochastic).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

K

—

R
P
S

1

7117

Two Player Zero-Sum Matrix Game

@ A: setof A’s actions.

@ O :set of O’s actions.

@ p: AX O — [—Rmax, Rmaxl-

@ Is there such a thing as an
“optimal” policy (for A)?

@ Assume A is going to execute a piece of code to play the
game (might depend on history, might be stochastic).

K

—

R
P
S

1

@ Assume O knows what code A is going to execute, and will

play a best response.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

7117

Two Player Zero-Sum Matrix Game

@ A :setof A's actions. R|P|S
@ O: setof O’s actions. R0 |-1]|1
@ p: AX O — [—Rmax, Rmaxl- Pl1]0]-1
@ |s there such a thing as an S|-1]1

“optimal” policy (for A)?

@ Assume A is going to execute a piece of code to play the
game (might depend on history, might be stochastic).

@ Assume O knows what code A is going to execute, and will
play a best response.

@ Minimax optimality: what must A do to give itself as large a
reward guarantee as possible?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 7/17

Two Player Zero-Sum Matrix Game

@ A : setof A’s actions.

@ O: set of O’s actions.

K

—

R
o P A X O — [_Rmaxu Rmax]- P
@ |s there such a thing as an S

1

“optimal” policy (for A)?

@ Assume A is going to execute a piece of code to play the
game (might depend on history, might be stochastic).

@ Assume O knows what code A is going to execute, and will

play a best response.

@ Minimax optimality: what must A do to give itself as large a

reward guarantee as possible?

@ In general, A must use randomness in action-selection.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

7117

Two Player Zero-Sum Matrix Game

@ A : setof A’s actions.

@ O: set of O’s actions.

K

—

R
o P A X O — [_Rmaxu Rmax]- P
@ |s there such a thing as an S

1

“optimal” policy (for A)?

@ Assume A is going to execute a piece of code to play the
game (might depend on history, might be stochastic).

@ Assume O knows what code A is going to execute, and will

play a best response.

@ Minimax optimality: what must A do to give itself as large a

reward guarantee as possible?

@ In general, A must use randomness in action-selection.
@ Notation: Policy = “strategy”; deterministic policy = “pure
strategy”; randomised policy = “mixed strategy”.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

7117

Solving for a Minimax-optimal Strategy
@ Let A play strategy (7w, 7p, 7s).

@ If A’s strategy is fixed, O can play a deterministic best

response

argmin (mrp(R, 0) + mpp(P, 0) + 1sp(S, 0)) .

0c0

@ Consequently A’s expected reward is
V= r(‘)neig (mrp(R, 0) + mpp(P, 0) + msp(S, 0)) .

@ Can be solved through an LP with variables 7R, 7p, s, V.

Maximise V subject to

mrp(R, 0) + mpp(P, 0) + msp(S, 0) > V for o0 € O,

TR, TP, TS = 07

TR+ 7p + s = 1.

@ Solution: V* =0; 715 = 1p = 7§ =

1
ot

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021

8/17

Nash Equilibrium
@ Suppose A, 0 play strategies 74, 7°, respectively.
o 74 70 constitute a Nash equilibrium if each is a best
response to the other:

79 € argmin V(74 7),
™

7 € argmax V(r, 7°).
™

@ Satisfied in Rock-Paper-Scissors by

11 1
A_.,o_ (> = °
T ‘<3’3’3)‘

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 9/17

Nash Equilibrium

@ Suppose A, 0 play strategies 74, 7°, respectively.

e 74 70 constitute a Nash equilibrium if each is a best
response to the other:

79 € argmin V(74 7),

™

7 € argmax V(r, 7°).

™

@ Satisfied in Rock-Paper-Scissors by

11 1
A__o_ (V11
T _<3’3’3)‘

@ Finite Matrix games are guaranteed to have at least one
Nash Equilibrium.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 9/17

Nash Equilibrium

@ Suppose A, 0 play strategies 74, 7°, respectively.

e 74 70 constitute a Nash equilibrium if each is a best
response to the other:

79 € argmin V(74 7),

™

7 € argmax V(r, 7°).

™

@ Satisfied in Rock-Paper-Scissors by

11 1
A__o_ (V11
T _<3’3’3)‘

@ Finite Matrix games are guaranteed to have at least one
Nash Equilibrium.

@ In two player zero sum games, 7* and 7© constitute a Nash
equilibrium if and only if they are both minimax-optimal.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 9/17

Multiagent Reinforcement Learning

@ Matrix game
@ Markov game (Stochastic game)
@ Minimax-Q learning algorithm

@ Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 10/17

Two Player Zero-sum Markov Game

@ S: set of states.

@ A: set of A’s actions.

@ O: set of O’s actions.

@ R:Sx Ax O — [—Rumax Rmal-

@ T:SxAx0OxS—[0,1],suchthat) _57(s,a05)=1
fors,s’ € S,ac A, o€ O.

@ v € [0, 1): discount factor.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 11/17

Two Player Zero-sum Markov Game

@ S: set of states.

@ A: set of A’s actions.

@ O: set of O’s actions.

@ R:SxAX O — [—Runax, Rmaxl-

@ T:SxAx0OxS—[0,1],suchthat) _57(s,a05)=1
fors,s’ € S,ac A, o€ O.

@ v € [0, 1): discount factor.

@ Guaranteed unigue minimax value function V*: S — R.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 11/17

Two Player Zero-sum Markov Game

@ S: set of states.

@ A: set of A’s actions.

@ O: set of O’s actions.

@ R:SxAX O — [—Runax, Rmaxl-

@ T:SxAx0OxS—[0,1],suchthat) _57(s,a05)=1
fors,s’ € S,ac A, o€ O.

@ v € [0, 1): discount factor.

@ Guaranteed unique minimax value function V* : S — R.
@ Note that actions are taken simultaneously.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 11/17

Two Player Zero-sum Markov Game

@ S: set of states.

@ A: set of A’s actions.

@ O: set of O’s actions.

@ R:SxAX O — [—Runax, Rmaxl-

@ T:SxAx0OxS—[0,1],suchthat) _57(s,a05)=1
fors,s’ € S,ac A, o€ O.

@ v € [0, 1): discount factor.

@ Guaranteed unique minimax value function V* : S — R.
@ Note that actions are taken simultaneously.

@ Examples of Markov games: boxing, soccer, carrying
furniture up the stairs.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 11/17

Solving for a Minimax-optimal Strategy

@ We solve for A’s minimax-optimal strategy using an iterative
approach (a form of value iteration).

Initialise V° : S — R arbitrarily. i < 0.
Do:
Forse S,ac A o€ O:
Q(s,a,0) « R(s,a,0)+7 Y ges T(s,a,0,8) V(5.
Forse S:
Viti(s) « MaXrepp(A) MiNoeo D 44 () Q(S, &, 0).
[« i+1.
While |V — V1|l > e.
Return V'

@ Converges to V*; can derive Q* and 7* from V*.
@ Similar approach can yield O’s minimax-optimal strategy.

Shivaram Kalyanakrishnan (2021) 12/17

Generality of Markov Games

Bandits Matrix games

MDPs Markov games

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/17

Generality of Markov Games

Bandits Matrix games
MDPs Markov games

@ Can A learn to play “well” against O in a Markov game
(S5,A,0,R. T,v)?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/17

Generality of Markov Games

Bandits Matrix games
MDPs Markov games

@ Can A learn to play “well” against O in a Markov game
(S5,A,0,R. T,v)?
@ R and T unknown; players go along a trajectory

s%.a%, 0% 10 s, a0, r', s%, &, 0%, r?,

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/17

Generality of Markov Games

Bandits Matrix games
MDPs Markov games

@ Can A learn to play “well” against O in a Markov game
(S,A,0,R, T,7)?
@ R and T unknown; players go along a trajectory

§%.a% 0% r0 s a0, r!, 82, &, 0% r?,

@ Can A act according to a minimax-optimal policy in the limit
of experience (assuming O performs infinite exploration)?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/17

Multiagent Reinforcement Learning

@ Matrix game
@ Markov game (Stochastic game)
@ Minimax-Q learning algorithm

@ Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 14/17

Minimax-Q Learning Algorithm
@ Assume A implements this algorithm.
@ Initialise Q°, V°, 0 arbitrarily.
° Takeat:et:t%fortzo.
@ Pick actions uniformly at random with probability ¢;; follow 7!
with remaining probability.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 15/17

Minimax-Q Learning Algorithm
@ Assume A implements this algorithm.
@ Initialise Q°, V°, 0 arbitrarily.
@ Take oy = ¢; = 5 for t > 0.
@ Pick actions uniformly at random with probability e;; follow 7
with remaining probability.

@ Upon encountering transition (s!, a', of, rt, st*1) for t > 0:

1. Qz‘+1(st7 a', o St+1) . Q'(s', &', o, St+1)(1 — ay)

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 15/17

Minimax-Q Learning Algorithm
@ Assume A implements this algorithm.
@ Initialise Q°, V°, 0 arbitrarily.
@ Take oy = ¢; = 5 for t > 0.
@ Pick actions uniformly at random with probability e;; follow 7
with remaining probability.

@ Upon encountering transition (s!, a', of, rt, st*1) for t > 0:
1. Qt+1(st at Ot St+1) ya Qt(stﬂatﬂot7 St+1)(1 - at)
e —i—at(l’t —f-’th(StH)).
2. Using LP for each s € S, set
mH(8) <= argmax, cppa) MiNoco . 7(S, @) Q' (s, &, 0).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 15/17

Minimax-Q Learning Algorithm
@ Assume A implements this algorithm.
@ Initialise Q°, V°, 0 arbitrarily.
@ Take oy = ¢; = 5 for t > 0.
@ Pick actions uniformly at random with probability e;; follow 7
with remaining probability.

@ Upon encountering transition (s!, a', of, rt, st*1) for t > 0:
1. Qt+1(st at Ot St+1) ya Qt(stﬂatﬂot7 St+1)(1 - at)
e —i—at(l’t —f-’th(StH)).
2. Using LP for each s € S, set
mH(8) <= argmax, cppa) MiNoco . 7(S, @) Q' (s, &, 0).
3. Forse S, set
VI(S) « mingeo Y ea ™ 1(s, @) QM (s, @, 0).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 15/17

Minimax-Q Learning Algorithm
@ Assume A implements this algorithm.
@ Initialise Q°, V°, 0 arbitrarily.
@ Take oy = ¢; = 5 for t > 0.
@ Pick actions uniformly at random with probability e;; follow 7
with remaining probability.

@ Upon encountering transition (s!, a', of, rt, st*1) for t > 0:
1. Qt+1(st at Ot St+1) ya Qt(stﬂatﬂot7 St+1)(1 - at)
e +at(l’t —f-’th(StH)).
2. Using LP for each s € S, set
m1(8) <= argmax, cpp(ay Minoeco Y 4 7(S, @) Q' (s, @, 0).
3. Forse S, set
VI(S) « mingeo Y ea ™ 1(s, @) QM (s, @, 0).

@ Induces actions according to minimax-optimal policy in the
limit if O visits each state-action pair infinitely often.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 15/17

Multiagent Reinforcement Learning

@ Matrix game
@ Markov game (Stochastic game)
@ Minimax-Q learning algorithm

@ Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 16/17

Summary and Outlook

@ Game theory predates theory of MDPs.

@ Question of learning in games more recent.

@ Technical issues: nonstationarity, size of joint-action space.

@ Desiderata: convergence in self-play, convergence to best
response against opponent playing fixed strategy, etc.

@ Mechanism design considers how games must be set up so
desired group behaviour emerges.

@ Social choice theory specifically looks at protocols for
surveys/elections.

@ Multiagency also a key aspect in the co-evolution of
populations.

@ Many recent applications: ad auctions, on-line markets,
games (Poker, Go, Robot soccer), surveillance.

@ Wide-ranging questions: do a course on game
theory/multiagent systems!

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 17/17

