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Multiagent Reinforcement Learning

This lecture is based on:

Markov games as a framework for multiagent reinforcement
learning, Michael L. Littman. In Proceedings of the Eleventh
International Conference on Machine Learning (ICML
1994), pp. 157–163, Morgan Kaufmann, 1994.
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Rock-Paper-Scissors
2 players: A and O.
Each has action set {Rock, Paper, Scissors}.

Rock Paper Scissors

A and O choose their action simultaneously.
No winner if both players play same action.
Rock beats Scissors.
Scissors beats Paper.
Paper beats Rock.
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Illustration
Game A’s action O’s action Winner

1 A

2 –

3 A

4 O

How to play this game?!
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Multiagent Reinforcement Learning

Matrix game

Markov game (Stochastic game)

Minimax-Q learning algorithm

Discussion
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Matrix Games: Examples
Row denotes A’s action.
Column denotes O’s action.
Entry denotes A’s reward, O’s reward.

Rock-Paper-Scissors
R P S

R 0,0 -1,1 1,-1
P 1,1 0,0 -1,1
S -1,1 1,-1 0,0

Prisoner’s Dilemma
Silent Betray

Silent -1,-1 -3,0
Betray 0,-3 -2,-2

Chicken
Swerve Straight

Swerve 0,0 -1,1
Straight 1,-1 −1010,−1010

We restrict our attention to zero-sum games such as
Rock-Paper-Scissors.
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Two Player Zero-Sum Matrix Game
A : set of A’s actions.
O : set of O’s actions.
ρ : A×O → [−Rmax,Rmax].
Is there such a thing as an
“optimal” policy (for A)?

R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Assume A is going to execute a piece of code to play the
game (might depend on history, might be stochastic).
Assume O knows what code A is going to execute, and will
play a best response.
Minimax optimality: what must A do to give itself as large a
reward guarantee as possible?
In general, A must use randomness in action-selection.
Notation: Policy = “strategy”; deterministic policy = “pure
strategy”; randomised policy = “mixed strategy”.
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Solving for a Minimax-optimal Strategy
Let A play strategy (πR, πP, πS).
If A’s strategy is fixed, O can play a deterministic best
response

argmin
o∈O

(πRρ(R,o) + πPρ(P,o) + πSρ(S,o)) .

Consequently A’s expected reward is

V = min
o∈O

(πRρ(R,o) + πPρ(P,o) + πSρ(S,o)) .

Can be solved through an LP with variables πR, πP, πS,V .

Maximise V subject to
πRρ(R,o) + πPρ(P,o) + πSρ(S,o) ≥ V for o ∈ O,

πR, πP, πS ≥ 0,
πR + πP + πS = 1.

Solution: V ? = 0; π?R = π?P = π?S = 1
3 .
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Nash Equilibrium
Suppose A, 0 play strategies πA, πO, respectively.
πA, πO constitute a Nash equilibrium if each is a best
response to the other:

πO ∈ argmin
π

V (πA, π),

πA ∈ argmax
π

V (π, π0).

Satisfied in Rock-Paper-Scissors by

πA = πO =

(
1
3
,
1
3
,
1
3

)
.

Finite Matrix games are guaranteed to have at least one
Nash Equilibrium.
In two player zero sum games, πA and πO constitute a Nash
equilibrium if and only if they are both minimax-optimal.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 9 / 17



9/17

Nash Equilibrium
Suppose A, 0 play strategies πA, πO, respectively.
πA, πO constitute a Nash equilibrium if each is a best
response to the other:

πO ∈ argmin
π

V (πA, π),

πA ∈ argmax
π

V (π, π0).

Satisfied in Rock-Paper-Scissors by

πA = πO =

(
1
3
,
1
3
,
1
3

)
.

Finite Matrix games are guaranteed to have at least one
Nash Equilibrium.

In two player zero sum games, πA and πO constitute a Nash
equilibrium if and only if they are both minimax-optimal.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 9 / 17



9/17

Nash Equilibrium
Suppose A, 0 play strategies πA, πO, respectively.
πA, πO constitute a Nash equilibrium if each is a best
response to the other:

πO ∈ argmin
π

V (πA, π),

πA ∈ argmax
π

V (π, π0).

Satisfied in Rock-Paper-Scissors by

πA = πO =

(
1
3
,
1
3
,
1
3

)
.

Finite Matrix games are guaranteed to have at least one
Nash Equilibrium.
In two player zero sum games, πA and πO constitute a Nash
equilibrium if and only if they are both minimax-optimal.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 9 / 17



10/17

Multiagent Reinforcement Learning

Matrix game

Markov game (Stochastic game)

Minimax-Q learning algorithm

Discussion
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Two Player Zero-sum Markov Game

S: set of states.
A: set of A’s actions.
O: set of O’s actions.
R : S × A×O → [−Rmax,Rmax].
T : S ×A×O ×S → [0,1], such that

∑
s′∈S T (s,a,o, s′) = 1

for s, s′ ∈ S, a ∈ A, o ∈ O.
γ ∈ [0,1): discount factor.

Guaranteed unique minimax value function V ? : S → R.
Note that actions are taken simultaneously.
Examples of Markov games: boxing, soccer, carrying
furniture up the stairs.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 11 / 17



11/17

Two Player Zero-sum Markov Game

S: set of states.
A: set of A’s actions.
O: set of O’s actions.
R : S × A×O → [−Rmax,Rmax].
T : S ×A×O ×S → [0,1], such that

∑
s′∈S T (s,a,o, s′) = 1

for s, s′ ∈ S, a ∈ A, o ∈ O.
γ ∈ [0,1): discount factor.

Guaranteed unique minimax value function V ? : S → R.

Note that actions are taken simultaneously.
Examples of Markov games: boxing, soccer, carrying
furniture up the stairs.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 11 / 17



11/17

Two Player Zero-sum Markov Game

S: set of states.
A: set of A’s actions.
O: set of O’s actions.
R : S × A×O → [−Rmax,Rmax].
T : S ×A×O ×S → [0,1], such that

∑
s′∈S T (s,a,o, s′) = 1

for s, s′ ∈ S, a ∈ A, o ∈ O.
γ ∈ [0,1): discount factor.

Guaranteed unique minimax value function V ? : S → R.
Note that actions are taken simultaneously.

Examples of Markov games: boxing, soccer, carrying
furniture up the stairs.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 11 / 17



11/17

Two Player Zero-sum Markov Game

S: set of states.
A: set of A’s actions.
O: set of O’s actions.
R : S × A×O → [−Rmax,Rmax].
T : S ×A×O ×S → [0,1], such that

∑
s′∈S T (s,a,o, s′) = 1

for s, s′ ∈ S, a ∈ A, o ∈ O.
γ ∈ [0,1): discount factor.

Guaranteed unique minimax value function V ? : S → R.
Note that actions are taken simultaneously.
Examples of Markov games: boxing, soccer, carrying
furniture up the stairs.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 11 / 17



12/17

Solving for a Minimax-optimal Strategy
We solve for A’s minimax-optimal strategy using an iterative
approach (a form of value iteration).

Initialise V 0 : S → R arbitrarily. i ← 0.
Do:

For s ∈ S,a ∈ A,o ∈ O:
Q(s,a,o)← R(s,a,o) + γ

∑
s′∈S T (s,a,o, s′)V i(s′).

For s ∈ S:
V i+1(s)← maxπ∈PD(A) mino∈O

∑
a∈A π(a)Q(s,a,o).

i ← i + 1.
While ‖V i − V i−1‖∞ > ε.
Return V i .

Converges to V ?; can derive Q? and π? from V ?.
Similar approach can yield O’s minimax-optimal strategy.
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Generality of Markov Games

Bandits

MDPs

Matrix games

Markov games

Can A learn to play “well” against O in a Markov game
(S,A,O,R,T , γ)?
R and T unknown; players go along a trajectory

s0,a0,o0, r 0, s1,a1,o1, r 1, s2,a2,o2, r 2, . . . .

Can A act according to a minimax-optimal policy in the limit
of experience (assuming O performs infinite exploration)?
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Multiagent Reinforcement Learning

Matrix game
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Minimax-Q Learning Algorithm
Assume A implements this algorithm.
Initialise Q0, V 0, π0 arbitrarily.
Take αt = εt =

1
t+1 for t ≥ 0.

Pick actions uniformly at random with probability εt ; follow πt

with remaining probability.

Upon encountering transition (st ,at ,ot , r t , st+1) for t ≥ 0:

1. Qt+1(st ,at ,ot , st+1)←

{
Qt(st ,at ,ot , st+1)(1− αt)

+αt(r t + γV t(st+1)).

2. Using LP for each s ∈ S, set
πt+1(s)← argmaxπ∈PD(A)mino∈O

∑
a∈A π(s,a)Q

t+1(s,a,o).
3. For s ∈ S, set

V t+1(s)← mino∈O
∑

a∈A π
t+1(s,a)Qt+1(s,a,o).

Induces actions according to minimax-optimal policy in the
limit if O visits each state-action pair infinitely often.
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Summary and Outlook
Game theory predates theory of MDPs.
Question of learning in games more recent.
Technical issues: nonstationarity, size of joint-action space.
Desiderata: convergence in self-play, convergence to best
response against opponent playing fixed strategy, etc.
Mechanism design considers how games must be set up so
desired group behaviour emerges.
Social choice theory specifically looks at protocols for
surveys/elections.
Multiagency also a key aspect in the co-evolution of
populations.
Many recent applications: ad auctions, on-line markets,
games (Poker, Go, Robot soccer), surveillance.
Wide-ranging questions: do a course on game
theory/multiagent systems!

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 17 / 17


