
1/35

CS 748, Spring 2021: Week 2, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Spring 2021

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 1 / 35

2/35

Navigation System
How to go from IIT Bombay to Marine Drive?

Start

Destination

Action

[1]

[1] https://www.flickr.com/photos/nat507/16088993607. CC image courtesy of Nathan Hughes Hamilton
on Flickr licensed under CC BY 2.0.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 2 / 35

https://www.flickr.com/photos/nat507/16088993607

2/35

Navigation System
How to go from IIT Bombay to Marine Drive?

Start

Destination

Action

[1]

[1] https://www.flickr.com/photos/nat507/16088993607. CC image courtesy of Nathan Hughes Hamilton
on Flickr licensed under CC BY 2.0.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 2 / 35

https://www.flickr.com/photos/nat507/16088993607

3/35

Some Popular Puzzles
How to solve?

Start

Destination

Action

Sudoku [1]

15-puzzle [2] Same abstraction?

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_
puzzle_with_17_clues%29.png. CC image courtesy of LithiumFlash on WikiCommons licensed under
CC-BY-SA-4.0.

[2] https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CC image courtesy of Stannic
on WikiMedia Commons licensed under CC-BY-SA-3.0

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 3 / 35

https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg

3/35

Some Popular Puzzles
How to solve?

Start

Destination

Action

Sudoku [1] 15-puzzle [2]

Same abstraction?

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_
puzzle_with_17_clues%29.png. CC image courtesy of LithiumFlash on WikiCommons licensed under
CC-BY-SA-4.0.
[2] https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CC image courtesy of Stannic
on WikiMedia Commons licensed under CC-BY-SA-3.0

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 3 / 35

https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg

3/35

Some Popular Puzzles
How to solve?

Start

Destination

Action

Sudoku [1] 15-puzzle [2] Same abstraction?

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_
puzzle_with_17_clues%29.png. CC image courtesy of LithiumFlash on WikiCommons licensed under
CC-BY-SA-4.0.
[2] https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CC image courtesy of Stannic
on WikiMedia Commons licensed under CC-BY-SA-3.0

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 3 / 35

https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg

4/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 4 / 35

4/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 4 / 35

5/35

Elements of a Search Problem Instance

Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when
applied from start state:

I reaches a goal state, and
I (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is called the
branching factor b.
Length of optimal path to reach goal state is called the
depth d of the search instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 5 / 35

5/35

Elements of a Search Problem Instance
Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when
applied from start state:

I reaches a goal state, and
I (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is called the
branching factor b.
Length of optimal path to reach goal state is called the
depth d of the search instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 5 / 35

5/35

Elements of a Search Problem Instance
Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when
applied from start state:

I reaches a goal state, and
I (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is called the
branching factor b.
Length of optimal path to reach goal state is called the
depth d of the search instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 5 / 35

5/35

Elements of a Search Problem Instance
Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when
applied from start state:

I reaches a goal state, and
I (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is called the
branching factor b.
Length of optimal path to reach goal state is called the
depth d of the search instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 5 / 35

5/35

Elements of a Search Problem Instance
Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when
applied from start state:

I reaches a goal state, and
I (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is called the
branching factor b.
Length of optimal path to reach goal state is called the
depth d of the search instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 5 / 35

6/35

Problem Formulation: Navigation System

Start

Destination

Action

States?

Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the least-cost path.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6 / 35

6/35

Problem Formulation: Navigation System

Start

Destination

Action

States?
Start state?

Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the least-cost path.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6 / 35

6/35

Problem Formulation: Navigation System

Start

Destination

Action

States?
Start state?
Actions?

NextState()?
Cost()?
IsGoal()?

A solver needs to find the least-cost path.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6 / 35

6/35

Problem Formulation: Navigation System

Start

Destination

Action

States?
Start state?
Actions?
NextState()?

Cost()?
IsGoal()?

A solver needs to find the least-cost path.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6 / 35

6/35

Problem Formulation: Navigation System

Start

Destination

Action

States?
Start state?
Actions?
NextState()?
Cost()?

IsGoal()?

A solver needs to find the least-cost path.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6 / 35

6/35

Problem Formulation: Navigation System

Start

Destination

Action

States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the least-cost path.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6 / 35

6/35

Problem Formulation: Navigation System

Start

Destination

Action

States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the least-cost path.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6 / 35

6/35

Problem Formulation: Navigation System

Start

Destination

Action

(Least−cost) Path

States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the least-cost path.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 6 / 35

7/35

Problem Formulation: 15 Puzzle

5 15

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

4

15

4

13 2 3 12

11 1 10

5 14

8 7 6

4

15

4

13 2 3 12

9 11 1 10

14

8 7 6

44

13 2 3 12

9 11 1 10

5 14

8 7 6

9

32

14

1 4

5 6 7 8

9 10 11 12

13 15

. . .

Start state

Goal state

States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the shortest path to goal state.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 7 / 35

7/35

Problem Formulation: 15 Puzzle

5 15

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

4

15

4

13 2 3 12

11 1 10

5 14

8 7 6

4

15

4

13 2 3 12

9 11 1 10

14

8 7 6

44

13 2 3 12

9 11 1 10

5 14

8 7 6

9

32

14

1 4

5 6 7 8

9 10 11 12

13 15

. . .

Start state

Goal state

States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the shortest path to goal state.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 7 / 35

8/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 8 / 35

9/35

Generic Search Template: Pseudocode

Primary data element is a Node, which a tuple of the form

(state,pathFromStartState,pathCost).

At every stage of the search,
- some states have been explored
- some states remain unexplored, and
- The Frontier is a set of nodes due for imminent expansion.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 9 / 35

9/35

Generic Search Template: Pseudocode

Primary data element is a Node, which a tuple of the form

(state,pathFromStartState,pathCost).

At every stage of the search,
- some states have been explored
- some states remain unexplored, and
- The Frontier is a set of nodes due for imminent expansion.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 9 / 35

9/35

Generic Search Template: Pseudocode

Frontier ← {Node(startState, (startState),0)}.
Repeat for ever:

Select a node n from Frontier .

//Which one?

//Expand n.
If isGoal(n.state):

Return n.
For each action a available from n.state:

s ← NextState(n.state,a).
c ← Cost(n.state,a).
n′ ← Node(s,n.path+(a, s),n.pathCost + c).
Merge n′ with Frontier .//Typically insertion;
might also allow deletions.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 9 / 35

9/35

Generic Search Template: Pseudocode

Frontier ← {Node(startState, (startState),0)}.
Repeat for ever:

Select a node n from Frontier .//Which one?
//Expand n.
If isGoal(n.state):

Return n.
For each action a available from n.state:

s ← NextState(n.state,a).
c ← Cost(n.state,a).
n′ ← Node(s,n.path+(a, s),n.pathCost + c).
Merge n′ with Frontier .//Typically insertion;
might also allow deletions.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 9 / 35

10/35

Generic Search Template: Illustration

Start

Destination

Action

How did we decide which frontier nodes to expand?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 10 / 35

10/35

Generic Search Template: Illustration

Explored

Frontier

Unexplored

How did we decide which frontier nodes to expand?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 10 / 35

10/35

Generic Search Template: Illustration

Explored

Frontier

Unexplored

How did we decide which frontier nodes to expand?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 10 / 35

10/35

Generic Search Template: Illustration

Explored

Frontier

Unexplored

How did we decide which frontier nodes to expand?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 10 / 35

10/35

Generic Search Template: Illustration

Explored

Frontier

Unexplored

How did we decide which frontier nodes to expand?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 10 / 35

10/35

Generic Search Template: Illustration

Explored

Frontier

Unexplored

Goal

How did we decide which frontier nodes to expand?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 10 / 35

10/35

Generic Search Template: Illustration

Explored

Frontier

Unexplored

Goal

How did we decide which frontier nodes to expand?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 10 / 35

11/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 11 / 35

12/35

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack (LIFO).
No need to explicitly maintain frontier (construct on-line).
Guaranteed to terminate on finite search instances.
Memory requirement linear in depth d .

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 12 / 35

12/35

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack (LIFO).
No need to explicitly maintain frontier (construct on-line).
Guaranteed to terminate on finite search instances.
Memory requirement linear in depth d .

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 12 / 35

12/35

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack (LIFO).
No need to explicitly maintain frontier (construct on-line).
Guaranteed to terminate on finite search instances.
Memory requirement linear in depth d .

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 12 / 35

12/35

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack (LIFO).
No need to explicitly maintain frontier (construct on-line).
Guaranteed to terminate on finite search instances.
Memory requirement linear in depth d .

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 12 / 35

12/35

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack (LIFO).
No need to explicitly maintain frontier (construct on-line).
Guaranteed to terminate on finite search instances.
Memory requirement linear in depth d .

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 12 / 35

12/35

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack (LIFO).

No need to explicitly maintain frontier (construct on-line).
Guaranteed to terminate on finite search instances.
Memory requirement linear in depth d .

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 12 / 35

12/35

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack (LIFO).
No need to explicitly maintain frontier (construct on-line).

Guaranteed to terminate on finite search instances.
Memory requirement linear in depth d .

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 12 / 35

12/35

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack (LIFO).
No need to explicitly maintain frontier (construct on-line).
Guaranteed to terminate on finite search instances.

Memory requirement linear in depth d .

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 12 / 35

12/35

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack (LIFO).
No need to explicitly maintain frontier (construct on-line).
Guaranteed to terminate on finite search instances.
Memory requirement linear in depth d .

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 12 / 35

13/35

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).
Guaranteed to terminate if search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13 / 35

13/35

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).
Guaranteed to terminate if search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13 / 35

13/35

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).
Guaranteed to terminate if search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13 / 35

13/35

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).
Guaranteed to terminate if search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13 / 35

13/35

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).
Guaranteed to terminate if search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13 / 35

13/35

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).
Guaranteed to terminate if search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13 / 35

13/35

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).
Guaranteed to terminate if search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13 / 35

13/35

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).

Guaranteed to terminate if search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13 / 35

13/35

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).
Guaranteed to terminate if search depth is finite.

Memory requirement O(bd).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13 / 35

13/35

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).
Guaranteed to terminate if search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13 / 35

14/35

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).
Guaranteed to terminate if search depth is finite and each
cost exceeds ε > 0.
Memory requirement depends heavily on instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 14 / 35

14/35

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).
Guaranteed to terminate if search depth is finite and each
cost exceeds ε > 0.
Memory requirement depends heavily on instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 14 / 35

14/35

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).
Guaranteed to terminate if search depth is finite and each
cost exceeds ε > 0.
Memory requirement depends heavily on instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 14 / 35

14/35

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).
Guaranteed to terminate if search depth is finite and each
cost exceeds ε > 0.
Memory requirement depends heavily on instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 14 / 35

14/35

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).
Guaranteed to terminate if search depth is finite and each
cost exceeds ε > 0.
Memory requirement depends heavily on instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 14 / 35

14/35

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).

Guaranteed to terminate if search depth is finite and each
cost exceeds ε > 0.
Memory requirement depends heavily on instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 14 / 35

14/35

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).
Guaranteed to terminate if search depth is finite and each
cost exceeds ε > 0.

Memory requirement depends heavily on instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 14 / 35

14/35

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).
Guaranteed to terminate if search depth is finite and each
cost exceeds ε > 0.
Memory requirement depends heavily on instance.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 14 / 35

15/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 15 / 35

16/35

Incorporating Domain Knowledge into Search
Have to travel from Powai to Mahim.

Mahim

Powai

First you expand the Powai node.
Which node will you expand next?
L&T and Hiranandani are geographically closer to Mahim:
should that count?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 16 / 35

16/35

Incorporating Domain Knowledge into Search
Have to travel from Powai to Mahim.

L&T

Ghatkopar

Kanjur Marg

Vikhroli

Mahim

Hiranandani

Powai

First you expand the Powai node.

Which node will you expand next?
L&T and Hiranandani are geographically closer to Mahim:
should that count?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 16 / 35

16/35

Incorporating Domain Knowledge into Search
Have to travel from Powai to Mahim.

L&T

Ghatkopar

Kanjur Marg

Vikhroli

Mahim

Hiranandani

Powai

First you expand the Powai node.
Which node will you expand next?

L&T and Hiranandani are geographically closer to Mahim:
should that count?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 16 / 35

16/35

Incorporating Domain Knowledge into Search
Have to travel from Powai to Mahim.

L&T

Ghatkopar

Kanjur Marg

Vikhroli

Mahim

Hiranandani

Powai

First you expand the Powai node.
Which node will you expand next?
L&T and Hiranandani are geographically closer to Mahim:
should that count?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 16 / 35

17/35

Heuristic Functions and A? Search Algorithm
A heuristic function h(n) is a guess of c?(n), the optimal
path-cost-to-goal of (the state in) node n.

h(n) is usually easy to compute. On the previous slide, we
implicitly used straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A? search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the
future (unknown).
The addition of h(n) makes A? an informed or heuristic
search algorithm.
A? search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 17 / 35

17/35

Heuristic Functions and A? Search Algorithm
A heuristic function h(n) is a guess of c?(n), the optimal
path-cost-to-goal of (the state in) node n.
h(n) is usually easy to compute. On the previous slide, we
implicitly used straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A? search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the
future (unknown).
The addition of h(n) makes A? an informed or heuristic
search algorithm.
A? search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 17 / 35

17/35

Heuristic Functions and A? Search Algorithm
A heuristic function h(n) is a guess of c?(n), the optimal
path-cost-to-goal of (the state in) node n.
h(n) is usually easy to compute. On the previous slide, we
implicitly used straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).

In A? search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the
future (unknown).
The addition of h(n) makes A? an informed or heuristic
search algorithm.
A? search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 17 / 35

17/35

Heuristic Functions and A? Search Algorithm
A heuristic function h(n) is a guess of c?(n), the optimal
path-cost-to-goal of (the state in) node n.
h(n) is usually easy to compute. On the previous slide, we
implicitly used straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A? search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the
future (unknown).
The addition of h(n) makes A? an informed or heuristic
search algorithm.
A? search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 17 / 35

17/35

Heuristic Functions and A? Search Algorithm
A heuristic function h(n) is a guess of c?(n), the optimal
path-cost-to-goal of (the state in) node n.
h(n) is usually easy to compute. On the previous slide, we
implicitly used straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A? search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the
future (unknown).

The addition of h(n) makes A? an informed or heuristic
search algorithm.
A? search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 17 / 35

17/35

Heuristic Functions and A? Search Algorithm
A heuristic function h(n) is a guess of c?(n), the optimal
path-cost-to-goal of (the state in) node n.
h(n) is usually easy to compute. On the previous slide, we
implicitly used straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A? search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the
future (unknown).
The addition of h(n) makes A? an informed or heuristic
search algorithm.

A? search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 17 / 35

17/35

Heuristic Functions and A? Search Algorithm
A heuristic function h(n) is a guess of c?(n), the optimal
path-cost-to-goal of (the state in) node n.
h(n) is usually easy to compute. On the previous slide, we
implicitly used straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A? search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the
future (unknown).
The addition of h(n) makes A? an informed or heuristic
search algorithm.
A? search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 17 / 35

18/35

Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c?(n),

where c?(n) is the optimal cost-to-goal of n.state.

Key result. If A? search is run using an admissible heuristic
(and some minor technical conditions hold), then the first
goal node it expands will have optimal path-cost from the
start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for
navigation? Yes.

For a given task, which is the best heuristic function to use?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 18 / 35

18/35

Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c?(n),

where c?(n) is the optimal cost-to-goal of n.state.

Key result. If A? search is run using an admissible heuristic
(and some minor technical conditions hold), then the first
goal node it expands will have optimal path-cost from the
start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for
navigation? Yes.

For a given task, which is the best heuristic function to use?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 18 / 35

18/35

Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c?(n),

where c?(n) is the optimal cost-to-goal of n.state.

Key result. If A? search is run using an admissible heuristic
(and some minor technical conditions hold), then the first
goal node it expands will have optimal path-cost from the
start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for
navigation?

Yes.

For a given task, which is the best heuristic function to use?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 18 / 35

18/35

Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c?(n),

where c?(n) is the optimal cost-to-goal of n.state.

Key result. If A? search is run using an admissible heuristic
(and some minor technical conditions hold), then the first
goal node it expands will have optimal path-cost from the
start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for
navigation? Yes.

For a given task, which is the best heuristic function to use?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 18 / 35

18/35

Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c?(n),

where c?(n) is the optimal cost-to-goal of n.state.

Key result. If A? search is run using an admissible heuristic
(and some minor technical conditions hold), then the first
goal node it expands will have optimal path-cost from the
start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for
navigation? Yes.

For a given task, which is the best heuristic function to use?
Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 18 / 35

19/35

Effect of Heuristic

Start Destination

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 19 / 35

19/35

Effect of Heuristic

Start ExpandedDestination

h(n) = c?(n). Will only expand nodes along optimal path!
Unfortunately c?(n) is not known!

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 19 / 35

19/35

Effect of Heuristic

Start ExpandedDestination

h(n) = 0. Identical to LCFS.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 19 / 35

19/35

Effect of Heuristic

Start ExpandedDestination

Intermediate/typical h(n) expands fewer nodes than LCFS.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 19 / 35

20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?

For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35

20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35

20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35

20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35

20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?

Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35

20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35

21/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 21 / 35

22/35

Search and Games

Chess

[1]

Checkers/Draughts

[2]

Winning at chess/checkers: a search problem?
What’s the main difference from our previous examples?

There’s another player!

Instances of turn-based two player zero-sum games.

[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC
image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.
[2] https://commons.wikimedia.org/wiki/File:Draughts.svg.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 22 / 35

https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg
https://commons.wikimedia.org/wiki/File:Draughts.svg

22/35

Search and Games

Chess [1] Checkers/Draughts [2]

Winning at chess/checkers: a search problem?
What’s the main difference from our previous examples?

There’s another player!

Instances of turn-based two player zero-sum games.

[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC
image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.
[2] https://commons.wikimedia.org/wiki/File:Draughts.svg.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 22 / 35

https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg
https://commons.wikimedia.org/wiki/File:Draughts.svg

22/35

Search and Games

Chess [1] Checkers/Draughts [2]

Winning at chess/checkers: a search problem?

What’s the main difference from our previous examples?

There’s another player!

Instances of turn-based two player zero-sum games.

[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC
image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.
[2] https://commons.wikimedia.org/wiki/File:Draughts.svg.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 22 / 35

https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg
https://commons.wikimedia.org/wiki/File:Draughts.svg

22/35

Search and Games

Chess [1] Checkers/Draughts [2]

Winning at chess/checkers: a search problem?
What’s the main difference from our previous examples?

There’s another player!
Instances of turn-based two player zero-sum games.

[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC
image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.
[2] https://commons.wikimedia.org/wiki/File:Draughts.svg.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 22 / 35

https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg
https://commons.wikimedia.org/wiki/File:Draughts.svg

22/35

Search and Games

Chess [1] Checkers/Draughts [2]

Winning at chess/checkers: a search problem?
What’s the main difference from our previous examples?
There’s another player!

Instances of turn-based two player zero-sum games.

[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC
image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.
[2] https://commons.wikimedia.org/wiki/File:Draughts.svg.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 22 / 35

https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg
https://commons.wikimedia.org/wiki/File:Draughts.svg

22/35

Search and Games

Chess [1] Checkers/Draughts [2]

Winning at chess/checkers: a search problem?
What’s the main difference from our previous examples?
There’s another player!
Instances of turn-based two player zero-sum games.
[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC
image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.
[2] https://commons.wikimedia.org/wiki/File:Draughts.svg.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 22 / 35

https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg
https://commons.wikimedia.org/wiki/File:Draughts.svg

23/35

Game Tree
Assume turn-taking zero sum game played by Max and Min.
Action costs usually taken as 0, but leaves have value

−1 (Max loses), 0 (draw), 1 (Max wins).
Value of Max node is maximum of values of children.
Value of Min node is minimum of values of children.

What is the value of the root node?

Max

Leaf

Min

11

0

10

10 −1

−1

In 2007, a massive, long-running computation concluded
that the value of the root node for Checkers is 0 (draw).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 23 / 35

23/35

Game Tree
Assume turn-taking zero sum game played by Max and Min.
Action costs usually taken as 0, but leaves have value

−1 (Max loses), 0 (draw), 1 (Max wins).
Value of Max node is maximum of values of children.
Value of Min node is minimum of values of children.
What is the value of the root node?

Max

Leaf

Min

11

0

10

10 −1

−1

In 2007, a massive, long-running computation concluded
that the value of the root node for Checkers is 0 (draw).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 23 / 35

23/35

Game Tree
Assume turn-taking zero sum game played by Max and Min.
Action costs usually taken as 0, but leaves have value

−1 (Max loses), 0 (draw), 1 (Max wins).
Value of Max node is maximum of values of children.
Value of Min node is minimum of values of children.
What is the value of the root node?

Max

Leaf

Min

11

0

10

10 −1

−1

0

0 1

0

1

0

−1

−1

In 2007, a massive, long-running computation concluded
that the value of the root node for Checkers is 0 (draw).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 23 / 35

23/35

Game Tree
Assume turn-taking zero sum game played by Max and Min.
Action costs usually taken as 0, but leaves have value

−1 (Max loses), 0 (draw), 1 (Max wins).
Value of Max node is maximum of values of children.
Value of Min node is minimum of values of children.
What is the value of the root node?

Max

Leaf

Min

11

0

10

10 −1

−1

0

0 1

0

1

0

−1

−1

In 2007, a massive, long-running computation concluded
that the value of the root node for Checkers is 0 (draw).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 23 / 35

24/35

Evaluation Function
The Checkers tree has ≈ 1040 nodes; Chess has ≈ 10120.
Infeasible to solve!

Max

Leaf

Min

11

0

10

10 −1

−1??

?

?

?

?

Cannot explore beyond
this depth!

At some depth d from current node, estimate node value
using features.
For example, in Chess, set evaluation as

w1×Material diff.+w2×King safety+w3×pawn strength+. . . .

Weights w1,w2,w3, . . . are tuned or learned.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 24 / 35

24/35

Evaluation Function
The Checkers tree has ≈ 1040 nodes; Chess has ≈ 10120.
Infeasible to solve!

Max

Leaf

Min

11

0

10

10 −1

−1??

?

?

?

?

Cannot explore beyond
this depth!

At some depth d from current node, estimate node value
using features.
For example, in Chess, set evaluation as

w1×Material diff.+w2×King safety+w3×pawn strength+. . . .

Weights w1,w2,w3, . . . are tuned or learned.
Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 24 / 35

25/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 25 / 35

26/35

Decision-time planning: Problem

So far we have assumed that an agent’s learning algorithm
produces π or Q as output. While acting on-line, the agent
just needs a “look up” or associative “forward pass” from
any state s to obtain its action.

Sometimes π or Q might be difficult to learn in compact
form, but a model M = (T ,R) (given or learned, exact or
approximate) might be available.
In decision-time planning, at every time step, we “imagine”
possible futures emanating from the current state by using
M, and use the computation to decide which action to take.
How to rigorously do so?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 26 / 35

26/35

Decision-time planning: Problem

So far we have assumed that an agent’s learning algorithm
produces π or Q as output. While acting on-line, the agent
just needs a “look up” or associative “forward pass” from
any state s to obtain its action.
Sometimes π or Q might be difficult to learn in compact
form, but a model M = (T ,R) (given or learned, exact or
approximate) might be available.

In decision-time planning, at every time step, we “imagine”
possible futures emanating from the current state by using
M, and use the computation to decide which action to take.
How to rigorously do so?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 26 / 35

26/35

Decision-time planning: Problem

So far we have assumed that an agent’s learning algorithm
produces π or Q as output. While acting on-line, the agent
just needs a “look up” or associative “forward pass” from
any state s to obtain its action.
Sometimes π or Q might be difficult to learn in compact
form, but a model M = (T ,R) (given or learned, exact or
approximate) might be available.
In decision-time planning, at every time step, we “imagine”
possible futures emanating from the current state by using
M, and use the computation to decide which action to take.

How to rigorously do so?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 26 / 35

26/35

Decision-time planning: Problem

So far we have assumed that an agent’s learning algorithm
produces π or Q as output. While acting on-line, the agent
just needs a “look up” or associative “forward pass” from
any state s to obtain its action.
Sometimes π or Q might be difficult to learn in compact
form, but a model M = (T ,R) (given or learned, exact or
approximate) might be available.
In decision-time planning, at every time step, we “imagine”
possible futures emanating from the current state by using
M, and use the computation to decide which action to take.
How to rigorously do so?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 26 / 35

27/35

Tree Search on MDPs

. . .

Current state

Grow up to height h

Non−terminal state

Terminal state

Action

Transition probabilities

Reward

Expectimax calculation. Set Qh ← 0 //Leaves.
For d = h − 1,h − 2, . . . ,0://Bottom-up calculation.

V d(s)← maxa∈A Qd+1(s,a);
Qd(s,a)←

∑
s′∈S T (s,a, s′){R(s,a, s′) + γV d(s′)}.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 27 / 35

27/35

Tree Search on MDPs

. . .

Current state

Grow up to height h

Non−terminal state

Terminal state

Action

Transition probabilities

Reward

Need h = θ(1
1−γ) for sufficient accuracy.

With branching factor b, tree size is θ(bh). Expensive!
Often M is only a sampling model (not distribution model).
Can we avoid expanding (clearly) inferior branches?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 27 / 35

28/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 28 / 35

29/35

Rollout Policies
Suppose we have a (look-up) policy π.
Let policy π′ satisfy π′(s) = maxa∈A Qπ(s,a) for s ∈ S.
By the policy improvement theorem, we know π′ � π.

We implement π′ using Monte Carlo rollouts (through M).

s

a
1

a a
2 3

Until end of episode

π

From current state s, for
each action a ∈ A,
generate N trajectories by
taking a from s and
thereafter following π.
Set Q̂π(s,a) as average of
episodic returns.
Take action
π′(s) = argmaxa∈A Q̂π(s,a).
Repeat same process
from next state s′.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 29 / 35

29/35

Rollout Policies
Suppose we have a (look-up) policy π.
Let policy π′ satisfy π′(s) = maxa∈A Qπ(s,a) for s ∈ S.
By the policy improvement theorem, we know π′ � π.
We implement π′ using Monte Carlo rollouts (through M).

s

a
1

a a
2 3

Until end of episode

π

From current state s, for
each action a ∈ A,
generate N trajectories by
taking a from s and
thereafter following π.
Set Q̂π(s,a) as average of
episodic returns.
Take action
π′(s) = argmaxa∈A Q̂π(s,a).
Repeat same process
from next state s′.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 29 / 35

29/35

Rollout Policies
Suppose we have a (look-up) policy π.
Let policy π′ satisfy π′(s) = maxa∈A Qπ(s,a) for s ∈ S.
By the policy improvement theorem, we know π′ � π.
We implement π′ using Monte Carlo rollouts (through M).

s

a
1

a a
2 3

Until end of episode

π

From current state s, for
each action a ∈ A,
generate N trajectories by
taking a from s and
thereafter following π.

Set Q̂π(s,a) as average of
episodic returns.
Take action
π′(s) = argmaxa∈A Q̂π(s,a).
Repeat same process
from next state s′.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 29 / 35

29/35

Rollout Policies
Suppose we have a (look-up) policy π.
Let policy π′ satisfy π′(s) = maxa∈A Qπ(s,a) for s ∈ S.
By the policy improvement theorem, we know π′ � π.
We implement π′ using Monte Carlo rollouts (through M).

s

a
1

a a
2 3

Until end of episode

π

From current state s, for
each action a ∈ A,
generate N trajectories by
taking a from s and
thereafter following π.
Set Q̂π(s,a) as average of
episodic returns.

Take action
π′(s) = argmaxa∈A Q̂π(s,a).
Repeat same process
from next state s′.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 29 / 35

29/35

Rollout Policies
Suppose we have a (look-up) policy π.
Let policy π′ satisfy π′(s) = maxa∈A Qπ(s,a) for s ∈ S.
By the policy improvement theorem, we know π′ � π.
We implement π′ using Monte Carlo rollouts (through M).

s

a
1

a a
2 3

Until end of episode

π

From current state s, for
each action a ∈ A,
generate N trajectories by
taking a from s and
thereafter following π.
Set Q̂π(s,a) as average of
episodic returns.
Take action
π′(s) = argmaxa∈A Q̂π(s,a).

Repeat same process
from next state s′.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 29 / 35

29/35

Rollout Policies
Suppose we have a (look-up) policy π.
Let policy π′ satisfy π′(s) = maxa∈A Qπ(s,a) for s ∈ S.
By the policy improvement theorem, we know π′ � π.
We implement π′ using Monte Carlo rollouts (through M).

s

a
1

a a
2 3

Until end of episode

π

From current state s, for
each action a ∈ A,
generate N trajectories by
taking a from s and
thereafter following π.
Set Q̂π(s,a) as average of
episodic returns.
Take action
π′(s) = argmaxa∈A Q̂π(s,a).
Repeat same process
from next state s′.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 29 / 35

30/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 30 / 35

31/35

Monte Carlo Tree Search (UCT Algorithm)
Build out a tree up to height h (say 5–10) from current state
scurrent. “Data” for the tree are samples returned by M.
For (s,a) pairs reachable from scurrent in ≤ h steps, maintain

I Q(s,a): average of returns of rollouts passing through (s,a).
I ucb(s,a) = Q(s,a) + Cp

√
ln(t)

visits(s,a) .
s current

Grow up to height h

a1 a a2 3

Until end of episode

π

. . .

Repeat N times from scurrent:
1. Generate trajectory by
calling M. From stored state
s, “take” argmaxa∈A ucb(s,a);
from leaf follow rollout policy
π until end of episode.

2. Update Q, ucb for (s,a)
pairs visited in trajectory.

Take argmaxa∈A ucb(s,a).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 31 / 35

31/35

Monte Carlo Tree Search (UCT Algorithm)
Build out a tree up to height h (say 5–10) from current state
scurrent. “Data” for the tree are samples returned by M.
For (s,a) pairs reachable from scurrent in ≤ h steps, maintain

I Q(s,a): average of returns of rollouts passing through (s,a).
I ucb(s,a) = Q(s,a) + Cp

√
ln(t)

visits(s,a) .
s current

Grow up to height h

a1 a a2 3

Until end of episode

π

. . .

Repeat N times from scurrent:
1. Generate trajectory by
calling M. From stored state
s, “take” argmaxa∈A ucb(s,a);
from leaf follow rollout policy
π until end of episode.

2. Update Q, ucb for (s,a)
pairs visited in trajectory.

Take argmaxa∈A ucb(s,a).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 31 / 35

31/35

Monte Carlo Tree Search (UCT Algorithm)
Build out a tree up to height h (say 5–10) from current state
scurrent. “Data” for the tree are samples returned by M.
For (s,a) pairs reachable from scurrent in ≤ h steps, maintain

I Q(s,a): average of returns of rollouts passing through (s,a).
I ucb(s,a) = Q(s,a) + Cp

√
ln(t)

visits(s,a) .
s current

Grow up to height h

a1 a a2 3

Until end of episode

π

. . .

Repeat N times from scurrent:
1. Generate trajectory by
calling M. From stored state
s, “take” argmaxa∈A ucb(s,a);
from leaf follow rollout policy
π until end of episode.
2. Update Q, ucb for (s,a)
pairs visited in trajectory.

Take argmaxa∈A ucb(s,a).

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 31 / 35

31/35

Monte Carlo Tree Search (UCT Algorithm)
Build out a tree up to height h (say 5–10) from current state
scurrent. “Data” for the tree are samples returned by M.
For (s,a) pairs reachable from scurrent in ≤ h steps, maintain

I Q(s,a): average of returns of rollouts passing through (s,a).
I ucb(s,a) = Q(s,a) + Cp

√
ln(t)

visits(s,a) .
s current

Grow up to height h

a1 a a2 3

Until end of episode

π

. . .

Repeat N times from scurrent:
1. Generate trajectory by
calling M. From stored state
s, “take” argmaxa∈A ucb(s,a);
from leaf follow rollout policy
π until end of episode.
2. Update Q, ucb for (s,a)
pairs visited in trajectory.

Take argmaxa∈A ucb(s,a).
Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 31 / 35

32/35

Monte Carlo Tree Search (UCT Algorithm)
Main parameters of UCT: rollout policy π, search tree height
h, number of rollouts N.
π typically an associative/look-up policy, often even a
random policy.
Better guarantees as h is increased (if N =∞).
In practice N limited by available “think” time.

Cp in the UCB formula needs to be large to deal with
nonstationarity (from changes downstream).
In general there could be multiple paths to any particular
stored (s,a) pair starting from scurrent.
UCT focuses attention on rewarding regions of state space.
Rollouts can easily be parallelised.
Extremely successful algorithm in practice.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 32 / 35

32/35

Monte Carlo Tree Search (UCT Algorithm)
Main parameters of UCT: rollout policy π, search tree height
h, number of rollouts N.
π typically an associative/look-up policy, often even a
random policy.
Better guarantees as h is increased (if N =∞).
In practice N limited by available “think” time.
Cp in the UCB formula needs to be large to deal with
nonstationarity (from changes downstream).

In general there could be multiple paths to any particular
stored (s,a) pair starting from scurrent.
UCT focuses attention on rewarding regions of state space.
Rollouts can easily be parallelised.
Extremely successful algorithm in practice.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 32 / 35

32/35

Monte Carlo Tree Search (UCT Algorithm)
Main parameters of UCT: rollout policy π, search tree height
h, number of rollouts N.
π typically an associative/look-up policy, often even a
random policy.
Better guarantees as h is increased (if N =∞).
In practice N limited by available “think” time.
Cp in the UCB formula needs to be large to deal with
nonstationarity (from changes downstream).
In general there could be multiple paths to any particular
stored (s,a) pair starting from scurrent.

UCT focuses attention on rewarding regions of state space.
Rollouts can easily be parallelised.
Extremely successful algorithm in practice.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 32 / 35

32/35

Monte Carlo Tree Search (UCT Algorithm)
Main parameters of UCT: rollout policy π, search tree height
h, number of rollouts N.
π typically an associative/look-up policy, often even a
random policy.
Better guarantees as h is increased (if N =∞).
In practice N limited by available “think” time.
Cp in the UCB formula needs to be large to deal with
nonstationarity (from changes downstream).
In general there could be multiple paths to any particular
stored (s,a) pair starting from scurrent.
UCT focuses attention on rewarding regions of state space.
Rollouts can easily be parallelised.
Extremely successful algorithm in practice.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 32 / 35

33/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 33 / 35

34/35

Search in AI/ML

Heuristic search (“problem-solving”) is among the earliest
topics studied in AI.
Applications: Theorem-proving, constraint satisfaction
problems/integer programming, robotic path planning,
logistics, Video games (movement of characters).
A? search (and variants such as IDA?) used widely in
practice.
Search is different from learning, although these two
attributes of intelligence often come together.
Main technical challenge: large (exponentially growing)
number of states in most practical tasks.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 34 / 35

35/35

Search in On-line Decision Making

Key requirement: simulator (model).
More computationally expensive than lookup of π or Q.
MCTS with rollout policies an effective approach to handle
stochasticity as well as large state spaces.
Learning (say an evaluation function) can also help solution
quality of search in practice.
Proof of all these claims: AlphaGo!

We’ll cover more model-based methods, as well as
AlphaGo, in upcoming lectures.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 35 / 35

35/35

Search in On-line Decision Making

Key requirement: simulator (model).
More computationally expensive than lookup of π or Q.
MCTS with rollout policies an effective approach to handle
stochasticity as well as large state spaces.
Learning (say an evaluation function) can also help solution
quality of search in practice.
Proof of all these claims: AlphaGo!

We’ll cover more model-based methods, as well as
AlphaGo, in upcoming lectures.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 35 / 35

