

CS 748, Spring 2021: Week 1, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Spring 2021

Multiagent Reinforcement Learning

This lecture is based on:

Markov games as a framework for multiagent reinforcement learning, Michael L. Littman. In Proceedings of the Eleventh International Conference on Machine Learning (ICML 1994), pp. 157–163, Morgan Kaufmann, 1994.

Rock-Paper-Scissors

- 2 players: **A** and **O**.
- Each has action set {Rock, Paper, Scissors}.

Rock-Paper-Scissors

- 2 players: **A** and **O**.
- Each has action set {Rock, Paper, Scissors}.

Rock

Paper

Scissors

Rock-Paper-Scissors

- 2 players: A and O.
- Each has action set {Rock, Paper, Scissors}.

Rock

Paper

Scissors

- A and O choose their action **simultaneously**.

Rock-Paper-Scissors

- 2 players: A and O.
- Each has action set {Rock, Paper, Scissors}.

Rock

Paper

Scissors

- A and O choose their action **simultaneously**.
- No winner if both players play same action.
- Rock beats Scissors.
- Scissors beats Paper.
- Paper beats Rock.

Illustration

Game	A's action	O's action	Winner
1			A

Illustration

Game	A's action	O's action	Winner
1			A
2			—

Illustration

Game	A's action	O's action	Winner
1			A
2			-
3			A

Illustration

Game	A's action	O's action	Winner
1			A
2			—
3			A
4			O

Illustration

Game	A's action	O's action	Winner
1			A
2			—
3			A
4			O

How to play this game?!

Multiagent Reinforcement Learning

- Matrix game
- Markov game (Stochastic game)
- Minimax-Q learning algorithm
- Discussion

Matrix Games: Examples

- Row denotes A's action.
- Column denotes O's action.
- Entry denotes A's reward, O's reward.

Rock-Paper-Scissors

	R	P	S
R	0,0	-1,1	1,-1
P	1,1	0,0	-1,1
S	-1,1	1,-1	0,0

Matrix Games: Examples

- Row denotes A's action.
- Column denotes O's action.
- Entry denotes A's reward, O's reward.

Rock-Paper-Scissors

	R	P	S
R	0,0	-1,1	1,-1
P	1,1	0,0	-1,1
S	-1,1	1,-1	0,0

Prisoner's Dilemma

	Silent	Betray
Silent	-1,-1	-3,0
Betray	0,-3	-2,-2

Matrix Games: Examples

- Row denotes A's action.
- Column denotes O's action.
- Entry denotes A's reward, O's reward.

Rock-Paper-Scissors

	R	P	S
R	0,0	-1,1	1,-1
P	1,1	0,0	-1,1
S	-1,1	1,-1	0,0

Prisoner's Dilemma

	Silent	Betray
Silent	-1,-1	-3,0
Betray	0,-3	-2,-2

Chicken

	Swerve	Straight
Swerve	0,0	-1,1
Straight	1,-1	-10 ¹⁰ , -10 ¹⁰

Matrix Games: Examples

- Row denotes A's action.
- Column denotes O's action.
- Entry denotes A's reward, O's reward.

Rock-Paper-Scissors

	R	P	S
R	0,0	-1,1	1,-1
P	1,1	0,0	-1,1
S	-1,1	1,-1	0,0

Prisoner's Dilemma

	Silent	Betray
Silent	-1,-1	-3,0
Betray	0,-3	-2,-2

Chicken

	Swerve	Straight
Swerve	0,0	-1,1
Straight	1,-1	-10 ¹⁰ , -10 ¹⁰

- We restrict our attention to **zero-sum** games such as Rock-Paper-Scissors.

Two Player Zero-Sum Matrix Game

- A : set of A's actions.
- O : set of O's actions.
- $\rho : A \times O \rightarrow [-R_{\max}, R_{\max}]$.
- Is there such a thing as an “optimal” policy (for A)?

	R	P	S
R	0	-1	1
P	1	0	-1
S	-1	1	0

Two Player Zero-Sum Matrix Game

- A : set of A's actions.
- O : set of O's actions.
- $\rho : A \times O \rightarrow [-R_{\max}, R_{\max}]$.
- Is there such a thing as an “optimal” policy (for A)?
- Assume A is going to execute a piece of code to play the game (might depend on history, might be stochastic).

	R	P	S
R	0	-1	1
P	1	0	-1
S	-1	1	0

Two Player Zero-Sum Matrix Game

- A : set of A's actions.
 - O : set of O's actions.
 - $\rho : A \times O \rightarrow [-R_{\max}, R_{\max}]$.
 - Is there such a thing as an “optimal” policy (for A)?
-
- Assume A is going to execute a piece of code to play the game (might depend on history, might be stochastic).
 - Assume O **knows** what code A is going to execute, and will play a **best response**.

	R	P	S
R	0	-1	1
P	1	0	-1
S	-1	1	0

Two Player Zero-Sum Matrix Game

- A : set of A's actions.
 - O : set of O's actions.
 - $\rho : A \times O \rightarrow [-R_{\max}, R_{\max}]$.
 - Is there such a thing as an “optimal” policy (for A)?
-
- Assume A is going to execute a piece of code to play the game (might depend on history, might be stochastic).
 - Assume O **knows** what code A is going to execute, and will play a **best response**.
 - **Minimax optimality**: what must A do to give itself as large a reward guarantee as possible?

	R	P	S
R	0	-1	1
P	1	0	-1
S	-1	1	0

Two Player Zero-Sum Matrix Game

- A : set of A's actions.
 - O : set of O's actions.
 - $\rho : A \times O \rightarrow [-R_{\max}, R_{\max}]$.
 - Is there such a thing as an “optimal” policy (for A)?
-
- Assume A is going to execute a piece of code to play the game (might depend on history, might be stochastic).
 - Assume O **knows** what code A is going to execute, and will play a **best response**.
 - **Minimax optimality**: what must A do to give itself as large a reward guarantee as possible?
 - In general, A must use **randomness** in action-selection.

	R	P	S
R	0	-1	1
P	1	0	-1
S	-1	1	0

Two Player Zero-Sum Matrix Game

- A : set of A's actions.
 - O : set of O's actions.
 - $\rho : A \times O \rightarrow [-R_{\max}, R_{\max}]$.
 - Is there such a thing as an “optimal” policy (for A)?
-
- Assume A is going to execute a piece of code to play the game (might depend on history, might be stochastic).
 - Assume O **knows** what code A is going to execute, and will play a **best response**.
 - **Minimax optimality**: what must A do to give itself as large a reward guarantee as possible?
 - In general, A must use **randomness** in action-selection.
 - **Notation**: Policy = “**strategy**”; deterministic policy = “**pure strategy**”; randomised policy = “**mixed strategy**”.

	R	P	S
R	0	-1	1
P	1	0	-1
S	-1	1	0

Solving for a Minimax-optimal Strategy

- Let A play strategy (π_R, π_P, π_S) .
- If A's strategy is fixed, O can play a deterministic best response

$$\operatorname{argmin}_{o \in O} (\pi_R \rho(R, o) + \pi_P \rho(P, o) + \pi_S \rho(S, o)).$$

- Consequently A's expected reward is

$$V = \min_{o \in O} (\pi_R \rho(R, o) + \pi_P \rho(P, o) + \pi_S \rho(S, o)).$$

- Can be solved through an LP with variables π_R, π_P, π_S, V .

Maximise V subject to

$$\pi_R \rho(R, o) + \pi_P \rho(P, o) + \pi_S \rho(S, o) \geq V \text{ for } o \in O,$$

$$\pi_R, \pi_P, \pi_S \geq 0,$$

$$\pi_R + \pi_P + \pi_S = 1.$$

- Solution: $V^* = 0; \pi_R^* = \pi_P^* = \pi_S^* = \frac{1}{3}$.

Nash Equilibrium

- Suppose A, O play strategies π^A , π^O , respectively.
- π^A, π^O constitute a Nash equilibrium if each is a best response to the other:

$$\pi^O \in \operatorname{argmin}_{\pi} V(\pi^A, \pi),$$

$$\pi^A \in \operatorname{argmax}_{\pi} V(\pi, \pi^0).$$

- Satisfied in Rock-Paper-Scissors by

$$\pi^A = \pi^O = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right).$$

Nash Equilibrium

- Suppose A, O play strategies π^A, π^O , respectively.
- π^A, π^O constitute a Nash equilibrium if each is a best response to the other:

$$\pi^O \in \operatorname{argmin}_{\pi} V(\pi^A, \pi),$$

$$\pi^A \in \operatorname{argmax}_{\pi} V(\pi, \pi^0).$$

- Satisfied in Rock-Paper-Scissors by

$$\pi^A = \pi^O = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right).$$

- Finite Matrix games are guaranteed to have at least one Nash Equilibrium.

Nash Equilibrium

- Suppose A, 0 play strategies π^A, π^O , respectively.
- π^A, π^O constitute a Nash equilibrium if each is a best response to the other:

$$\pi^O \in \operatorname{argmin}_{\pi} V(\pi^A, \pi),$$

$$\pi^A \in \operatorname{argmax}_{\pi} V(\pi, \pi^0).$$

- Satisfied in Rock-Paper-Scissors by

$$\pi^A = \pi^O = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right).$$

- Finite Matrix games are guaranteed to have at least one Nash Equilibrium.
- In two player zero sum games, π^A and π^O constitute a Nash equilibrium if and only if they are both minimax-optimal.

Multiagent Reinforcement Learning

- Matrix game
- Markov game (Stochastic game)
- Minimax-Q learning algorithm
- Discussion

Two Player Zero-sum Markov Game

- S : set of states.
- A : set of A's actions.
- O : set of O's actions.
- $R : S \times A \times O \rightarrow [-R_{\max}, R_{\max}]$.
- $T : S \times A \times O \times S \rightarrow [0, 1]$, such that $\sum_{s' \in S} T(s, a, o, s') = 1$ for $s, s' \in S, a \in A, o \in O$.
- $\gamma \in [0, 1)$: discount factor.

Two Player Zero-sum Markov Game

- S : set of states.
- A : set of A's actions.
- O : set of O's actions.
- $R : S \times A \times O \rightarrow [-R_{\max}, R_{\max}]$.
- $T : S \times A \times O \times S \rightarrow [0, 1]$, such that $\sum_{s' \in S} T(s, a, o, s') = 1$ for $s, s' \in S, a \in A, o \in O$.
- $\gamma \in [0, 1)$: discount factor.
- Guaranteed unique minimax value function $V^* : S \rightarrow \mathbb{R}$.

Two Player Zero-sum Markov Game

- S : set of states.
 - A : set of A's actions.
 - O : set of O's actions.
 - $R : S \times A \times O \rightarrow [-R_{\max}, R_{\max}]$.
 - $T : S \times A \times O \times S \rightarrow [0, 1]$, such that $\sum_{s' \in S} T(s, a, o, s') = 1$ for $s, s' \in S, a \in A, o \in O$.
 - $\gamma \in [0, 1)$: discount factor.
-
- Guaranteed unique minimax value function $V^* : S \rightarrow \mathbb{R}$.
 - Note that actions are taken simultaneously.

Two Player Zero-sum Markov Game

- S : set of states.
 - A : set of A's actions.
 - O : set of O's actions.
 - $R : S \times A \times O \rightarrow [-R_{\max}, R_{\max}]$.
 - $T : S \times A \times O \times S \rightarrow [0, 1]$, such that $\sum_{s' \in S} T(s, a, o, s') = 1$ for $s, s' \in S, a \in A, o \in O$.
 - $\gamma \in [0, 1)$: discount factor.
-
- Guaranteed unique minimax value function $V^* : S \rightarrow \mathbb{R}$.
 - Note that actions are taken simultaneously.
 - Examples of Markov games: boxing, soccer, carrying furniture up the stairs.

Solving for a Minimax-optimal Strategy

- We solve for A's minimax-optimal strategy using an iterative approach (a form of value iteration).

Initialise $V^0 : S \rightarrow \mathbb{R}$ arbitrarily. $i \leftarrow 0$.

Do:

For $s \in S, a \in A, o \in O$:

$$Q(s, a, o) \leftarrow R(s, a, o) + \gamma \sum_{s' \in S} T(s, a, o, s') V^i(s').$$

For $s \in S$:

$$V^{i+1}(s) \leftarrow \max_{\pi \in \text{PD}(A)} \min_{o \in O} \sum_{a \in A} \pi(a) Q(s, a, o).$$

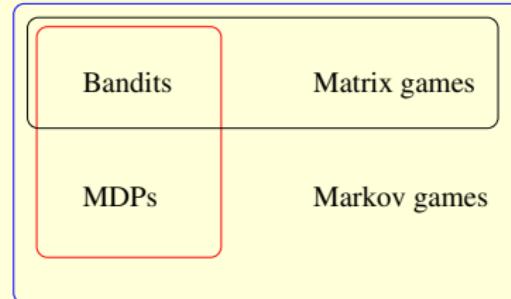
$$i \leftarrow i + 1.$$

While $\|V^i - V^{i-1}\|_\infty > \epsilon$.

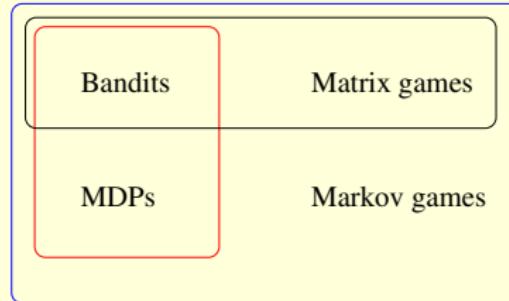
Return V^i .

- Converges to V^* ; can derive Q^* and π^* from V^* .
- Similar approach can yield O's minimax-optimal strategy.

Generality of Markov Games

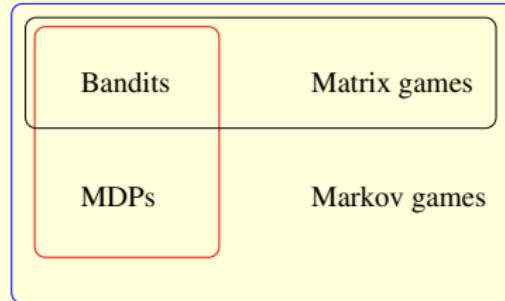


Generality of Markov Games



- Can A **learn** to play “well” against O in a Markov game (S, A, O, R, T, γ) ?

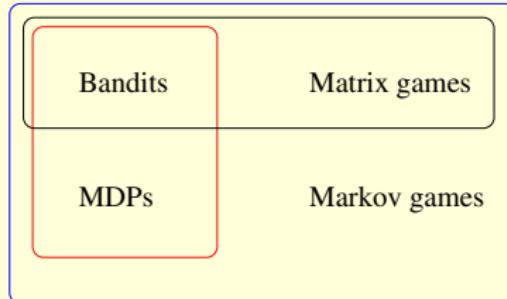
Generality of Markov Games



- Can A **learn** to play “well” against O in a Markov game (S, A, O, R, T, γ) ?
- R and T unknown; players go along a trajectory

$$s^0, a^0, o^0, r^0, s^1, a^1, o^1, r^1, s^2, a^2, o^2, r^2, \dots$$

Generality of Markov Games



- Can A **learn** to play “well” against O in a Markov game (S, A, O, R, T, γ) ?
- R and T unknown; players go along a trajectory

$$s^0, a^0, o^0, r^0, s^1, a^1, o^1, r^1, s^2, a^2, o^2, r^2, \dots$$

- Can A act according to a minimax-optimal policy in the limit of experience (assuming O performs infinite exploration)?

Multiagent Reinforcement Learning

- Matrix game
- Markov game (Stochastic game)
- Minimax-Q learning algorithm
- Discussion

Minimax-Q Learning Algorithm

- Assume A implements this algorithm.
- Initialise Q^0 , V^0 , π^0 arbitrarily.
- Take $\alpha_t = \epsilon_t = \frac{1}{t+1}$ for $t \geq 0$.
- Pick actions uniformly at random with probability ϵ_t ; follow π^t with remaining probability.

Minimax-Q Learning Algorithm

- Assume A implements this algorithm.
- Initialise Q^0 , V^0 , π^0 arbitrarily.
- Take $\alpha_t = \epsilon_t = \frac{1}{t+1}$ for $t \geq 0$.
- Pick actions uniformly at random with probability ϵ_t ; follow π^t with remaining probability.
- Upon encountering transition $(s^t, a^t, o^t, r^t, s^{t+1})$ for $t \geq 0$:

$$1. \quad Q^{t+1}(s^t, a^t, o^t, s^{t+1}) \leftarrow \begin{cases} Q^t(s^t, a^t, o^t, s^{t+1})(1 - \alpha_t) \\ + \alpha_t(r^t + \gamma V^t(s^{t+1})). \end{cases}$$

Minimax-Q Learning Algorithm

- Assume A implements this algorithm.
- Initialise Q^0 , V^0 , π^0 arbitrarily.
- Take $\alpha_t = \epsilon_t = \frac{1}{t+1}$ for $t \geq 0$.
- Pick actions uniformly at random with probability ϵ_t ; follow π^t with remaining probability.
- Upon encountering transition $(s^t, a^t, o^t, r^t, s^{t+1})$ for $t \geq 0$:

1.
$$Q^{t+1}(s^t, a^t, o^t, s^{t+1}) \leftarrow \begin{cases} Q^t(s^t, a^t, o^t, s^{t+1})(1 - \alpha_t) \\ + \alpha_t(r^t + \gamma V^t(s^{t+1})). \end{cases}$$

2. Using LP for each $s \in S$, set

$$\pi^{t+1}(s) \leftarrow \operatorname{argmax}_{\pi \in \text{PD}(A)} \min_{o \in O} \sum_{a \in A} \pi(s, a) Q^{t+1}(s, a, o).$$

Minimax-Q Learning Algorithm

- Assume A implements this algorithm.
- Initialise Q^0, V^0, π^0 arbitrarily.
- Take $\alpha_t = \epsilon_t = \frac{1}{t+1}$ for $t \geq 0$.
- Pick actions uniformly at random with probability ϵ_t ; follow π^t with remaining probability.
- Upon encountering transition $(s^t, a^t, o^t, r^t, s^{t+1})$ for $t \geq 0$:

1.
$$Q^{t+1}(s^t, a^t, o^t, s^{t+1}) \leftarrow \begin{cases} Q^t(s^t, a^t, o^t, s^{t+1})(1 - \alpha_t) \\ + \alpha_t(r^t + \gamma V^t(s^{t+1})). \end{cases}$$
2. Using LP for each $s \in S$, set
$$\pi^{t+1}(s) \leftarrow \operatorname{argmax}_{\pi \in \text{PD}(A)} \min_{o \in O} \sum_{a \in A} \pi(s, a) Q^{t+1}(s, a, o).$$
3. For $s \in S$, set
$$V^{t+1}(s) \leftarrow \min_{o \in O} \sum_{a \in A} \pi^{t+1}(s, a) Q^{t+1}(s, a, o).$$

Minimax-Q Learning Algorithm

- Assume A implements this algorithm.
- Initialise Q^0, V^0, π^0 arbitrarily.
- Take $\alpha_t = \epsilon_t = \frac{1}{t+1}$ for $t \geq 0$.
- Pick actions uniformly at random with probability ϵ_t ; follow π^t with remaining probability.
- Upon encountering transition $(s^t, a^t, o^t, r^t, s^{t+1})$ for $t \geq 0$:

1.
$$Q^{t+1}(s^t, a^t, o^t, s^{t+1}) \leftarrow \begin{cases} Q^t(s^t, a^t, o^t, s^{t+1})(1 - \alpha_t) \\ + \alpha_t(r^t + \gamma V^t(s^{t+1})). \end{cases}$$
2. Using LP for each $s \in S$, set
$$\pi^{t+1}(s) \leftarrow \operatorname{argmax}_{\pi \in \text{PD}(A)} \min_{o \in O} \sum_{a \in A} \pi(s, a) Q^{t+1}(s, a, o).$$
3. For $s \in S$, set
$$V^{t+1}(s) \leftarrow \min_{o \in O} \sum_{a \in A} \pi^{t+1}(s, a) Q^{t+1}(s, a, o).$$

- Induces actions according to minimax-optimal policy in the limit if O visits each state-action pair infinitely often.

Multiagent Reinforcement Learning

- Matrix game
- Markov game (Stochastic game)
- Minimax-Q learning algorithm
- Discussion

Summary and Outlook

- Game theory predates theory of MDPs.
- Question of **learning** in games more recent.
- Technical issues: **nonstationarity**, size of **joint-action** space.
- Desiderata: convergence in **self-play**, convergence to **best response** against opponent playing fixed strategy, etc.
- **Mechanism design** considers how games must be set up so desired group behaviour emerges.
- **Social choice theory** specifically looks at protocols for surveys/elections.
- Multiagency also a key aspect in the **co-evolution** of populations.
- Many recent **applications**: ad auctions, on-line markets, games (Poker, Go, Robot soccer), surveillance.
- Wide-ranging questions: do a course on game theory/multiagent systems!