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Navigation System
How to go from IIT Bombay to Marine Drive?

[1]https://www.flickr.com/photos/nat507/16088993607. CC image courtesy of Nathan Hughes Hamilton
on Flickr licensed under CC BY 2.0.
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Some Popular Puzzles
' How to solve? |
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Sudoku [1]

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_
puzzle_with_17_clues%29.png. CC image courtesy of LithiumFlash on WikiCommons licensed under

CC-BY-SA-4.0.
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Sudoku [1] 15-puzzle [2]

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_
puzzle_with_17_clues%29.png. CC image courtesy of LithiumFlash on WikiCommons licensed under
CC-BY-SA-4.0.

[21 https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CCimage courtesy of Stannic
on WikiMedia Commons licensed under CC-BY-SA-3.0
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| How to solve? |
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Sudoku [1] 15-puzzle [2] Same abstraction?

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_
puzzle_with_17_clues%29.png. CC image courtesy of LithiumFlash on WikiCommons licensed under
CC-BY-SA-4.0.

[21 https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CCimage courtesy of Stannic
on WikiMedia Commons licensed under CC-BY-SA-3.0

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 3/35


https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg

Search

@ Classical search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)
Minimax search

Yy vV vV VvV VY

@ Decision-time planning in MDPs
» Problem
» Rollout policies
» Monte Carlo tree search

@ Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 4/35



Search

@ Classical search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)
Minimax search

Yy vV vV VvV VY

@ Decision-time planning in MDPs
» Problem

» Rollout policies
» Monte Carlo tree search

@ Discussion

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 4/35



Elements of a Search Problem Instance
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Elements of a Search Problem Instance
@ Set of states, including designated start state.
@ Set of actions available from each state.
@ NextState(s, a) for each state s and action a.
@ Cost(s, a) for each state s and action a (assumed > 0).
@ IsGoal(s) for each state s.
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@ Expected output: a sequence of actions, which when
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» reaches a goal state, and
» (optionally) has minimum path-cost.
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Elements of a Search Problem Instance
@ Set of states, including designated start state.
@ Set of actions available from each state.
@ NextState(s, a) for each state s and action a.
@ Cost(s, a) for each state s and action a (assumed > 0).
@ IsGoal(s) for each state s.

@ Expected output: a sequence of actions, which when
applied from start state:
» reaches a goal state, and
» (optionally) has minimum path-cost.
Note: Sometimes there might be no solution!

@ Number of available actions in each state is called the
branching factor b.

@ Length of optimal path to reach goal state is called the
depth d of the search instance.
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Problem Formulation: Navigation System
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Problem Formulation: Navigation System
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Problem Formulation: Navigation System
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Start state?
Actions?
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Cost()?
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A solver needs to find the least-cost path.
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Problem Formulation: Navigation System

States?

' Start state?
. Actions?
" NextState()?

Cost()?

‘ IsGoal()?

Y Start
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A solver needs to find the least-cost path.
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Problem Formulation: 15 Puzzle
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Problem Formulation: 15 Puzzle
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A solver needs to find the shortest path to goal state.

States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?
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Generic Search Template: Pseudocode

@ Primary data element is a Node, which a tuple of the form

(state, pathFromStartState, pathCost).
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Generic Search Template: Pseudocode

@ Primary data element is a Node, which a tuple of the form

(state, pathFromStartState, pathCost).

@ At every stage of the search,

- some states have been explored

- some states remain unexplored, and

- The Frontier is a set of nodes due for imminent expansion.
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Generic Search Template: Pseudocode

Frontier < { Node(startState, (startState),0)}.
Repeat for ever:
Select a node n from Frontier.
/[Expand n.
If isGoal(n.state):
Return n.
For each action a available from n.state:
s « NextState(n.state, a).
¢ < Cost(n.state, a).
n' < Node(s, n.path+ (a, s), n.pathCost + c).
Merge n’ with Frontier.//Typically insertion;
might also allow deletions.
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Generic Search Template: Pseudocode

Frontier < { Node(startState, (startState),0)}.
Repeat for ever:
Select a node n from Frontier.//\Which one?
/[Expand n.
If isGoal(n.state):
Return n.
For each action a available from n.state:
s « NextState(n.state, a).
¢ < Cost(n.state, a).
n' < Node(s, n.path+ (a, s), n.pathCost + c).
Merge n’ with Frontier.//Typically insertion;
might also allow deletions.
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Generic Search Template: lllustration
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Generic Search Template: lllustration
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Generic Search Template: lllustration

("% Explored (" Goal
" Frontier

Unexplored

How did we decide which frontier nodes to expand?
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Depth-first Search (DFS)

Expand frontier node with longest path from start state.

"y Explored Frontier
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@ Frontier treated like a stack (LIFO).
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Depth-first Search (DFS)

Expand frontier node with longest path from start state.

"y Explored Frontier

@ Frontier treated like a stack (LIFO).
@ No need to explicitly maintain frontier (construct on-line).
@ Guaranteed to terminate on finite search instances.
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Depth-first Search (DFS)

Expand frontier node with longest path from start state.

Explored Frontier

@ Frontier treated like a stack (LIFO).

@ No need to explicitly maintain frontier (construct on-line).
@ Guaranteed to terminate on finite search instances.

@ Memory requirement linear in depth d.
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Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

{3 Explored (" Frontier

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/35



Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

{3 Explored (" Frontier

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/35



Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

{3 Explored (" Frontier

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/35



Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

{3 Explored (" Frontier

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/35



Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

{ Explored Frontier

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/35



Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

" Explored Frontier

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/35



Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

{ Explored Frontier

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 13/35



Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

Explored Frontier

@ Frontier treated like a queue (FIFO).
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Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

{ Explored (" Frontier

@ Frontier treated like a queue (FIFO).
@ Guaranteed to terminate if search depth is finite.
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Breadth-first Search (BFS)

Expand frontier node with shortest path from start state.

{ Explored (" Frontier

@ Frontier treated like a queue (FIFO).
@ Guaranteed to terminate if search depth is finite.
@ Memory requirement O(b?).
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Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

" Explored Frontier
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Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

Explored Frontier

@ For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).
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Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

Explored Frontier

@ For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).

@ Guaranteed to terminate if search depth is finite and each
cost exceeds ¢ > 0.
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Lowest-cost-first Search (LCFS)

Expand frontier node with lowest path-cost from start state.

" Explored Frontier

@ For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).

@ Guaranteed to terminate if search depth is finite and each
cost exceeds ¢ > 0.

@ Memory requirement depends heavily on instance.
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Search

@ Classical search

Problem instances

Generic search template
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Incorporating Domain Knowledge into Search
@ Have to travel from Powai to Mahim.

Powai
.

« Mahim
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Incorporating Domain Knowledge into Search
@ Have to travel from Powai to Mahim.

Kanjur Marg
Powai

L&T
: , Vikhroli
Hiranandani X

Gﬂatkopar

« Mahim

@ First you expand the Powai node.
@ Which node will you expand next?
@ L&T and Hiranandani are geographically closer to Mahim:
should that count?
16/35



Heuristic Functions and A* Search Algorithm

@ A heuristic function h(n) is a guess of ¢*(n), the optimal
path-cost-to-goal of (the state in) node n.
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Heuristic Functions and A* Search Algorithm
@ A heuristic function h(n) is a guess of ¢*(n), the optimal
path-cost-to-goal of (the state in) node n.
@ h(n) is usually easy to compute. On the previous slide, we
implicitly used straight line distance:

h(n) = \/ (n.state.x — Mahim.x)? + (n.state.y — Mahim.y)?.
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Heuristic Functions and A* Search Algorithm
@ A heuristic function h(n) is a guess of ¢*(n), the optimal
path-cost-to-goal of (the state in) node n.
@ h(n) is usually easy to compute. On the previous slide, we
implicitly used straight line distance:

h(n) = \/ (n.state.x — Mahim.x)? + (n.state.y — Mahim.y)?.

@ Recall that in LCFS, we expand argmin ,croniier 9(1)-
@ In A* search, we expand argmin ,cgoniier (9(N) + h(N)).

@ g(n) summarises the past (known); h(n) anticipates the
future (unknown).

@ The addition of h(n) makes A* an informed or heuristic
search algorithm.

@ A* search originally conceived for robotic path planning.



Admissible Heuristics
@ A heuristic his admissible if for all nodes n,

0 < h(n) < c*(n),

where c*(n) is the optimal cost-to-goal of n.state.
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Admissible Heuristics
@ A heuristic his admissible if for all nodes n,

0 < h(n) < c*(n),

where c*(n) is the optimal cost-to-goal of n.state.
@ Key result. If A* search is run using an admissible heuristic
(and some minor technical conditions hold), then the first

goal node it expands will have optimal path-cost from the
start state (and the algorithm can terminate).
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Admissible Heuristics
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Admissible Heuristics
@ A heuristic his admissible if for all nodes n,
0 < h(n) < c*(n),

where c*(n) is the optimal cost-to-goal of n.state.

@ Key result. If A* search is run using an admissible heuristic
(and some minor technical conditions hold), then the first
goal node it expands will have optimal path-cost from the
start state (and the algorithm can terminate).

@ |s straight line distance an admissible heuristic for
navigation? Yes.

@ For a given task, which is the best heuristic function to use?



Effect of Heuristic

. O o« . o . .
® . . O
. ¢ ° . .
« * °
. . . . o ® O
O ® « ° . 0 . ®
° . .
. 0 * o . R O 0
¢ ] ¢ . ""’.\’ « °
O bt .
. . . . . .
° ® . . ¢
O o ¢ . : . :
. O . R
° . M .
e ° O ) ° °
. ° * L] O
. 0 c ) * ® .
M .
. O . . * )
. LI . R .
. ° 5 . o S .
. o o
") Start Destination

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 19/35



Effect of Heuristic

Start Destination ¢ Expanded

h(n) = c*(n). Will only expand nodes along optimal path!
Unfortunately c¢*(n) is not known!
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Effect of Heuristic

Start Destination « Expanded

h(n) = 0. Identical to LCFS.
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Effect of Heuristic

Start Destination « Expanded

Intermediate/typical h(n) expands fewer nodes than LCFS.
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Admissible Heuristics
@ How to design an effective admissible heuristic for a task?
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Admissible Heuristics
@ How to design an effective admissible heuristic for a task?

For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

@ What's a good heuristic for 15-puzzle?

13] 2] 3|12 112]3]4
Start state | 2|11 110 > 2O v 8 Goal state

o 5|4|14 9/10[11]12

15/8|7]6 13|14|15| ®
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@ What's a good heuristic for 15-puzzle?

13] 2] 3|12 11213
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Admissible Heuristics
@ How to design an effective admissible heuristic for a task?

For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

@ What's a good heuristic for 15-puzzle?

13] 2] 3|12 11213
Start state | 2|11 110 > 2O v 8 Goal state
o 5|4|14 9/10[11]12
15/ 8| 7|6 13|14|15| ®

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

@ Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.
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Search

@ Classical search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)
Minimax search
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@ Decision-time planning in MDPs
» Problem

» Rollout policies
» Monte Carlo tree search

@ Discussion
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Search and Games

PN WA OO N ©

[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC
image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.

[2] https://commons.wikimedia.org/wiki/File:Draughts.svg.
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Chess [1] Checkers/Draughts [2]

@ Winning at chess/checkers: a search problem?
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Chess [1] Checkers/Draughts [2]

@ Winning at chess/checkers: a search problem?

@ What’s the main difference from our previous examples?
There’s another player!

[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC
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Search and Games

Chess [1] Checkers/Draughts [2]

PN WA OO N ©

e
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@ Winning at chess/checkers: a search problem?

@ What’s the main difference from our previous examples?
There’s another player!

@ Instances of turn-based two player zero-sum games.

[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC
image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.

[2] https://commons.wikimedia.org/wiki/File:Draughts.svg.
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Game Tree
@ Assume turn-taking zero sum game played by Max and Min.
@ Action costs usually taken as 0, but leaves have value
—1 (Max loses), 0 (draw), 1 (Max wins).
@ Value of Max node is maximum of values of children.
Value of Min node is minimum of values of children.
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Game Tree
@ Assume turn-taking zero sum game played by Max and Min.
@ Action costs usually taken as 0, but leaves have value
—1 (Max loses), 0 (draw), 1 (Max wins).
@ Value of Max node is maximum of values of children.
Value of Min node is minimum of values of children.
@ What is the value of the root node?

@ In 2007, a massive, long-running computation concluded
that the value of the root node for Checkers is 0 (draw).
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Evaluation Function

@ The Checkers tree has ~ 10*° nodes; Chess has ~ 1029,
Infeasible to solve!

VAN
. Min
D Leaf

Cannot explore beyond
this depth!
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Evaluation Function
@ The Checkers tree has ~ 10%° nodes; Chess has ~ 10'29.
Infeasible to solve!

Cannot explore beyond
this depth!

@ At some depth d from current node, estimate node value
using features.
@ For example, in Chess, set evaluation as

wy x Material diff.+ws, x King safety+ws xpawn strength+. . ..

@ Weights wy, ws, wa, ... are tuned or learned.
24/35



Search

@ Classical search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)
Minimax search

Yy vV vV VvV VY

@ Decision-time planning in MDPs
» Problem

» Rollout policies
» Monte Carlo tree search

@ Discussion
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Decision-time planning: Problem

@ So far we have assumed that an agent’s learning algorithm
produces 7 or Q as output. While acting on-line, the agent
just needs a “look up” or associative “forward pass” from
any state s to obtain its action.
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Decision-time planning: Problem

@ So far we have assumed that an agent’s learning algorithm
produces 7 or Q as output. While acting on-line, the agent
just needs a “look up” or associative “forward pass” from
any state s to obtain its action.

@ Sometimes = or Q might be difficult to learn in compact
form, but a model M = (T, R) (given or learned, exact or
approximate) might be available.

@ In decision-time planning, at every time step, we “imagine”
possible futures emanating from the current state by using
M, and use the computation to decide which action to take.

@ How to rigorously do so?

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 26/35



Tree Search on MDPs

Current state

Non-terminal state

Terminal state
Action

Transition probabilities

s (OEO

Reward

: Grow up to height h

w

@ Expectimax calculation. Set Q" + 0 //Leaves.
Ford=h—-1,h—2,...,0:/Bottom-up calculation.
Va(s) < maxaca Q41(s, a);
QY(s,a) «+ > ges T(s.a,8){R(s,a,s) +~yVIs)}.
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Tree Search on MDPs

Current state

O Non-terminal state
. Terminal state
. Action
\_/ Transition probabilities
B Reward
: Grow up to height h
@ Need h = 6(+) for sufficient accuracy.

@ With branching factor b, tree size is 0(b"). Expensive!
@ Often M is only a sampling model (not distribution model).
@ Can we avoid expanding (clearly) inferior branches?
27/35



Search

@ Classical search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)
Minimax search

Yy vV vV VvV VY

@ Decision-time planning in MDPs
» Problem
» Rollout policies
» Monte Carlo tree search

@ Discussion
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Rollout Policies
@ Suppose we have a (look-up) policy .
@ Let policy 7’ satisfy 7/(S) = maxzea Q7(S, @) for s € S.
@ By the policy improvement theorem, we know =’ = 7.
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Rollout Policies
@ Suppose we have a (look-up) policy .
@ Let policy 7’ satisfy 7/(S) = maxzea Q7(S, @) for s € S.
@ By the policy improvement theorem, we know =’ = 7.
@ We implement n” using Monte Carlo rollouts (through M).

@ From current state s, for
each action a € A,
generate N trajectories by
taking a from s and
thereafter following .

@ Set Q7 (s, a) as average of
episodic returns.

@ Take action A
7'(8) = argmax,c4 Q7 (S, a).

Until end of episode
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Rollout Policies
@ Suppose we have a (look-up) policy .
@ Let policy 7’ satisfy 7/(S) = maxzea Q7(S, @) for s € S.
@ By the policy improvement theorem, we know =’ = 7.
@ We implement n” using Monte Carlo rollouts (through M).

@ From current state s, for
each action a € A,
generate N trajectories by
taking a from s and
thereafter following .

@ Set Q7 (s, a) as average of
episodic returns.
@ Take action
() = argmax,, Q7 (s, a).
Until end of episode (*] Repeat same process
from next state s'.
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Search

@ Classical search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)
Minimax search
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@ Decision-time planning in MDPs
» Problem

» Rollout policies
» Monte Carlo tree search

@ Discussion
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Monte Carlo Tree Search (UCT Algorithm)

@ Build out a tree up to height h (say 5-10) from current state
Scurrent- Data” for the tree are samples returned by M.

@ For (s, a) pairs reachable from Syrent in < h steps, maintain

» Q(s, a): average of returns of rollouts passing through (s, a).

> UCb(S, a) = 0(57 a) + CP vis::s((t:g,a)'

S current

Grow up to height h

Until end of episode
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@ Build out a tree up to height h (say 5-10) from current state
Scurrent- Data” for the tree are samples returned by M.

@ For (s, a) pairs reachable from Syrent in < h steps, maintain

» Q(s, a): average of returns of rollouts passing through (s, a).

> UCb(S, a) = Q(S) a) + CP vis::s((t:g,a)'

> eurrent Repeat N times from Scurrent:
1. Generate trajectory by
calling M. From stored state
S, “take” argmax,, ucb(s, a);
Grow up to height h from leaf follow rollout policy
7 until end of episode.

Until end of episode
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Monte Carlo Tree Search (UCT Algorithm)

@ Build out a tree up to height h (say 5-10) from current state
Scurrent- Data” for the tree are samples returned by M.

@ For (s, a) pairs reachable from Syrent in < h steps, maintain

» Q(s, a): average of returns of rollouts passing through (s, a).

> uch(s,a) = Q(s,a) + Cpy/ o)

visits(s,a) -

N current

Repeat N times from Sgyrrent:
1. Generate trajectory by
calling M. From stored state
S, “take” argmax,, ucb(s, a);

Grow up to height h from leaf follow rollout policy

7 until end of episode.

- 2. Update Q, ucb for (s, a)

pairs visited in trajectory.

Until end of episode
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Monte Carlo Tree Search (UCT Algorithm)

@ Build out a tree up to height h (say 5-10) from current state
Scurrent- Data” for the tree are samples returned by M.

@ For (s, a) pairs reachable from Syrent in < h steps, maintain

» Q(s, a): average of returns of rollouts passing through (s, a).

> uch(s,a) = Q(s,a) + Cpy/ o)

visits(s,a) -

N current

Repeat N times from Sgyrrent:
1. Generate trajectory by
calling M. From stored state
S, “take” argmax,, ucb(s, a);

Grow up to height h from leaf follow rollout policy

7 until end of episode.

- 2. Update Q, ucb for (s, a)

pairs visited in trajectory.

Until end of episode

Take argmax,., uch(s, a).
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Monte Carlo Tree Search (UCT Algorithm)

@ Main parameters of UCT: rollout policy 7, search tree height
h, number of rollouts N.

@ 7 typically an associative/look-up policy, often even a
random policy.

@ Better guarantees as his increased (if N = c0).
@ In practice N limited by available “think” time.
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Monte Carlo Tree Search (UCT Algorithm)

Main parameters of UCT: rollout policy =, search tree height
h, number of rollouts N.

7 typically an associative/look-up policy, often even a
random policy.

Better guarantees as his increased (if N = o).
In practice N limited by available “think” time.

C, in the UCB formula needs to be large to deal with
nonstationarity (from changes downstream).

In general there could be multiple paths to any particular
stored (s, a) pair starting from Scyrrent-

UCT focuses attention on rewarding regions of state space.
Rollouts can easily be parallelised.
Extremely successful algorithm in practice.
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Search in Al/ML

@ Heuristic search (“problem-solving”) is among the earliest
topics studied in Al.

@ Applications: Theorem-proving, constraint satisfaction
problems/integer programming, robotic path planning,
logistics, Video games (movement of characters).

@ A* search (and variants such as IDA*) used widely in
practice.

@ Search is different from learning, although these two
attributes of intelligence often come together.

@ Main technical challenge: large (exponentially growing)
number of states in most practical tasks.
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Search in On-line Decision Making

@ Key requirement: simulator (model).
@ More computationally expensive than lookup of = or Q.

@ MCTS with rollout policies an effective approach to handle
stochasticity as well as large state spaces.

@ Learning (say an evaluation function) can also help solution
quality of search in practice.

@ Proof of all these claims: AlphaGo!
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Search in On-line Decision Making

@ Key requirement: simulator (model).
@ More computationally expensive than lookup of = or Q.

@ MCTS with rollout policies an effective approach to handle
stochasticity as well as large state spaces.

@ Learning (say an evaluation function) can also help solution
quality of search in practice.

@ Proof of all these claims: AlphaGo!

@ We'll cover more model-based methods, as well as
AlphaGo, in upcoming lectures.
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