

CS 748, Spring 2021: Week 2, Lecture 1

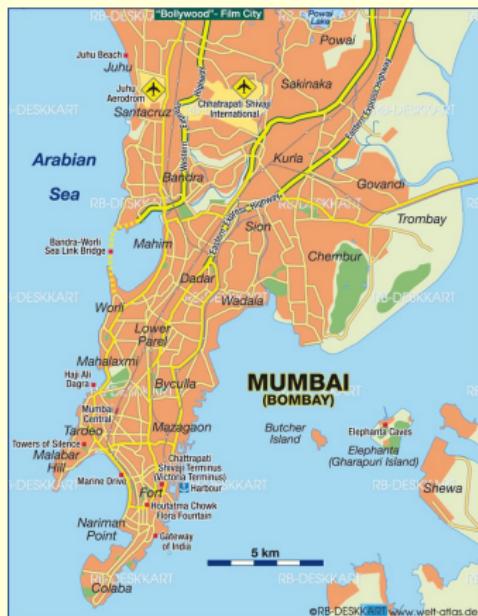
Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Spring 2021

Navigation System

How to go from IIT Bombay to Marine Drive?

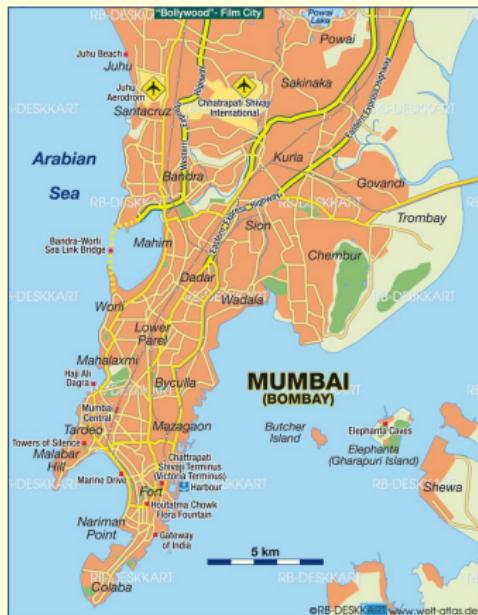
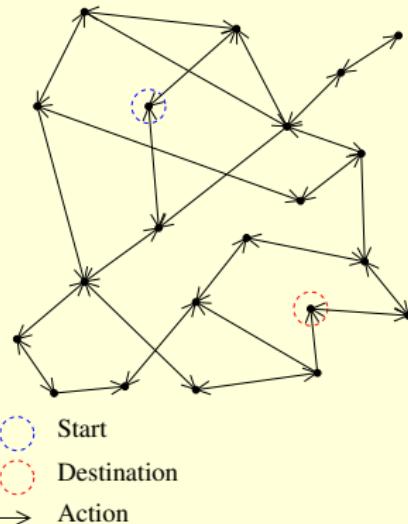


[1]

[1] <https://www.flickr.com/photos/nat507/16088993607>. CC image courtesy of Nathan Hughes Hamilton on Flickr licensed under CC BY 2.0.

Navigation System

How to go from IIT Bombay to Marine Drive?

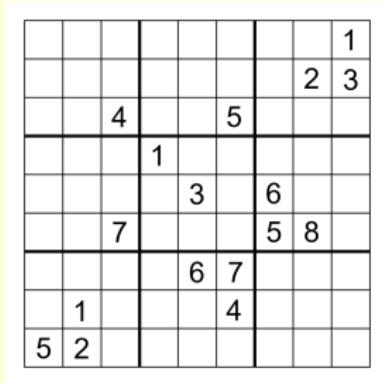


[1]

[1] <https://www.flickr.com/photos/nat507/16088993607>. CC image courtesy of Nathan Hughes Hamilton on Flickr licensed under CC BY 2.0.

Some Popular Puzzles

How to solve?

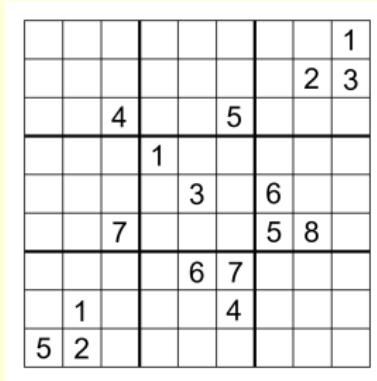


Sudoku [1]

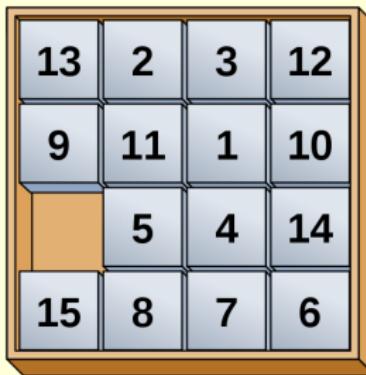
[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png. CC image courtesy of LithiumFlash on WikiCommons licensed under CC-BY-SA-4.0.

Some Popular Puzzles

How to solve?



Sudoku [1]



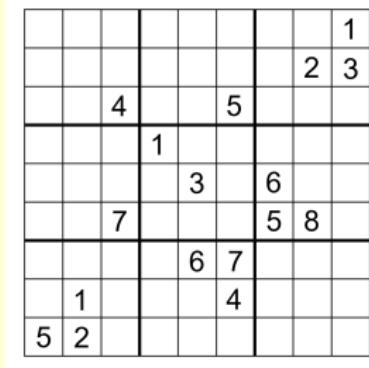
15-puzzle [2]

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png. CC image courtesy of LithiumFlash on WikiCommons licensed under CC-BY-SA-4.0.

[2] <https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg>. CC image courtesy of Stannic on WikiMedia Commons licensed under CC-BY-SA-3.0

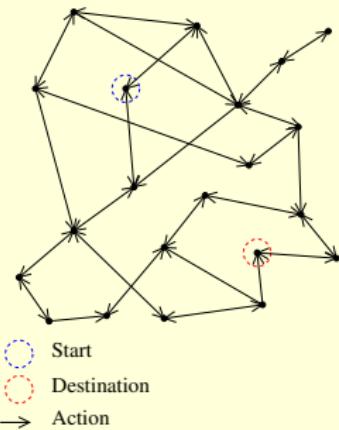
Some Popular Puzzles

How to solve?



Sudoku [1]

15-puzzle [2]



Same abstraction?

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png. CC image courtesy of LithiumFlash on WikiCommons licensed under CC-BY-SA-4.0.

[2] <https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg>. CC image courtesy of Stannic on WikiMedia Commons licensed under CC-BY-SA-3.0

Search

- Classical search
 - ▶ Problem instances
 - ▶ Generic search template
 - ▶ Uninformed search
 - ▶ Informed search (a.k.a. heuristic search)
 - ▶ Minimax search
- Decision-time planning in MDPs
 - ▶ Problem
 - ▶ Rollout policies
 - ▶ Monte Carlo tree search
- Discussion

Search

- Classical search
 - ▶ Problem instances
 - ▶ Generic search template
 - ▶ Uninformed search
 - ▶ Informed search (a.k.a. heuristic search)
 - ▶ Minimax search
- Decision-time planning in MDPs
 - ▶ Problem
 - ▶ Rollout policies
 - ▶ Monte Carlo tree search
- Discussion

Elements of a Search Problem Instance

Elements of a Search Problem Instance

- Set of **states**, including designated **start** state.
- Set of **actions** available from each state.
- **NextState(s, a)** for each state s and action a .
- **Cost(s, a)** for each state s and action a (assumed ≥ 0).
- **IsGoal(s)** for each state s .

Elements of a Search Problem Instance

- Set of **states**, including designated **start** state.
- Set of **actions** available from each state.
- $\text{NextState}(s, a)$ for each state s and action a .
- $\text{Cost}(s, a)$ for each state s and action a (assumed ≥ 0).
- $\text{IsGoal}(s)$ for each state s .
- **Expected output:** a **sequence of actions**, which when applied from start state:
 - ▶ reaches a goal state, and
 - ▶ (optionally) has minimum path-cost.

Elements of a Search Problem Instance

- Set of **states**, including designated **start** state.
 - Set of **actions** available from each state.
 - $\text{NextState}(s, a)$ for each state s and action a .
 - $\text{Cost}(s, a)$ for each state s and action a (assumed ≥ 0).
 - $\text{IsGoal}(s)$ for each state s .
-
- **Expected output:** a **sequence of actions**, which when applied from start state:
 - ▶ reaches a goal state, and
 - ▶ (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

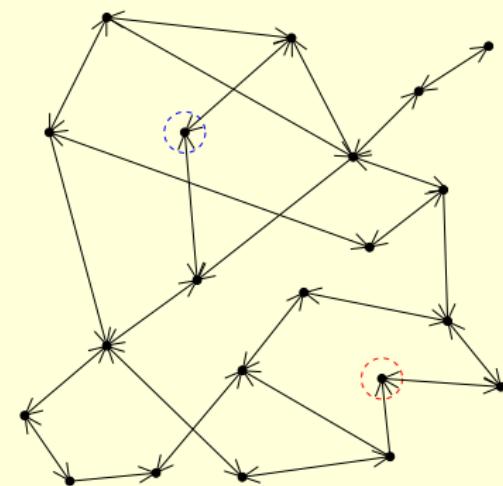
Elements of a Search Problem Instance

- Set of **states**, including designated **start** state.
- Set of **actions** available from each state.
- $\text{NextState}(s, a)$ for each state s and action a .
- $\text{Cost}(s, a)$ for each state s and action a (assumed ≥ 0).
- $\text{IsGoal}(s)$ for each state s .
- **Expected output:** a **sequence of actions**, which when applied from start state:
 - ▶ reaches a goal state, and
 - ▶ (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

- Number of available actions in each state is called the **branching factor b** .
- Length of optimal path to reach goal state is called the **depth d** of the search instance.

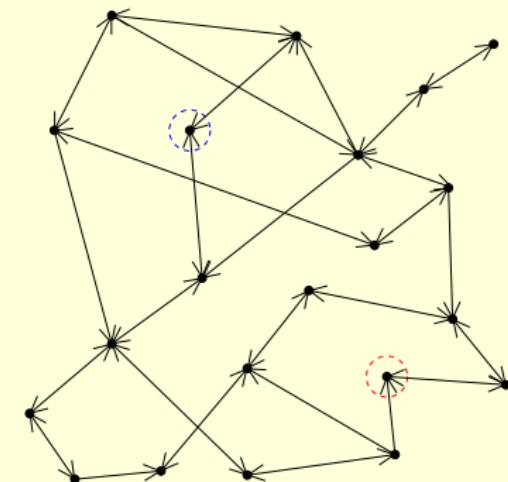
Problem Formulation: Navigation System



States?

- Start
- Destination
- Action

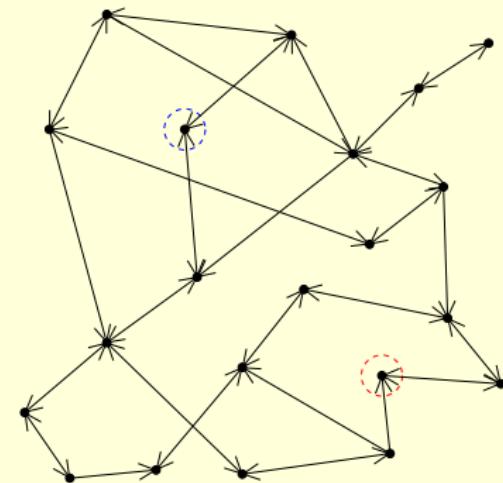
Problem Formulation: Navigation System



States?
Start state?

- Start
- Destination
- Action

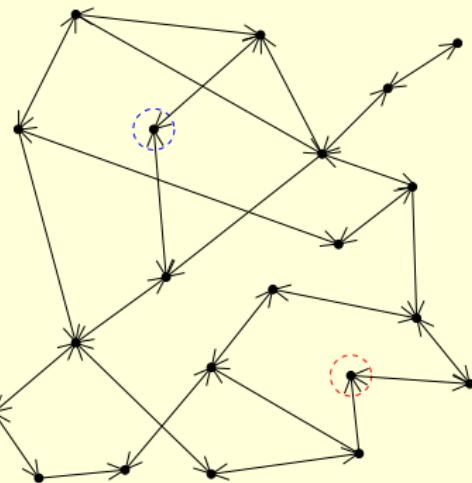
Problem Formulation: Navigation System



States?
Start state?
Actions?

- Start
- Destination
- Action

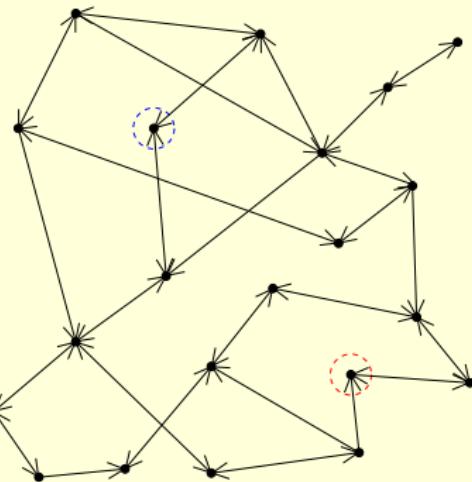
Problem Formulation: Navigation System



States?
Start state?
Actions?
NextState()?

- Start
- Destination
- Action

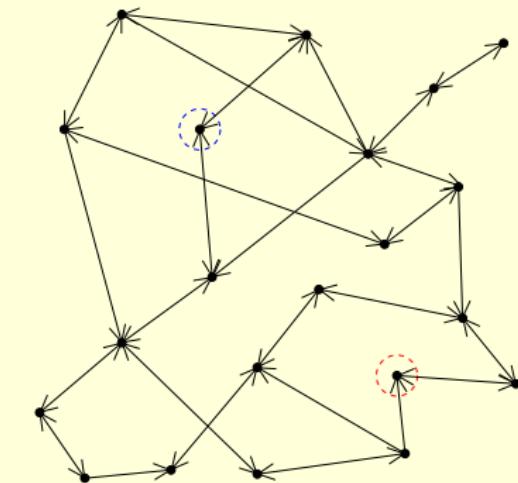
Problem Formulation: Navigation System



States?
Start state?
Actions?
NextState()
Cost()

- Start
- Destination
- Action

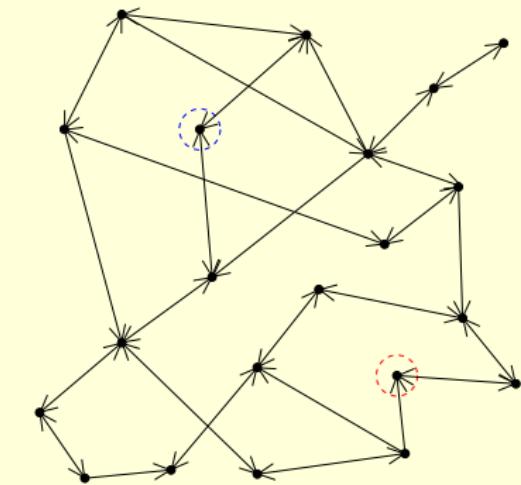
Problem Formulation: Navigation System



- Start
- Destination
- Action

States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

Problem Formulation: Navigation System

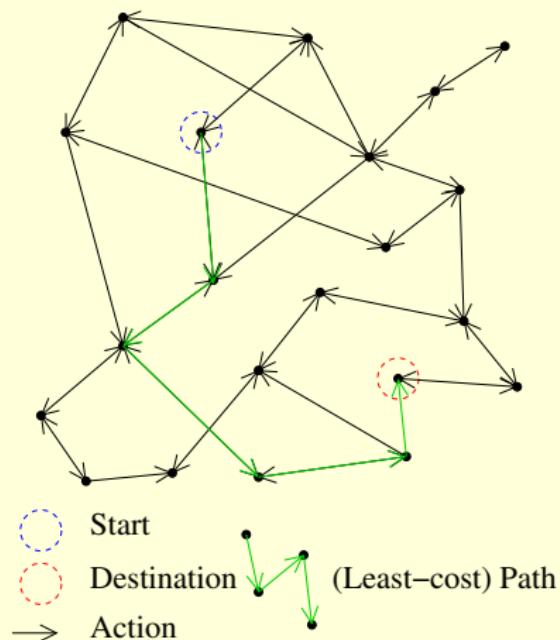


- Start
- Destination
- Action

States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the least-cost path.

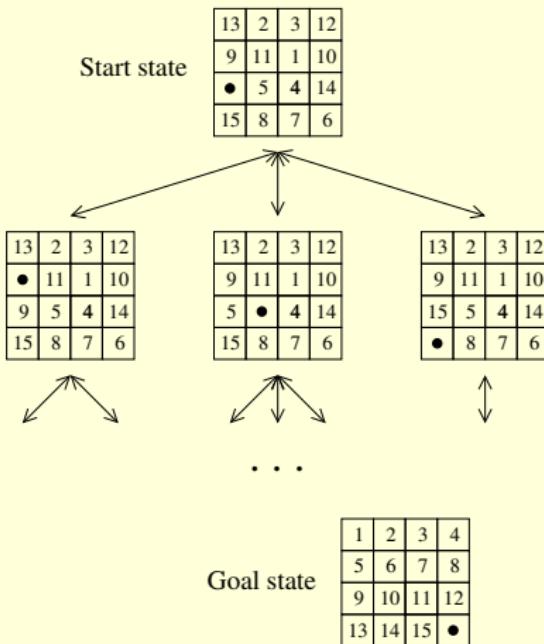
Problem Formulation: Navigation System



States?
Start state?
Actions?
NextState()
Cost()
IsGoal()

A solver needs to find the least-cost path.

Problem Formulation: 15 Puzzle



States?

Start state?

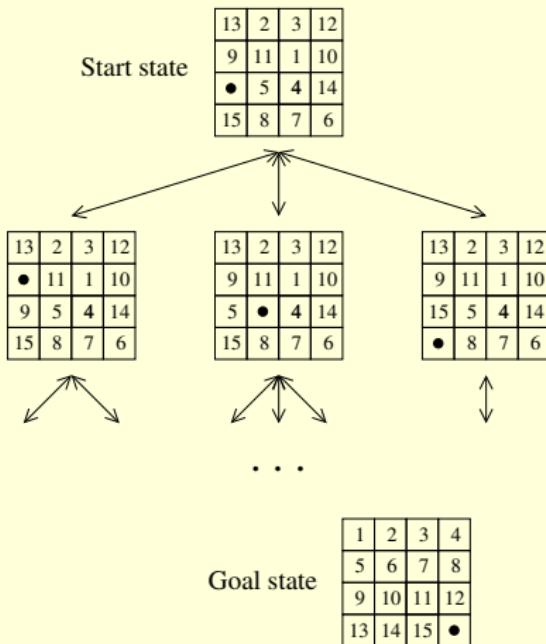
Actions?

NextState()?

Cost()?

IsGoal()?

Problem Formulation: 15 Puzzle



States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the shortest path to goal state.

Search

- Classical search
 - ▶ Problem instances
 - ▶ **Generic search template**
 - ▶ Uninformed search
 - ▶ Informed search (a.k.a. heuristic search)
 - ▶ Minimax search
- Decision-time planning in MDPs
 - ▶ Problem
 - ▶ Rollout policies
 - ▶ Monte Carlo tree search
- Discussion

Generic Search Template: Pseudocode

- Primary data element is a **Node**, which a tuple of the form $(state, pathFromStartState, pathCost)$.

Generic Search Template: Pseudocode

- Primary data element is a **Node**, which a tuple of the form $(state, pathFromStartState, pathCost)$.
- At every stage of the search,
 - some states have been **explored**
 - some states remain **unexplored**, and
 - The **Frontier** is a set of nodes due for imminent expansion.

Generic Search Template: Pseudocode

$Frontier \leftarrow \{Node(startState, (startState), 0)\}.$

Repeat for ever:

 Select a node n from $Frontier$.

 //**Expand** n .

If $isGoal(n.state)$:

Return n .

For each action a available from $n.state$:

$s \leftarrow NextState(n.state, a)$.

$c \leftarrow Cost(n.state, a)$.

$n' \leftarrow Node(s, n.path + (a, s), n.pathCost + c)$.

 Merge n' with $Frontier$.//**Typically insertion**;
 might also allow deletions.

Generic Search Template: Pseudocode

$Frontier \leftarrow \{Node(startState, (startState), 0)\}.$

Repeat for ever:

 Select a node n from $Frontier$.//Which one?

 //Expand n .

If $isGoal(n.state)$:

Return n .

For each action a available from $n.state$:

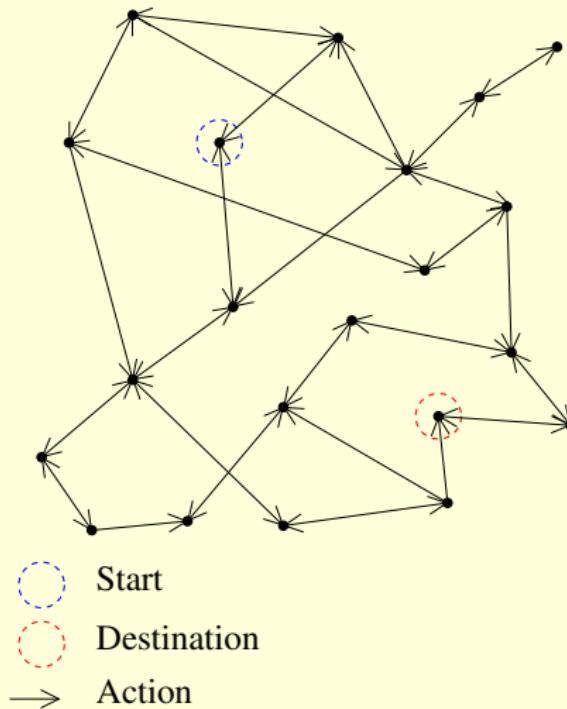
$s \leftarrow NextState(n.state, a)$.

$c \leftarrow Cost(n.state, a)$.

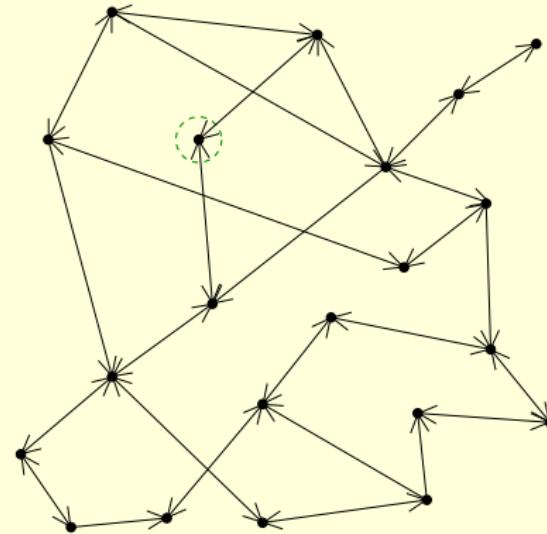
$n' \leftarrow Node(s, n.path + (a, s), n.pathCost + c)$.

 Merge n' with $Frontier$.//Typically insertion;
 might also allow deletions.

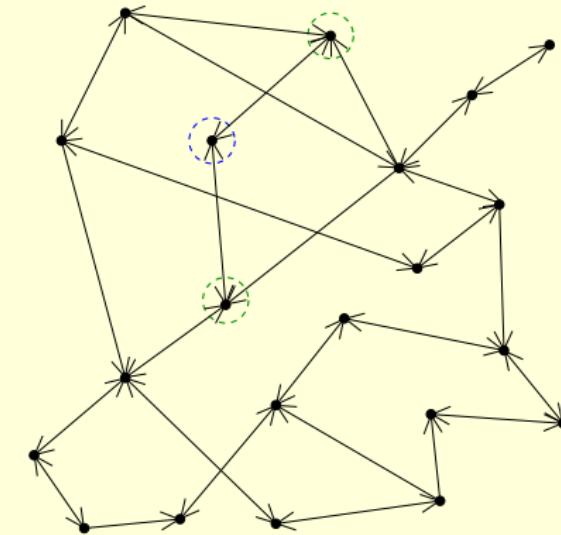
Generic Search Template: Illustration



Generic Search Template: Illustration

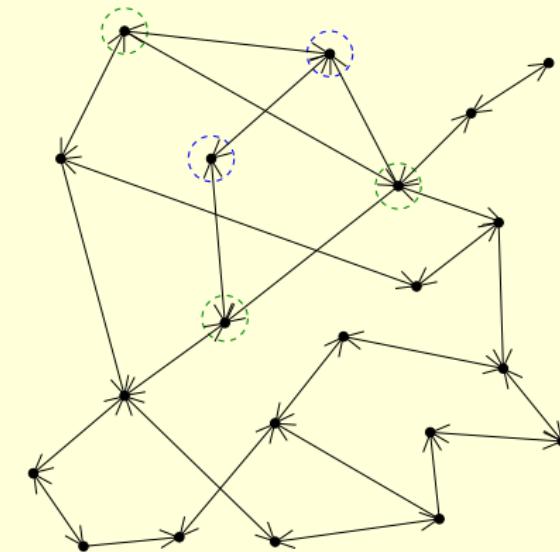


Generic Search Template: Illustration



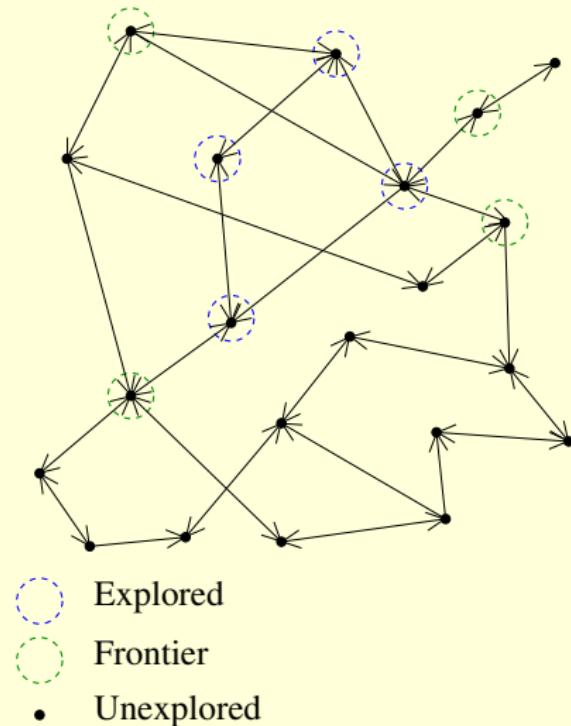
- Explored
- Frontier
- Unexplored

Generic Search Template: Illustration

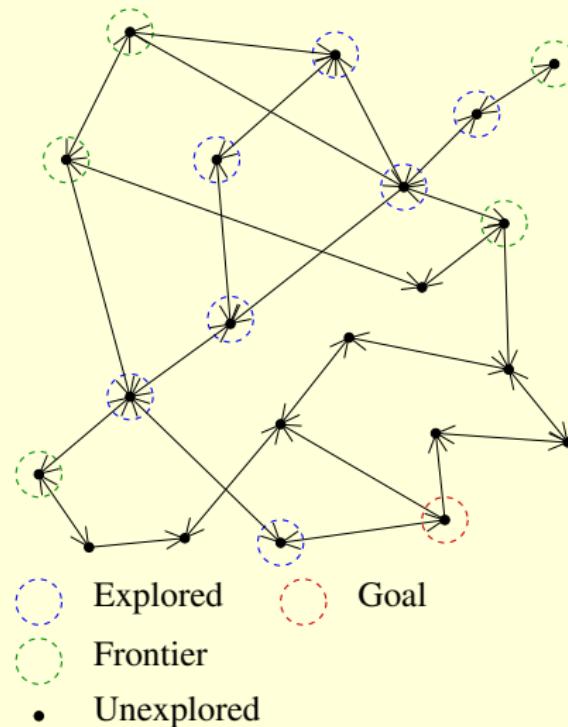


- Explored
- Frontier
- Unexplored

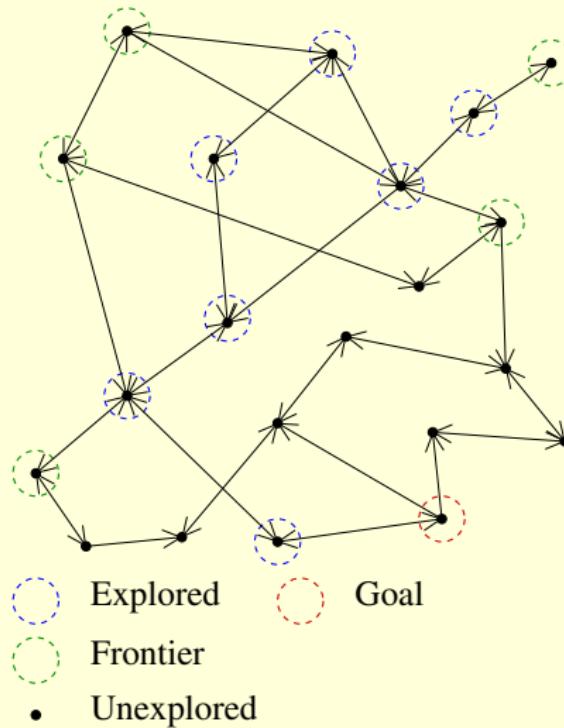
Generic Search Template: Illustration



Generic Search Template: Illustration



Generic Search Template: Illustration



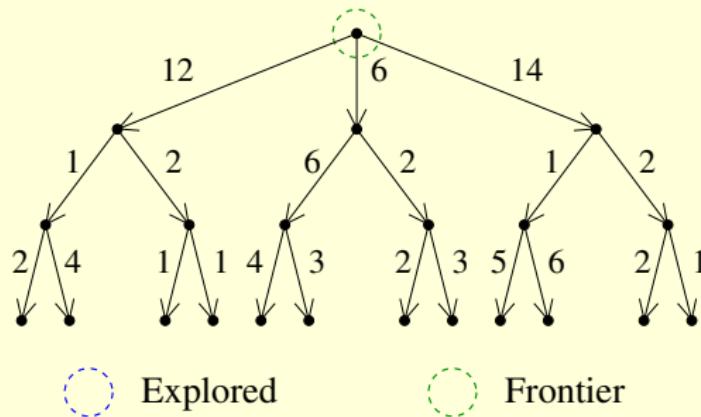
How did we decide which frontier nodes to expand?

Search

- Classical search
 - ▶ Problem instances
 - ▶ Generic search template
 - ▶ **Uninformed search**
 - ▶ Informed search (a.k.a. heuristic search)
 - ▶ Minimax search
- Decision-time planning in MDPs
 - ▶ Problem
 - ▶ Rollout policies
 - ▶ Monte Carlo tree search
- Discussion

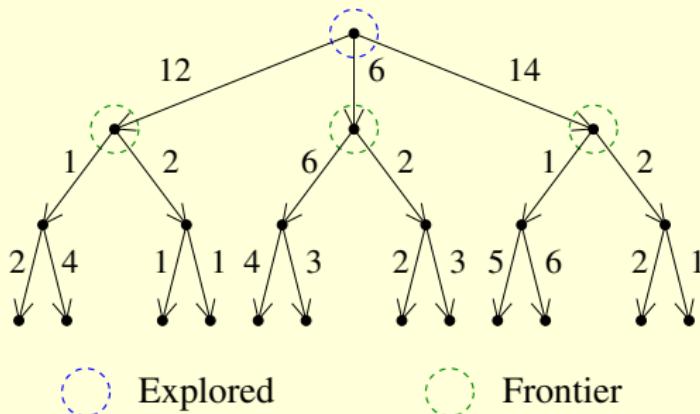
Depth-first Search (DFS)

Expand frontier node with **longest** path from start state.



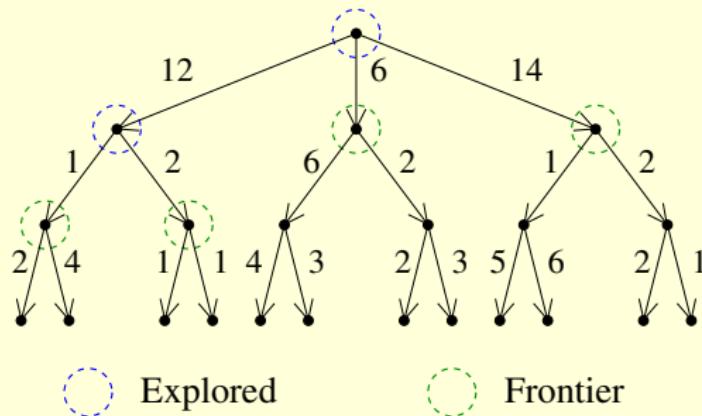
Depth-first Search (DFS)

Expand frontier node with **longest** path from start state.



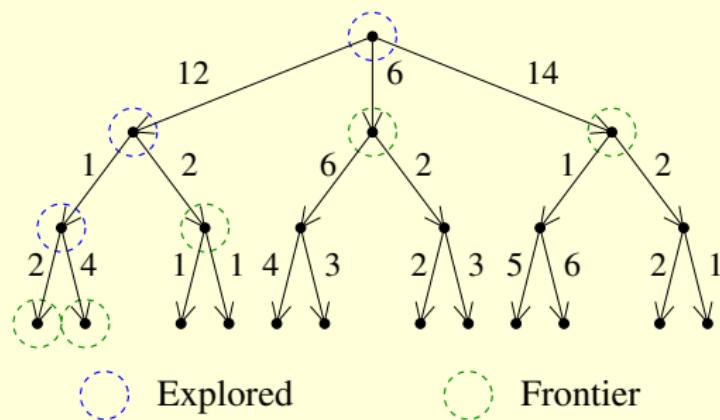
Depth-first Search (DFS)

Expand frontier node with **longest** path from start state.



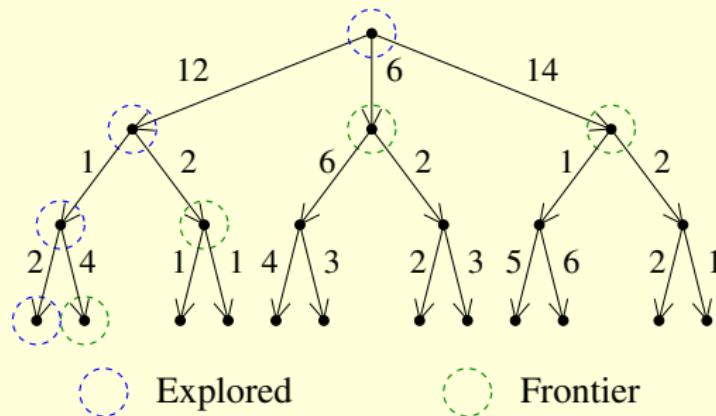
Depth-first Search (DFS)

Expand frontier node with **longest** path from start state.



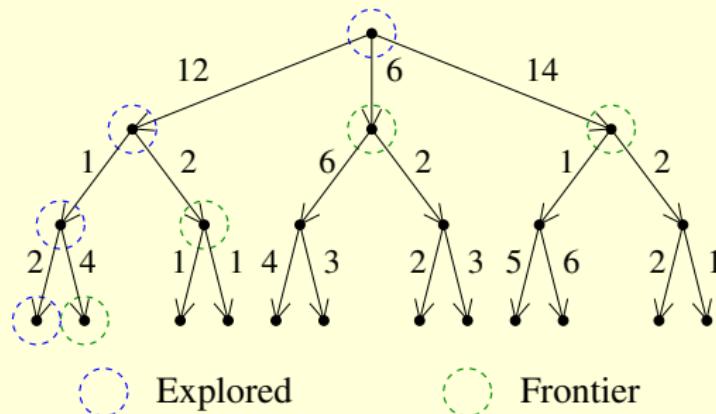
Depth-first Search (DFS)

Expand frontier node with **longest** path from start state.



Depth-first Search (DFS)

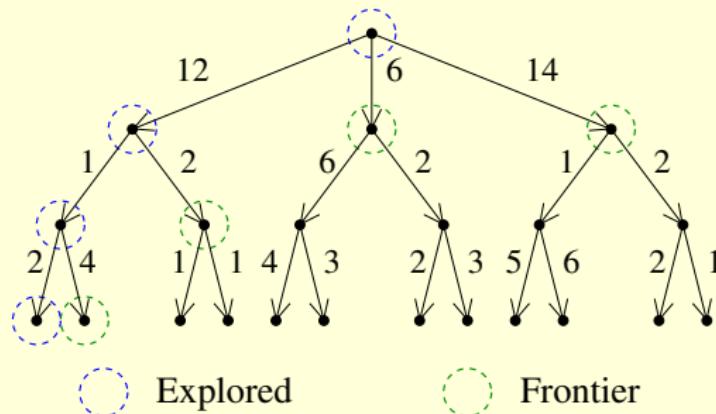
Expand frontier node with **longest** path from start state.



- Frontier treated like a **stack** (LIFO).

Depth-first Search (DFS)

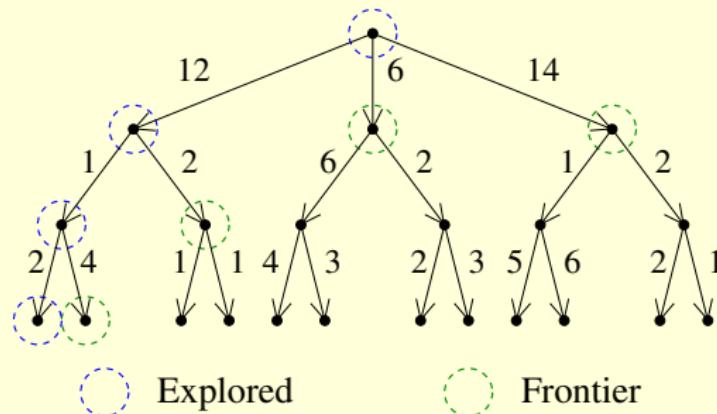
Expand frontier node with **longest** path from start state.



- Frontier treated like a **stack** (LIFO).
- No need to explicitly maintain frontier (construct on-line).

Depth-first Search (DFS)

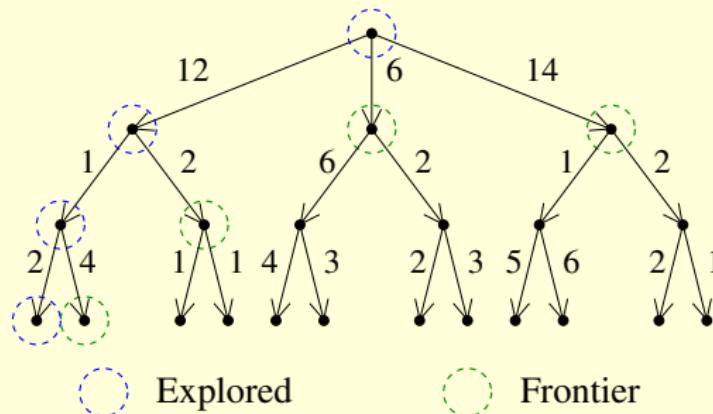
Expand frontier node with **longest** path from start state.



- Frontier treated like a **stack** (LIFO).
 - No need to explicitly maintain frontier (construct on-line).
 - Guaranteed to terminate on **finite** search instances.

Depth-first Search (DFS)

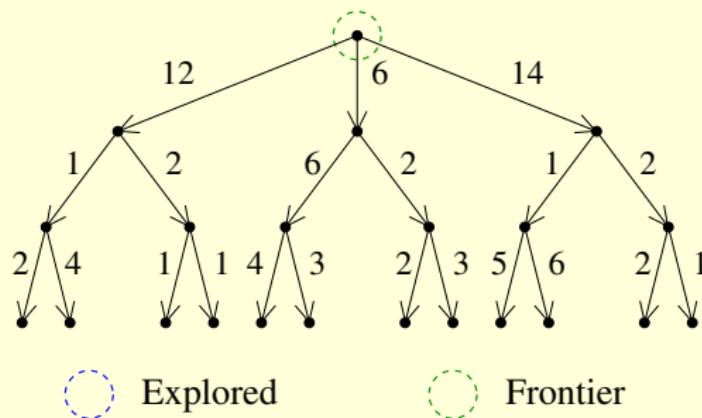
Expand frontier node with **longest** path from start state.



- Frontier treated like a **stack** (LIFO).
- No need to explicitly maintain frontier (construct on-line).
- Guaranteed to terminate on **finite** search instances.
- Memory requirement linear in depth d .

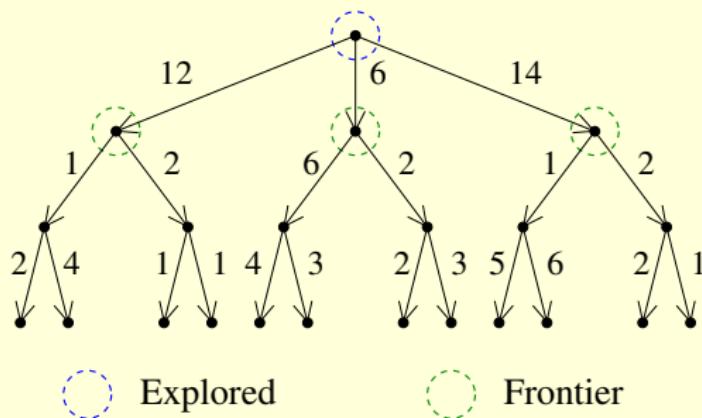
Breadth-first Search (BFS)

Expand frontier node with **shortest** path from start state.



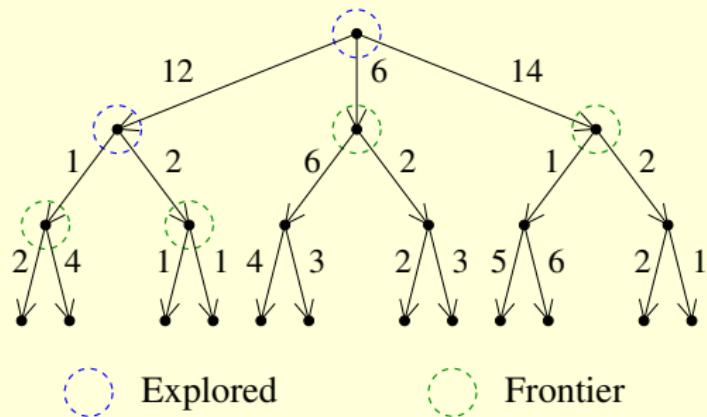
Breadth-first Search (BFS)

Expand frontier node with **shortest** path from start state.



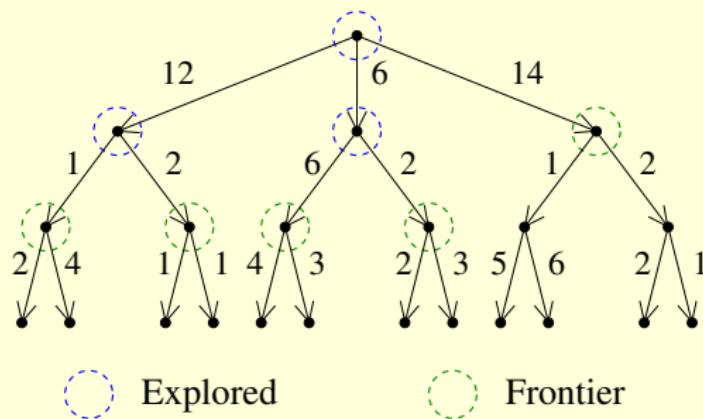
Breadth-first Search (BFS)

Expand frontier node with **shortest** path from start state.



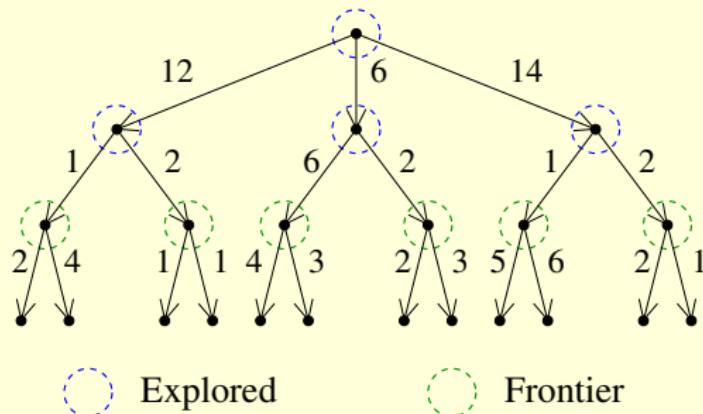
Breadth-first Search (BFS)

Expand frontier node with **shortest** path from start state.



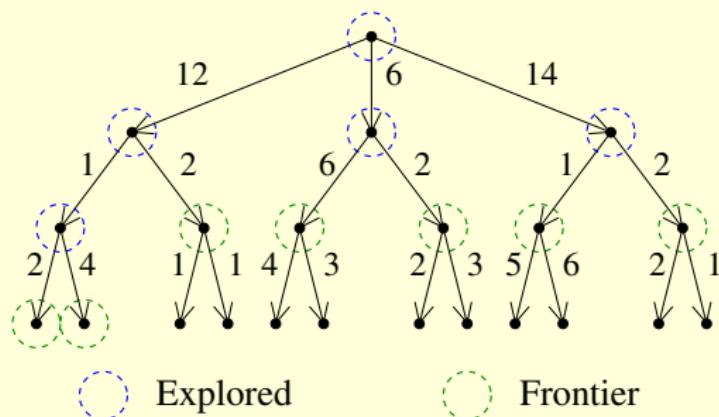
Breadth-first Search (BFS)

Expand frontier node with **shortest** path from start state.



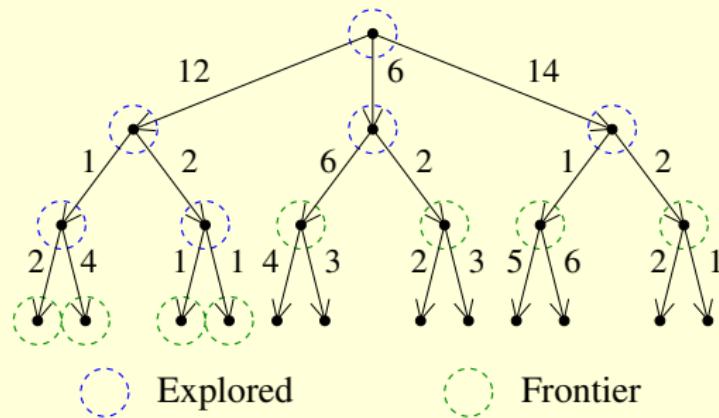
Breadth-first Search (BFS)

Expand frontier node with **shortest** path from start state.



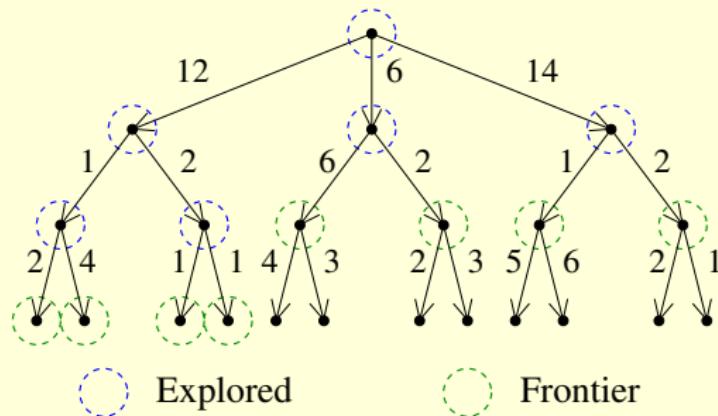
Breadth-first Search (BFS)

Expand frontier node with **shortest** path from start state.



Breadth-first Search (BFS)

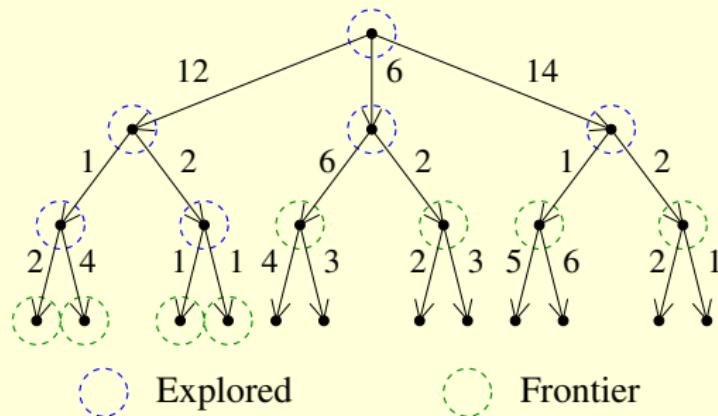
Expand frontier node with **shortest** path from start state.



- Frontier treated like a **queue** (FIFO).

Breadth-first Search (BFS)

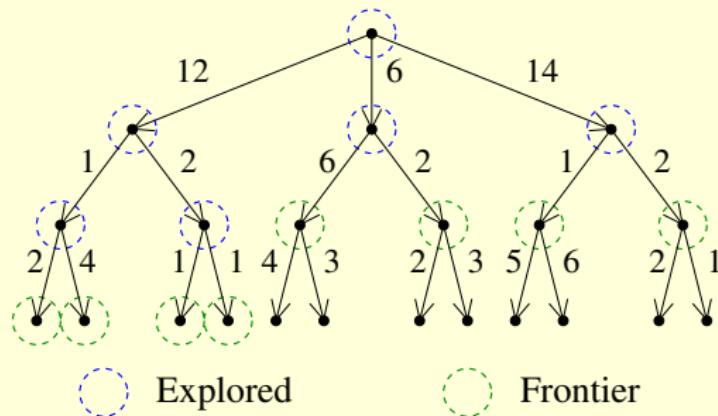
Expand frontier node with **shortest** path from start state.



- Frontier treated like a **queue** (FIFO).
- Guaranteed to terminate if **search depth** is finite.

Breadth-first Search (BFS)

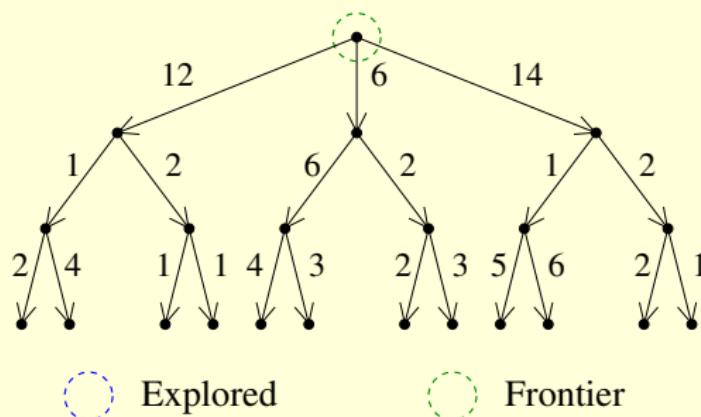
Expand frontier node with **shortest** path from start state.



- Frontier treated like a **queue** (FIFO).
- Guaranteed to terminate if **search depth** is finite.
- Memory requirement $O(b^d)$.

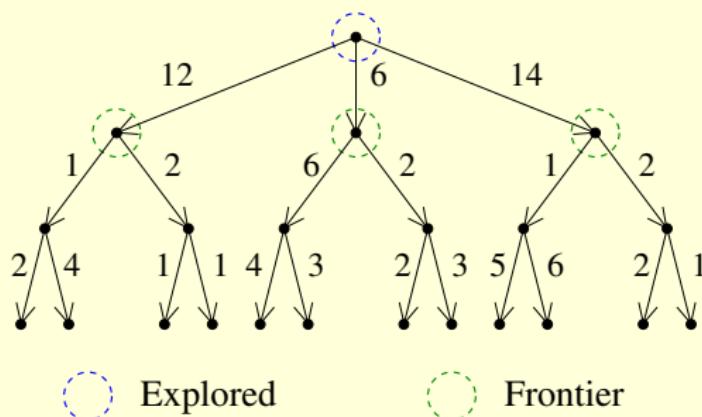
Lowest-cost-first Search (LCFS)

Expand frontier node with **lowest path-cost** from start state.



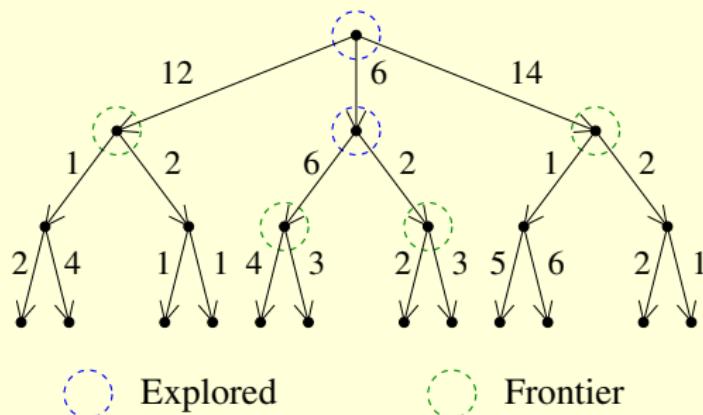
Lowest-cost-first Search (LCFS)

Expand frontier node with **lowest path-cost** from start state.



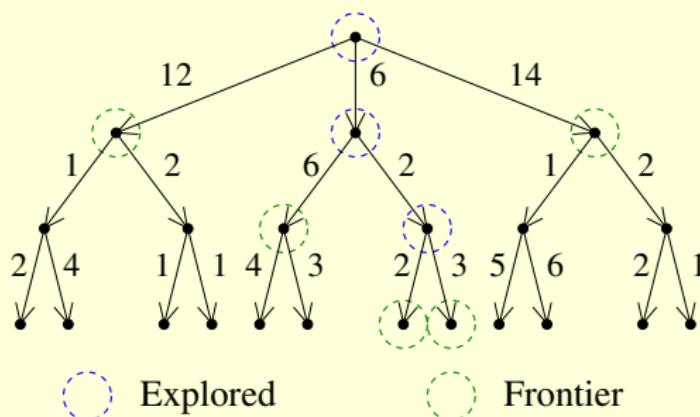
Lowest-cost-first Search (LCFS)

Expand frontier node with **lowest path-cost** from start state.



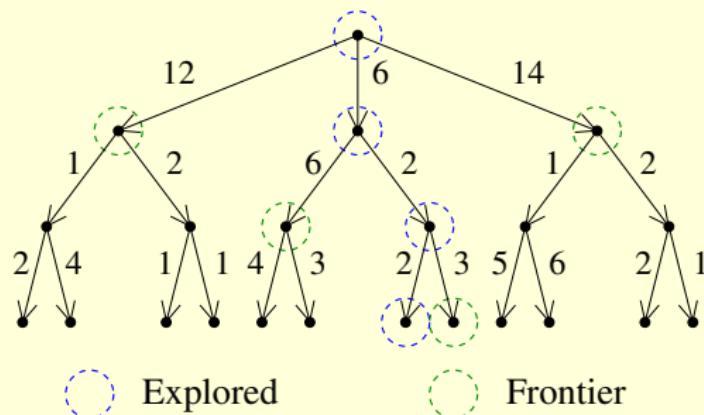
Lowest-cost-first Search (LCFS)

Expand frontier node with **lowest path-cost** from start state.



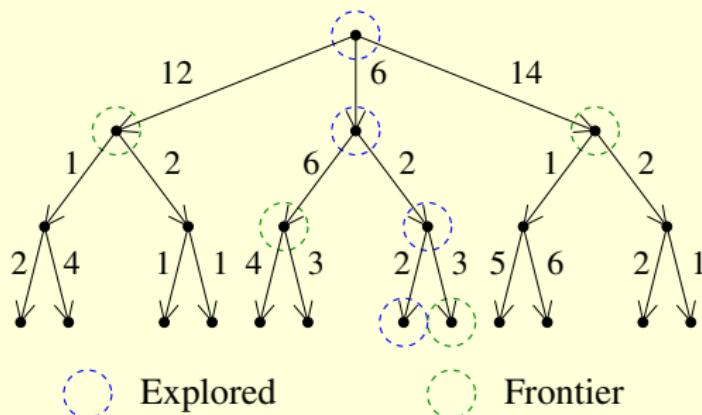
Lowest-cost-first Search (LCFS)

Expand frontier node with **lowest path-cost** from start state.



Lowest-cost-first Search (LCFS)

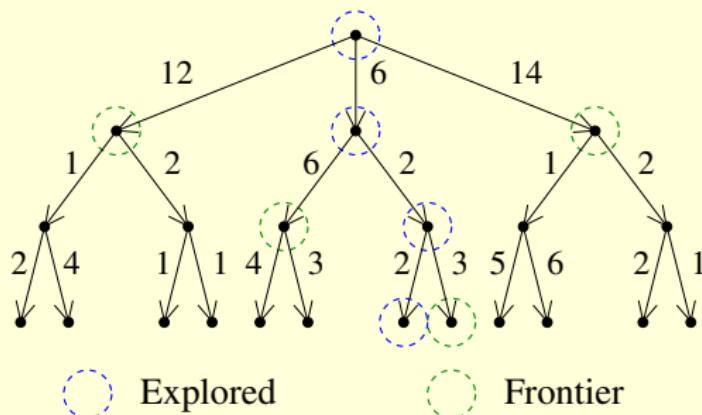
Expand frontier node with **lowest path-cost** from start state.



- For node n , denote path-cost from start state $g(n)$. Frontier treated as priority queue based on $g(n)$.

Lowest-cost-first Search (LCFS)

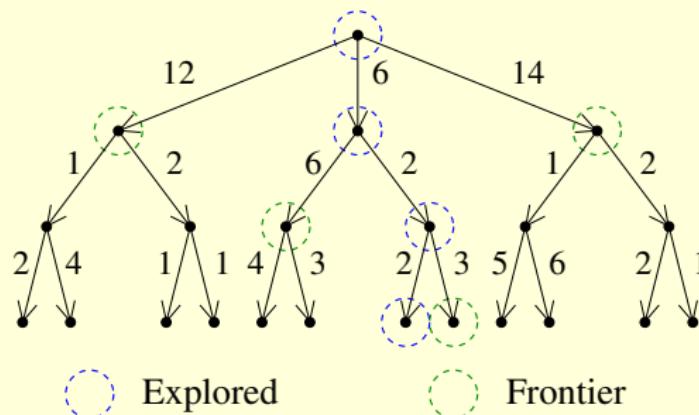
Expand frontier node with **lowest path-cost** from start state.



- For node n , denote path-cost from start state $g(n)$. Frontier treated as priority queue based on $g(n)$.
- Guaranteed to terminate if **search depth** is finite and each cost exceeds $\epsilon > 0$.

Lowest-cost-first Search (LCFS)

Expand frontier node with **lowest path-cost** from start state.



- For node n , denote path-cost from start state $g(n)$. Frontier treated as priority queue based on $g(n)$.
- Guaranteed to terminate if **search depth** is finite and each **cost exceeds $\epsilon > 0$** .
- Memory requirement depends heavily on instance.

Search

- Classical search
 - ▶ Problem instances
 - ▶ Generic search template
 - ▶ Uninformed search
 - ▶ Informed search (a.k.a. heuristic search)
 - ▶ Minimax search
- Decision-time planning in MDPs
 - ▶ Problem
 - ▶ Rollout policies
 - ▶ Monte Carlo tree search
- Discussion

Incorporating Domain Knowledge into Search

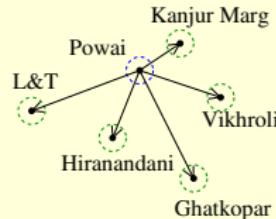
- Have to travel from Powai to Mahim.

Powai

- Mahim

Incorporating Domain Knowledge into Search

- Have to travel from Powai to Mahim.

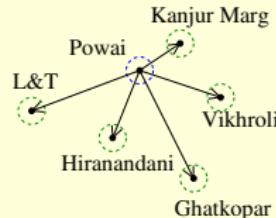


- Mahim

- First you expand the Powai node.

Incorporating Domain Knowledge into Search

- Have to travel from Powai to Mahim.

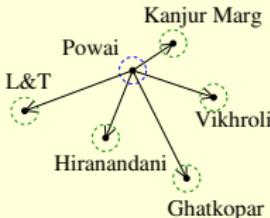


- Mahim

- First you expand the Powai node.
- Which node will **you** expand next?

Incorporating Domain Knowledge into Search

- Have to travel from Powai to Mahim.



- Mahim

- First you expand the Powai node.
- Which node will **you** expand next?
- L&T and Hiranandani are **geographically** closer to Mahim: should that count?

Heuristic Functions and A* Search Algorithm

- A **heuristic** function $h(n)$ is a guess of $c^*(n)$, the optimal path-cost-to-goal of (the state in) node n .

Heuristic Functions and A* Search Algorithm

- A **heuristic** function $h(n)$ is a guess of $c^*(n)$, the optimal path-cost-to-goal of (the state in) node n .
- $h(n)$ is usually easy to compute. On the previous slide, we implicitly used straight line distance:

$$h(n) = \sqrt{(n.state.x - Mahim.x)^2 + (n.state.y - Mahim.y)^2}.$$

Heuristic Functions and A* Search Algorithm

- A **heuristic** function $h(n)$ is a guess of $c^*(n)$, the optimal path-cost-to-goal of (the state in) node n .
- $h(n)$ is usually easy to compute. On the previous slide, we implicitly used straight line distance:

$$h(n) = \sqrt{(n.state.x - Mahim.x)^2 + (n.state.y - Mahim.y)^2}.$$

- Recall that in LCFS, we expand $\operatorname{argmin}_{n \in \text{Frontier}} g(n)$.

Heuristic Functions and A* Search Algorithm

- A **heuristic** function $h(n)$ is a guess of $c^*(n)$, the optimal path-cost-to-goal of (the state in) node n .
- $h(n)$ is usually easy to compute. On the previous slide, we implicitly used straight line distance:

$$h(n) = \sqrt{(n.state.x - Mahim.x)^2 + (n.state.y - Mahim.y)^2}.$$

- Recall that in LCFS, we expand $\operatorname{argmin}_{n \in \text{Frontier}} g(n)$.
- In A* search, we expand $\operatorname{argmin}_{n \in \text{Frontier}} (g(n) + h(n))$.

Heuristic Functions and A* Search Algorithm

- A **heuristic** function $h(n)$ is a guess of $c^*(n)$, the optimal path-cost-to-goal of (the state in) node n .
- $h(n)$ is usually easy to compute. On the previous slide, we implicitly used straight line distance:

$$h(n) = \sqrt{(n.state.x - Mahim.x)^2 + (n.state.y - Mahim.y)^2}.$$

- Recall that in LCFS, we expand $\operatorname{argmin}_{n \in \text{Frontier}} g(n)$.
- In A* search, we expand $\operatorname{argmin}_{n \in \text{Frontier}} (g(n) + h(n))$.
- $g(n)$ summarises the past (known); $h(n)$ anticipates the future (unknown).

Heuristic Functions and A* Search Algorithm

- A **heuristic** function $h(n)$ is a guess of $c^*(n)$, the optimal path-cost-to-goal of (the state in) node n .
- $h(n)$ is usually easy to compute. On the previous slide, we implicitly used straight line distance:

$$h(n) = \sqrt{(n.state.x - Mahim.x)^2 + (n.state.y - Mahim.y)^2}.$$

- Recall that in LCFS, we expand $\operatorname{argmin}_{n \in \text{Frontier}} g(n)$.
- In A* search, we expand $\operatorname{argmin}_{n \in \text{Frontier}} (g(n) + h(n))$.
- $g(n)$ summarises the past (known); $h(n)$ anticipates the future (unknown).
- The addition of $h(n)$ makes A* an **informed** or **heuristic** search algorithm.

Heuristic Functions and A* Search Algorithm

- A **heuristic** function $h(n)$ is a guess of $c^*(n)$, the optimal path-cost-to-goal of (the state in) node n .
- $h(n)$ is usually easy to compute. On the previous slide, we implicitly used straight line distance:

$$h(n) = \sqrt{(n.state.x - Mahim.x)^2 + (n.state.y - Mahim.y)^2}.$$

- Recall that in LCFS, we expand $\operatorname{argmin}_{n \in \text{Frontier}} g(n)$.
- In A* search, we expand $\operatorname{argmin}_{n \in \text{Frontier}} (g(n) + h(n))$.
- $g(n)$ summarises the past (known); $h(n)$ anticipates the future (unknown).
- The addition of $h(n)$ makes A* an **informed** or **heuristic** search algorithm.
- A* search originally conceived for robotic path planning.

Admissible Heuristics

- A heuristic h is **admissible** if for all nodes n ,

$$0 \leq h(n) \leq c^*(n),$$

where $c^*(n)$ is the optimal cost-to-goal of $n.state$.

Admissible Heuristics

- A heuristic h is **admissible** if for all nodes n ,

$$0 \leq h(n) \leq c^*(n),$$

where $c^*(n)$ is the optimal cost-to-goal of $n.state$.

- **Key result.** If A* search is run using an admissible heuristic (and some minor technical conditions hold), then the **first goal node** it expands will have **optimal** path-cost from the start state (and the algorithm can terminate).

Admissible Heuristics

- A heuristic h is **admissible** if for all nodes n ,

$$0 \leq h(n) \leq c^*(n),$$

where $c^*(n)$ is the optimal cost-to-goal of $n.state$.

- **Key result.** If A* search is run using an admissible heuristic (and some minor technical conditions hold), then the **first goal node** it expands will have **optimal** path-cost from the start state (and the algorithm can terminate).
- Is straight line distance an admissible heuristic for navigation?

Admissible Heuristics

- A heuristic h is **admissible** if for all nodes n ,

$$0 \leq h(n) \leq c^*(n),$$

where $c^*(n)$ is the optimal cost-to-goal of $n.state$.

- **Key result.** If A* search is run using an admissible heuristic (and some minor technical conditions hold), then the **first goal node** it expands will have **optimal** path-cost from the start state (and the algorithm can terminate).
- Is straight line distance an admissible heuristic for navigation? **Yes.**

Admissible Heuristics

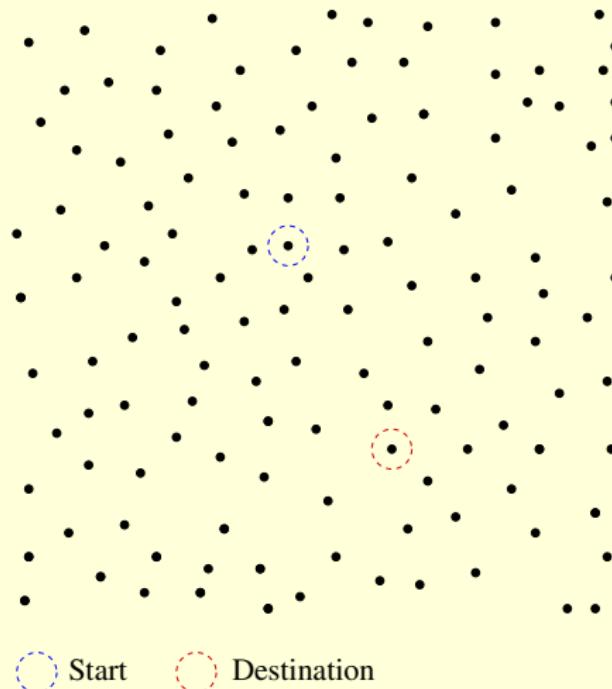
- A heuristic h is **admissible** if for all nodes n ,

$$0 \leq h(n) \leq c^*(n),$$

where $c^*(n)$ is the optimal cost-to-goal of $n.state$.

- **Key result.** If A* search is run using an admissible heuristic (and some minor technical conditions hold), then the **first goal node** it expands will have **optimal** path-cost from the start state (and the algorithm can terminate).
- Is straight line distance an admissible heuristic for navigation? **Yes.**
- For a given task, which is the best heuristic function to use?

Effect of Heuristic

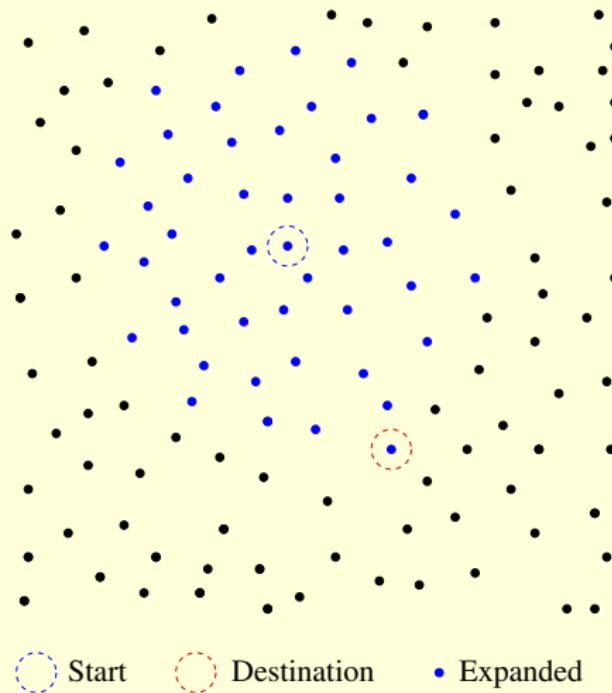


Effect of Heuristic



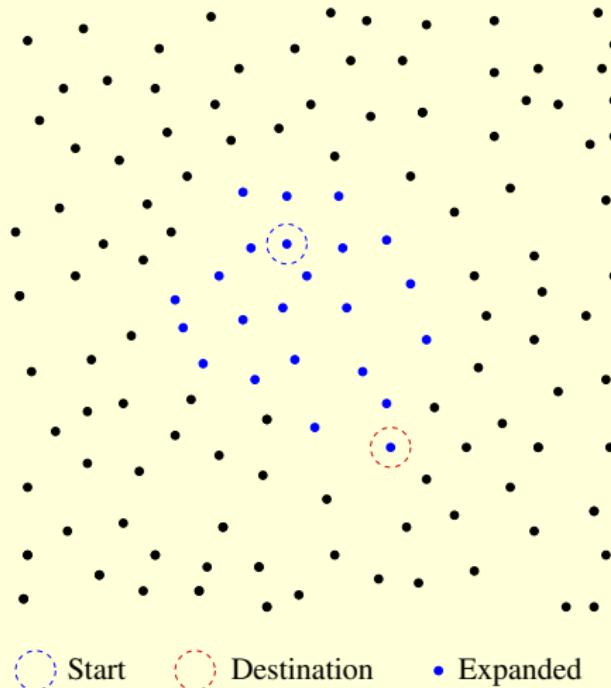
$h(n) = c^*(n)$. Will only expand nodes along optimal path!
Unfortunately $c^*(n)$ is not known!

Effect of Heuristic



$h(n) = 0$. Identical to LCFS.

Effect of Heuristic



Intermediate/typical $h(n)$ expands fewer nodes than LCFS.

Admissible Heuristics

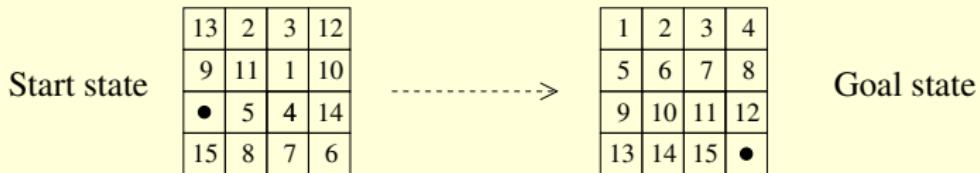
- How to design an effective admissible heuristic for a task?

Admissible Heuristics

- How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve the task with relaxed constraints.

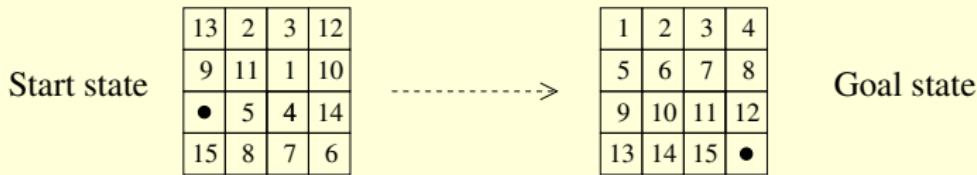
Admissible Heuristics

- How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve the task with relaxed constraints.
- What's a good heuristic for 15-puzzle?



Admissible Heuristics

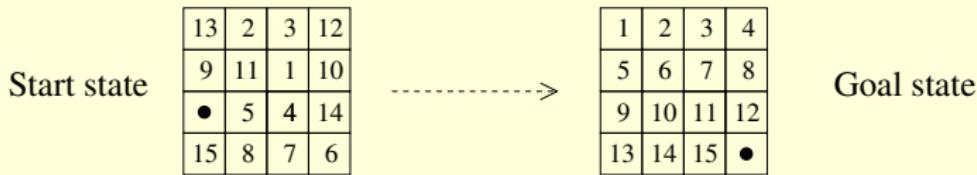
- How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve the task with relaxed constraints.
- What's a good heuristic for 15-puzzle?



Sum of Manhattan distances between each number's position in start state and its position in goal state.

Admissible Heuristics

- How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve the task with relaxed constraints.
- What's a good heuristic for 15-puzzle?

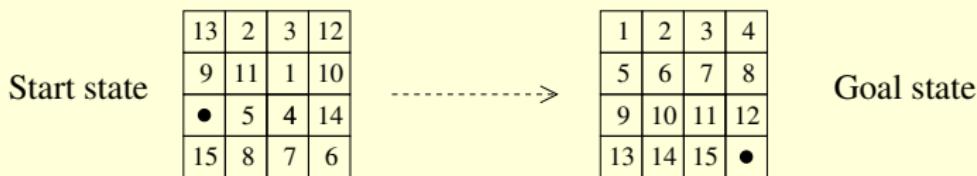


Sum of Manhattan distances between each number's position in start state and its position in goal state.

- Can we make do with inadmissible heuristics?

Admissible Heuristics

- How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve the task with relaxed constraints.
 - What's a good heuristic for 15-puzzle?



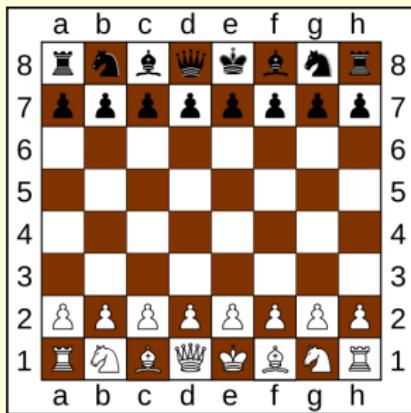
Sum of Manhattan distances between each number's position in start state and its position in goal state.

- Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

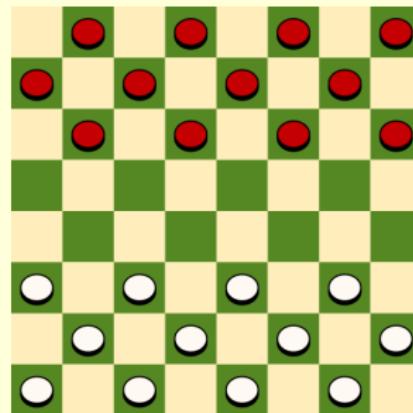
Search

- Classical search
 - ▶ Problem instances
 - ▶ Generic search template
 - ▶ Uninformed search
 - ▶ Informed search (a.k.a. heuristic search)
 - ▶ **Minimax search**
- Decision-time planning in MDPs
 - ▶ Problem
 - ▶ Rollout policies
 - ▶ Monte Carlo tree search
- Discussion

Search and Games



[1]

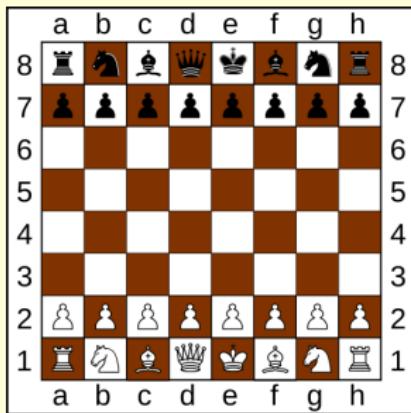


[2]

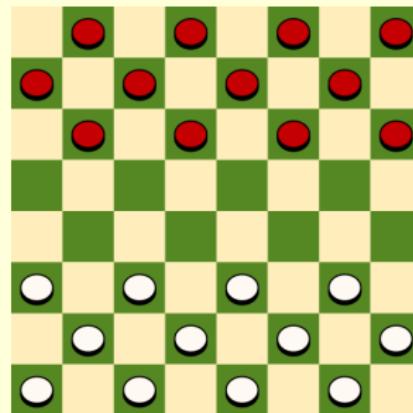
[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.

[2] <https://commons.wikimedia.org/wiki/File:Draughts.svg>.

Search and Games



Chess [1]

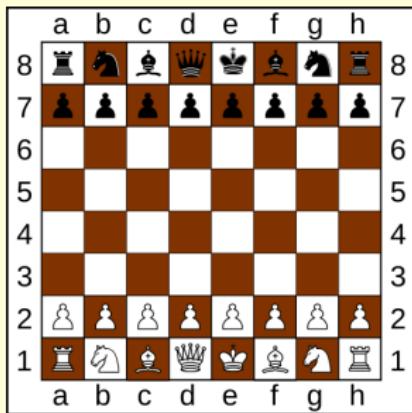


Checkers/Draughts [2]

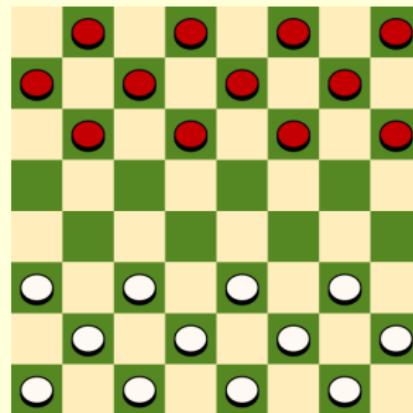
[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.

[2] <https://commons.wikimedia.org/wiki/File:Draughts.svg>.

Search and Games



Chess [1]



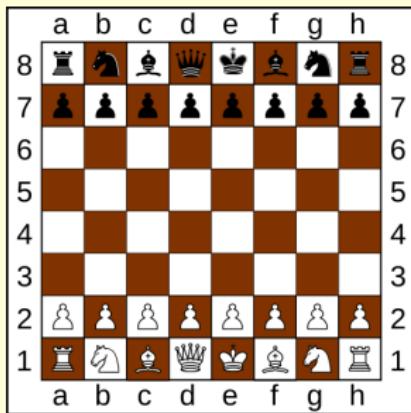
Checkers/Draughts [2]

- Winning at chess/checkers: a search problem?

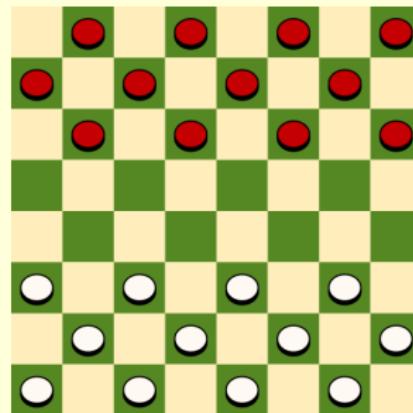
[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.

[2] <https://commons.wikimedia.org/wiki/File:Draughts.svg>.

Search and Games



Chess [1]



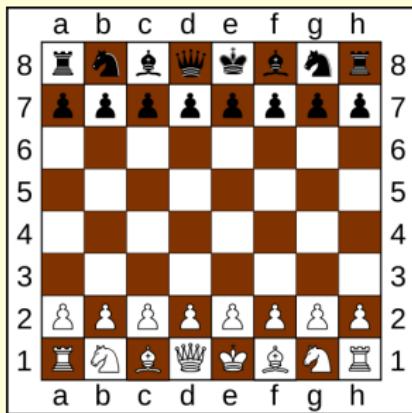
Checkers/Draughts [2]

- Winning at chess/checkers: a search problem?
- What's the main difference from our previous examples?

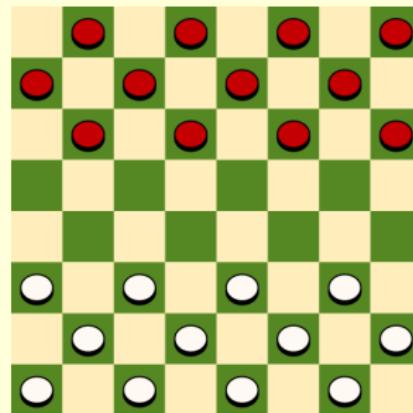
[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC image courtesy of ILA-boy on Wikimedia Commons licensed under CC-BY-SA-3.0.

[2] <https://commons.wikimedia.org/wiki/File:Draughts.svg>.

Search and Games



Chess [1]



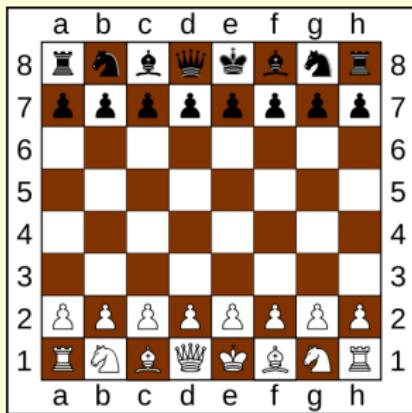
Checkers/Draughts [2]

- Winning at chess/checkers: a search problem?
- What's the main difference from our previous examples?
There's another player!

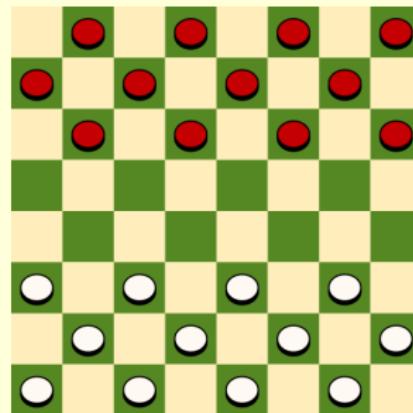
[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC image courtesy of ILA-boy on Wikimedia Commons licensed under CC-BY-SA-3.0.

[2] <https://commons.wikimedia.org/wiki/File:Draughts.svg>.

Search and Games



Chess [1]



Checkers/Draughts [2]

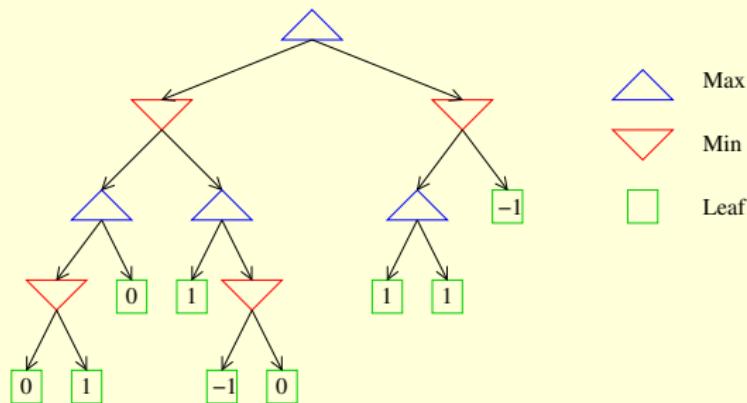
- Winning at chess/checkers: a search problem?
- What's the main difference from our previous examples?
There's another player!
- Instances of **turn-based** two player zero-sum games.

[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.

[2] <https://commons.wikimedia.org/wiki/File:Draughts.svg>.

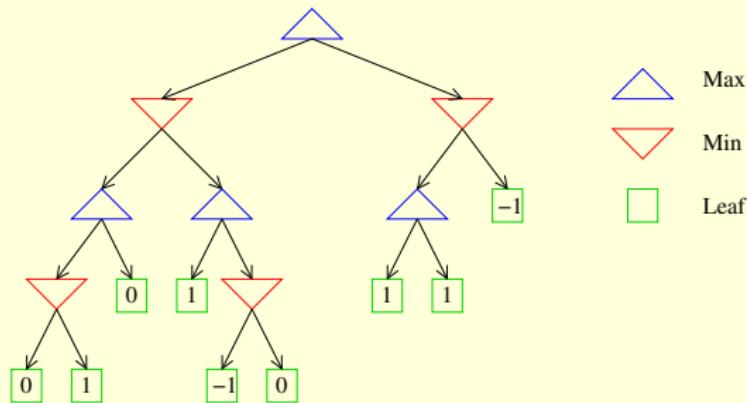
Game Tree

- Assume turn-taking zero sum game played by **Max** and **Min**.
- Action costs usually taken as 0, but leaves have value
 –1 (Max loses), 0 (draw), 1 (Max wins).
- Value of Max node is maximum of values of children.
Value of Min node is minimum of values of children.



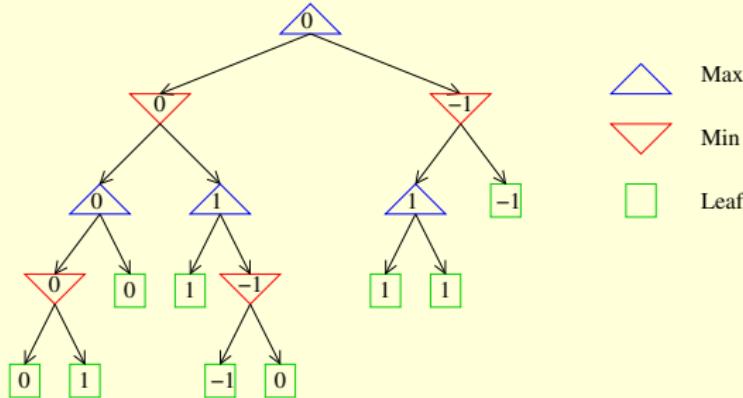
Game Tree

- Assume turn-taking zero sum game played by **Max** and **Min**.
- Action costs usually taken as 0, but leaves have value
 - 1 (Max loses), 0 (draw), 1 (Max wins).
- Value of Max node is maximum of values of children.
Value of Min node is minimum of values of children.
- **What is the value of the root node?**



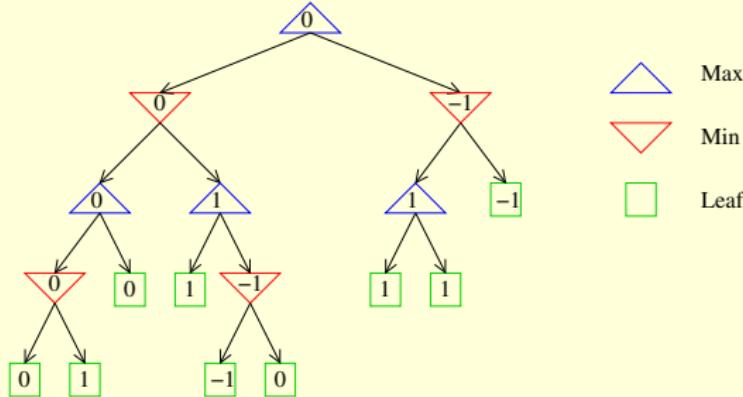
Game Tree

- Assume turn-taking zero sum game played by **Max** and **Min**.
- Action costs usually taken as 0, but leaves have value
 - 1 (Max loses), 0 (draw), 1 (Max wins).
- Value of Max node is maximum of values of children.
- Value of Min node is minimum of values of children.
- **What is the value of the root node?**



Game Tree

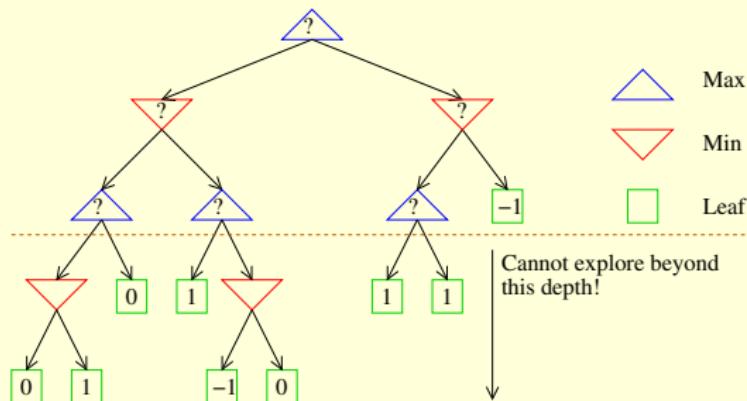
- Assume turn-taking zero sum game played by **Max** and **Min**.
- Action costs usually taken as 0, but leaves have value
 -1 (Max loses), 0 (draw), 1 (Max wins).
- Value of Max node is maximum of values of children.
Value of Min node is minimum of values of children.
- **What is the value of the root node?**



- In 2007, a massive, long-running computation concluded that the value of the root node for Checkers is 0 (draw).

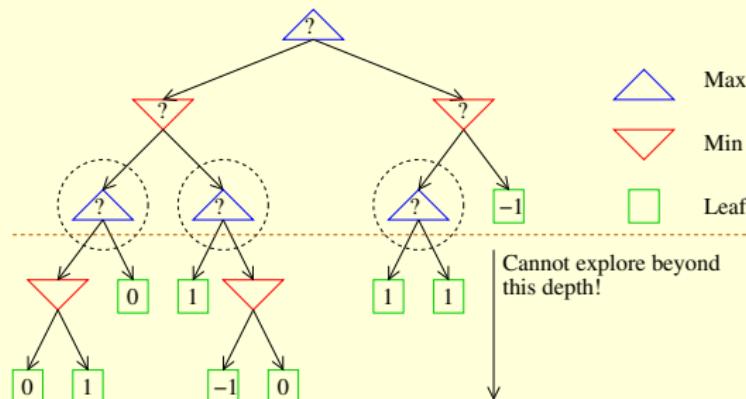
Evaluation Function

- The Checkers tree has $\approx 10^{40}$ nodes; Chess has $\approx 10^{120}$. Infeasible to solve!



Evaluation Function

- The Checkers tree has $\approx 10^{40}$ nodes; Chess has $\approx 10^{120}$. Infeasible to solve!



- At some depth d from current node, estimate node value using **features**.
- For example, in Chess, set **evaluation** as $w_1 \times \text{Material diff.} + w_2 \times \text{King safety} + w_3 \times \text{pawn strength} + \dots$
- Weights w_1, w_2, w_3, \dots are tuned or learned.

Search

- Classical search
 - ▶ Problem instances
 - ▶ Generic search template
 - ▶ Uninformed search
 - ▶ Informed search (a.k.a. heuristic search)
 - ▶ Minimax search
- Decision-time planning in MDPs
 - ▶ Problem
 - ▶ Rollout policies
 - ▶ Monte Carlo tree search
- Discussion

Decision-time planning: Problem

- So far we have assumed that an agent's learning algorithm produces π or Q as output. While acting on-line, the agent just needs a "look up" or associative "forward pass" from any state s to obtain its action.

Decision-time planning: Problem

- So far we have assumed that an agent's learning algorithm produces π or Q as output. While acting on-line, the agent just needs a “look up” or associative “forward pass” from any state s to obtain its action.
- Sometimes π or Q might be difficult to learn in compact form, but a model $M = (T, R)$ (given or learned, exact or approximate) might be available.

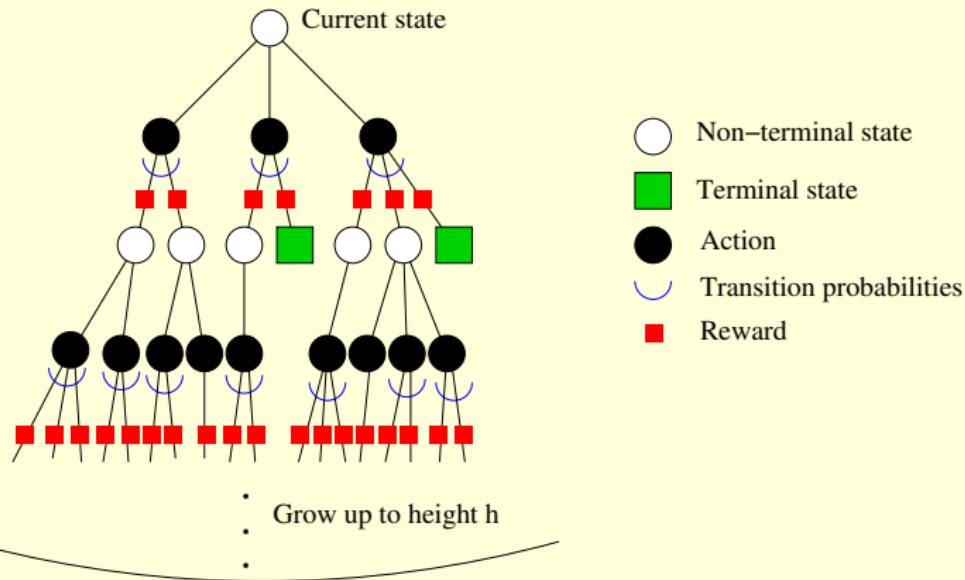
Decision-time planning: Problem

- So far we have assumed that an agent's learning algorithm produces π or Q as output. While acting on-line, the agent just needs a “look up” or associative “forward pass” from any state s to obtain its action.
- Sometimes π or Q might be difficult to learn in compact form, but a model $M = (T, R)$ (given or learned, exact or approximate) might be available.
- In **decision-time planning**, at every time step, we “imagine” possible futures emanating from the current state by using M , and use the computation to decide which action to take.

Decision-time planning: Problem

- So far we have assumed that an agent's learning algorithm produces π or Q as output. While acting on-line, the agent just needs a “look up” or associative “forward pass” from any state s to obtain its action.
- Sometimes π or Q might be difficult to learn in compact form, but a model $M = (T, R)$ (given or learned, exact or approximate) might be available.
- In **decision-time planning**, at every time step, we “imagine” possible futures emanating from the current state by using M , and use the computation to decide which action to take.
- How to rigorously do so?

Tree Search on MDPs

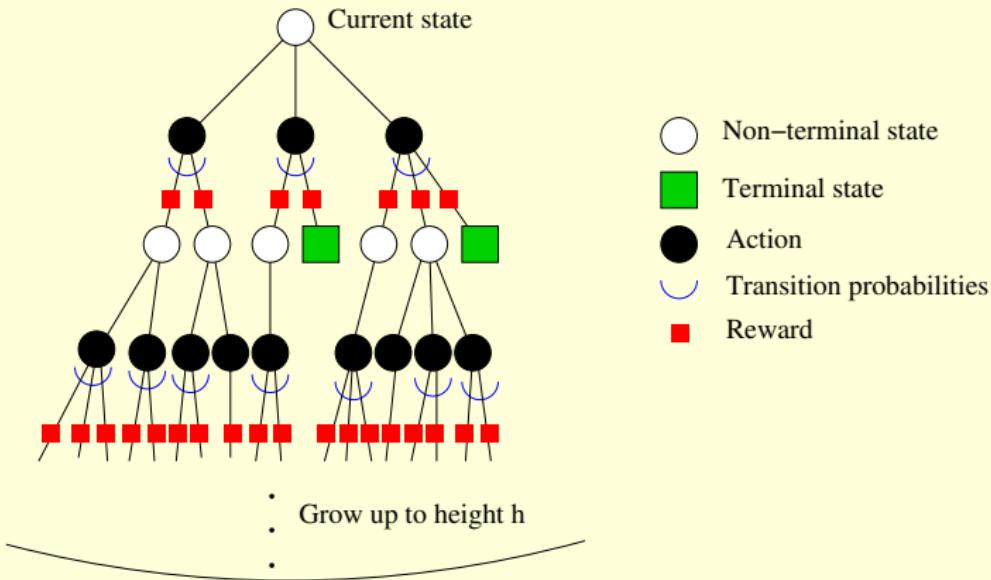


- **Expectimax** calculation. Set $Q^h \leftarrow \mathbf{0}$ //Leaves.
For $d = h - 1, h - 2, \dots, 0$://Bottom-up calculation.

$$V^d(s) \leftarrow \max_{a \in A} Q^{d+1}(s, a);$$

$$Q^d(s, a) \leftarrow \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^d(s') \}.$$

Tree Search on MDPs



- Need $h = \theta(\frac{1}{1-\gamma})$ for sufficient accuracy.
 - With branching factor b , tree size is $\theta(b^h)$. Expensive!
 - Often M is only a **sampling model** (not distribution model).
 - Can we avoid expanding (clearly) inferior branches?

Search

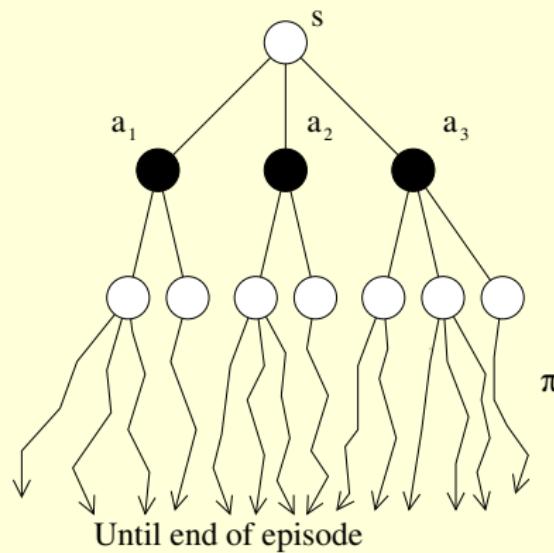
- Classical search
 - ▶ Problem instances
 - ▶ Generic search template
 - ▶ Uninformed search
 - ▶ Informed search (a.k.a. heuristic search)
 - ▶ Minimax search
- Decision-time planning in MDPs
 - ▶ Problem
 - ▶ **Rollout policies**
 - ▶ Monte Carlo tree search
- Discussion

Rollout Policies

- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \max_{a \in A} Q^\pi(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.

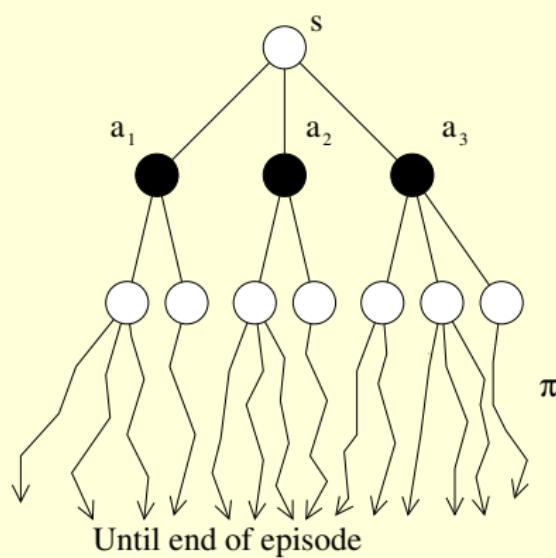
Rollout Policies

- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \max_{a \in A} Q^\pi(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through M).



Rollout Policies

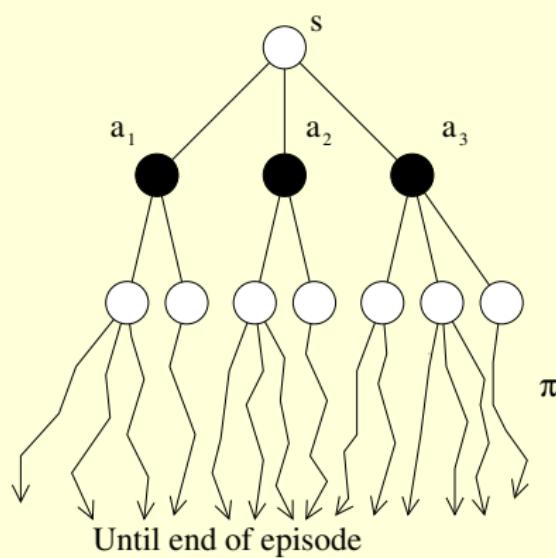
- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \max_{a \in A} Q^\pi(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through M).



- From current state s , for each action $a \in A$, generate N trajectories by taking a from s and thereafter following π .

Rollout Policies

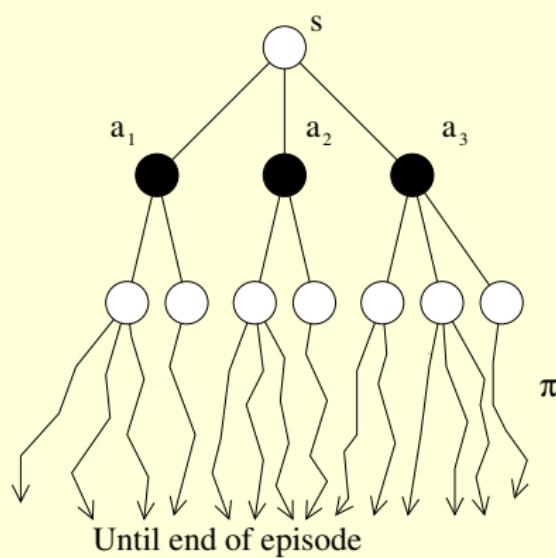
- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \max_{a \in A} Q^\pi(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through M).



- From current state s , for each action $a \in A$, generate N trajectories by taking a from s and thereafter following π .
- Set $\hat{Q}^\pi(s, a)$ as average of episodic returns.

Rollout Policies

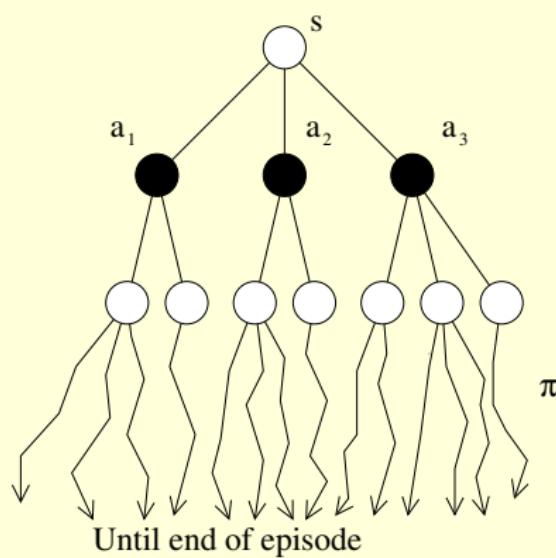
- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \max_{a \in A} Q^\pi(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through M).



- From current state s , for each action $a \in A$, generate N trajectories by taking a from s and thereafter following π .
- Set $\hat{Q}^\pi(s, a)$ as average of episodic returns.
- Take action $\pi'(s) = \operatorname{argmax}_{a \in A} \hat{Q}^\pi(s, a)$.

Rollout Policies

- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \max_{a \in A} Q^\pi(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through M).



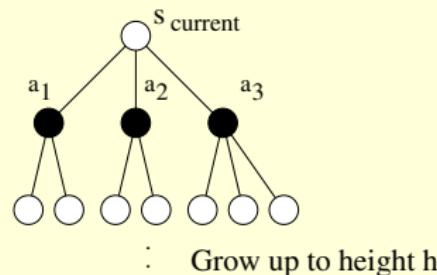
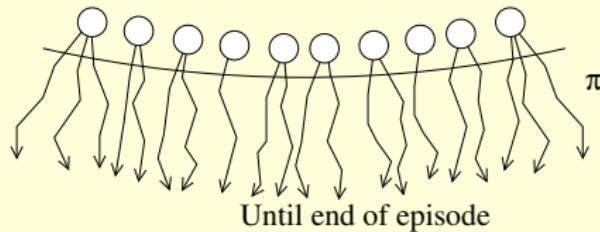
- From current state s , for each action $a \in A$, generate N trajectories by taking a from s and thereafter following π .
- Set $\hat{Q}^\pi(s, a)$ as average of episodic returns.
- Take action $\pi'(s) = \operatorname{argmax}_{a \in A} \hat{Q}^\pi(s, a)$.
- Repeat same process from next state s' .

Search

- Classical search
 - ▶ Problem instances
 - ▶ Generic search template
 - ▶ Uninformed search
 - ▶ Informed search (a.k.a. heuristic search)
 - ▶ Minimax search
- Decision-time planning in MDPs
 - ▶ Problem
 - ▶ Rollout policies
 - ▶ Monte Carlo tree search
- Discussion

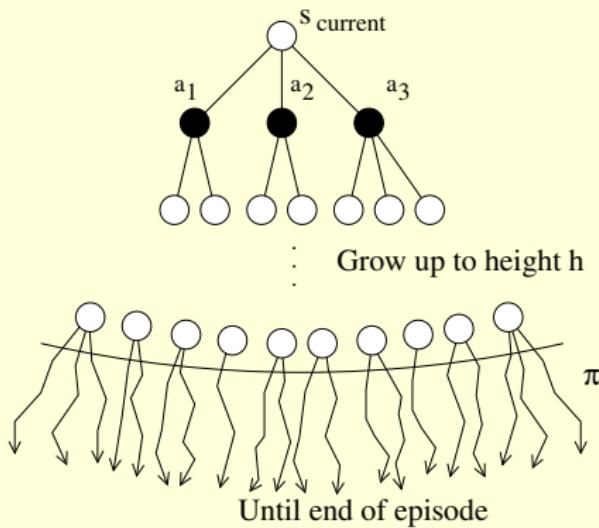
Monte Carlo Tree Search (UCT Algorithm)

- Build out a tree up to height h (say 5–10) from current state s_{current} . “Data” for the tree are samples returned by M .
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - ▶ $Q(s, a)$: average of returns of rollouts passing through (s, a) .
 - ▶ $ucb(s, a) = Q(s, a) + C_p \sqrt{\frac{\ln(t)}{\text{visits}(s, a)}}$.



Monte Carlo Tree Search (UCT Algorithm)

- Build out a tree up to height h (say 5–10) from current state s_{current} . “Data” for the tree are samples returned by M .
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - ▶ $Q(s, a)$: average of returns of rollouts passing through (s, a) .
 - ▶ $ucb(s, a) = Q(s, a) + C_p \sqrt{\frac{\ln(t)}{\text{visits}(s, a)}}$.

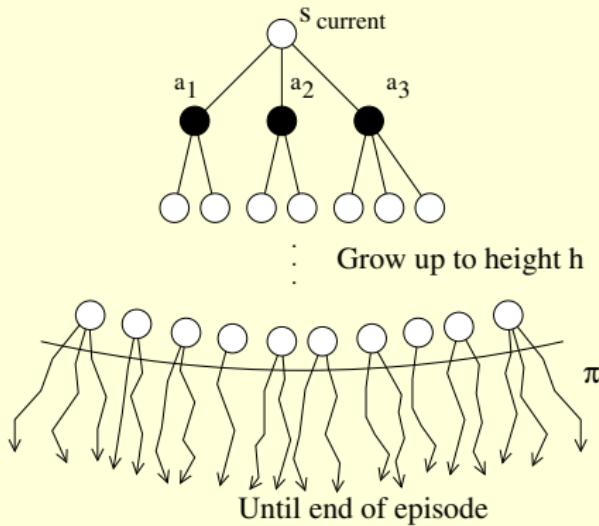


Repeat N times from s_{current} :

1. Generate trajectory by calling M . From stored state s , “take” $\text{argmax}_{a \in A} ucb(s, a)$; from leaf follow rollout policy π until end of episode.

Monte Carlo Tree Search (UCT Algorithm)

- Build out a tree up to height h (say 5–10) from current state s_{current} . “Data” for the tree are samples returned by M .
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - ▶ $Q(s, a)$: average of returns of rollouts passing through (s, a) .
 - ▶ $ucb(s, a) = Q(s, a) + C_p \sqrt{\frac{\ln(t)}{\text{visits}(s, a)}}$.

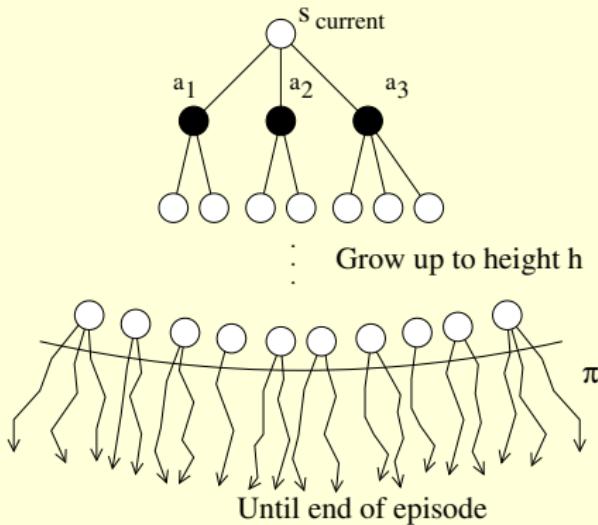


Repeat N times from s_{current} :

1. Generate trajectory by calling M . From stored state s , “take” $\text{argmax}_{a \in A} ucb(s, a)$; from leaf follow rollout policy π until end of episode.
2. Update Q , ucb for (s, a) pairs visited in trajectory.

Monte Carlo Tree Search (UCT Algorithm)

- Build out a tree up to height h (say 5–10) from current state s_{current} . “Data” for the tree are samples returned by M .
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - ▶ $Q(s, a)$: average of returns of rollouts passing through (s, a) .
 - ▶ $ucb(s, a) = Q(s, a) + C_p \sqrt{\frac{\ln(t)}{\text{visits}(s, a)}}$.



Repeat N times from s_{current} :

1. Generate trajectory by calling M . From stored state s , “take” $\text{argmax}_{a \in A} ucb(s, a)$; from leaf follow rollout policy π until end of episode.
2. Update Q , ucb for (s, a) pairs visited in trajectory.

Take $\text{argmax}_{a \in A} ucb(s, a)$.

Monte Carlo Tree Search (UCT Algorithm)

- Main parameters of UCT: rollout policy π , search tree height h , number of rollouts N .
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as h is increased (if $N = \infty$).
- In practice N limited by available “think” time.

Monte Carlo Tree Search (UCT Algorithm)

- Main parameters of UCT: rollout policy π , search tree height h , number of rollouts N .
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as h is increased (if $N = \infty$).
- In practice N limited by available “think” time.
- C_p in the UCB formula needs to be large to deal with nonstationarity (from changes downstream).

Monte Carlo Tree Search (UCT Algorithm)

- Main parameters of UCT: rollout policy π , search tree height h , number of rollouts N .
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as h is increased (if $N = \infty$).
- In practice N limited by available “think” time.
- C_p in the UCB formula needs to be large to deal with nonstationarity (from changes downstream).
- In general there could be multiple paths to any particular stored (s, a) pair starting from s_{current} .

Monte Carlo Tree Search (UCT Algorithm)

- Main parameters of UCT: rollout policy π , search tree height h , number of rollouts N .
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as h is increased (if $N = \infty$).
- In practice N limited by available “think” time.
- C_p in the UCB formula needs to be large to deal with nonstationarity (from changes downstream).
- In general there could be multiple paths to any particular stored (s, a) pair starting from s_{current} .
- UCT focuses attention on rewarding regions of state space.
- Rollouts can easily be parallelised.
- Extremely successful algorithm in practice.

Search

- Classical search
 - ▶ Problem instances
 - ▶ Generic search template
 - ▶ Uninformed search
 - ▶ Informed search (a.k.a. heuristic search)
 - ▶ Minimax search
- Decision-time planning in MDPs
 - ▶ Problem
 - ▶ Rollout policies
 - ▶ Monte Carlo tree search
- Discussion

Search in AI/ML

- Heuristic search (“problem-solving”) is among the earliest topics studied in AI.
- Applications: Theorem-proving, constraint satisfaction problems/integer programming, robotic path planning, logistics, Video games (movement of characters).
- A* search (and variants such as IDA*) used widely in practice.
- Search is different from learning, although these two attributes of intelligence often come together.
- Main technical challenge: large (exponentially growing) number of states in most practical tasks.

Search in On-line Decision Making

- Key requirement: simulator ([model](#)).
- More [computationally expensive](#) than lookup of π or Q .
- MCTS with rollout policies an effective approach to handle stochasticity as well as [large state spaces](#).
- [Learning](#) (say an evaluation function) can also help solution quality of search in practice.
- Proof of all these claims: [AlphaGo!](#)

Search in On-line Decision Making

- Key requirement: simulator ([model](#)).
- More [computationally expensive](#) than lookup of π or Q .
- MCTS with rollout policies an effective approach to handle stochasticity as well as [large state spaces](#).
- [Learning](#) (say an evaluation function) can also help solution quality of search in practice.
- Proof of all these claims: [AlphaGo!](#)

- We'll cover more model-based methods, as well as AlphaGo, in upcoming lectures.