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Navigation System
How to go from IIT Bombay to Marine Drive?

Start

Destination

Action

[1]

[1] https://www.flickr.com/photos/nat507/16088993607. CC image courtesy of Nathan Hughes Hamilton
on Flickr licensed under CC BY 2.0.
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Some Popular Puzzles
How to solve?

Start

Destination

Action

Sudoku [1]

15-puzzle [2] Same abstraction?

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_
puzzle_with_17_clues%29.png. CC image courtesy of LithiumFlash on WikiCommons licensed under
CC-BY-SA-4.0.

[2] https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CC image courtesy of Stannic
on WikiMedia Commons licensed under CC-BY-SA-3.0
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Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion
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Elements of a Search Problem Instance

Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when
applied from start state:

I reaches a goal state, and
I (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is called the
branching factor b.
Length of optimal path to reach goal state is called the
depth d of the search instance.
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Problem Formulation: Navigation System

Start

Destination

Action

States?

Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the least-cost path.
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Problem Formulation: Navigation System

Start

Destination

Action

(Least−cost) Path

States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the least-cost path.
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Problem Formulation: 15 Puzzle

5 15

4
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Start state

Goal state

States?
Start state?
Actions?
NextState()?
Cost()?
IsGoal()?

A solver needs to find the shortest path to goal state.
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Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion
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Generic Search Template: Pseudocode

Primary data element is a Node, which a tuple of the form

(state,pathFromStartState,pathCost).

At every stage of the search,
- some states have been explored
- some states remain unexplored, and
- The Frontier is a set of nodes due for imminent expansion.
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Generic Search Template: Pseudocode

Frontier ← {Node(startState, (startState),0)}.
Repeat for ever:

Select a node n from Frontier .

//Which one?

//Expand n.
If isGoal(n.state):

Return n.
For each action a available from n.state:

s ← NextState(n.state,a).
c ← Cost(n.state,a).
n′ ← Node(s,n.path+(a, s),n.pathCost + c).
Merge n′ with Frontier .//Typically insertion;
might also allow deletions.
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Generic Search Template: Illustration

Start

Destination

Action

How did we decide which frontier nodes to expand?
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Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion
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Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack (LIFO).
No need to explicitly maintain frontier (construct on-line).
Guaranteed to terminate on finite search instances.
Memory requirement linear in depth d .
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Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue (FIFO).
Guaranteed to terminate if search depth is finite.
Memory requirement O(bd).
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Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote path-cost from start state g(n). Frontier
treated as priority queue based on g(n).
Guaranteed to terminate if search depth is finite and each
cost exceeds ε > 0.
Memory requirement depends heavily on instance.
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Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion
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Incorporating Domain Knowledge into Search
Have to travel from Powai to Mahim.

Mahim

Powai

First you expand the Powai node.
Which node will you expand next?
L&T and Hiranandani are geographically closer to Mahim:
should that count?
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Heuristic Functions and A? Search Algorithm
A heuristic function h(n) is a guess of c?(n), the optimal
path-cost-to-goal of (the state in) node n.

h(n) is usually easy to compute. On the previous slide, we
implicitly used straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A? search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the
future (unknown).
The addition of h(n) makes A? an informed or heuristic
search algorithm.
A? search originally conceived for robotic path planning.
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Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c?(n),

where c?(n) is the optimal cost-to-goal of n.state.

Key result. If A? search is run using an admissible heuristic
(and some minor technical conditions hold), then the first
goal node it expands will have optimal path-cost from the
start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for
navigation? Yes.

For a given task, which is the best heuristic function to use?
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Effect of Heuristic

Start Destination
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Effect of Heuristic

Start ExpandedDestination

h(n) = c?(n). Will only expand nodes along optimal path!
Unfortunately c?(n) is not known!
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Effect of Heuristic

Start ExpandedDestination

h(n) = 0. Identical to LCFS.
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Effect of Heuristic

Start ExpandedDestination

Intermediate/typical h(n) expands fewer nodes than LCFS.
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Admissible Heuristics
How to design an effective admissible heuristic for a task?

For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35



20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35



20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35



20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35



20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?

Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35



20/35

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general
strategy is to solve the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s
position in start state and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next section. But try to avoid.

Shivaram Kalyanakrishnan (2021) CS 748, Spring 2021 20 / 35



21/35

Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion
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Search and Games

Chess

[1]

Checkers/Draughts

[2]

Winning at chess/checkers: a search problem?
What’s the main difference from our previous examples?

There’s another player!

Instances of turn-based two player zero-sum games.

[1] https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg. CC
image courtesy of ILA-boy on WikiMedia Commons licensed under CC-BY-SA-3.0.
[2] https://commons.wikimedia.org/wiki/File:Draughts.svg.
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Game Tree
Assume turn-taking zero sum game played by Max and Min.
Action costs usually taken as 0, but leaves have value

−1 (Max loses), 0 (draw), 1 (Max wins).
Value of Max node is maximum of values of children.
Value of Min node is minimum of values of children.

What is the value of the root node?

Max

Leaf

Min

11

0

10

10 −1

−1

In 2007, a massive, long-running computation concluded
that the value of the root node for Checkers is 0 (draw).
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Evaluation Function
The Checkers tree has ≈ 1040 nodes; Chess has ≈ 10120.
Infeasible to solve!

Max

Leaf

Min

11

0

10

10 −1

−1??

?

?

?

?

Cannot explore beyond
this depth!

At some depth d from current node, estimate node value
using features.
For example, in Chess, set evaluation as

w1×Material diff.+w2×King safety+w3×pawn strength+. . . .

Weights w1,w2,w3, . . . are tuned or learned.
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Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search

Discussion
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Decision-time planning: Problem

So far we have assumed that an agent’s learning algorithm
produces π or Q as output. While acting on-line, the agent
just needs a “look up” or associative “forward pass” from
any state s to obtain its action.

Sometimes π or Q might be difficult to learn in compact
form, but a model M = (T ,R) (given or learned, exact or
approximate) might be available.
In decision-time planning, at every time step, we “imagine”
possible futures emanating from the current state by using
M, and use the computation to decide which action to take.
How to rigorously do so?
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Tree Search on MDPs

.  .  .

Current state

Grow up to height h

Non−terminal state

Terminal state

Action

Transition probabilities

Reward

Expectimax calculation. Set Qh ← 0 //Leaves.
For d = h − 1,h − 2, . . . ,0://Bottom-up calculation.

V d(s)← maxa∈A Qd+1(s,a);
Qd(s,a)←

∑
s′∈S T (s,a, s′){R(s,a, s′) + γV d(s′)}.
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Tree Search on MDPs

.  .  .

Current state

Grow up to height h

Non−terminal state

Terminal state

Action

Transition probabilities

Reward

Need h = θ( 1
1−γ ) for sufficient accuracy.

With branching factor b, tree size is θ(bh). Expensive!
Often M is only a sampling model (not distribution model).
Can we avoid expanding (clearly) inferior branches?
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Search

Classical search
I Problem instances
I Generic search template
I Uninformed search
I Informed search (a.k.a. heuristic search)
I Minimax search

Decision-time planning in MDPs
I Problem
I Rollout policies
I Monte Carlo tree search
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Rollout Policies
Suppose we have a (look-up) policy π.
Let policy π′ satisfy π′(s) = maxa∈A Qπ(s,a) for s ∈ S.
By the policy improvement theorem, we know π′ � π.

We implement π′ using Monte Carlo rollouts (through M).

s

a
1

a a
2 3

Until end of episode

π

From current state s, for
each action a ∈ A,
generate N trajectories by
taking a from s and
thereafter following π.
Set Q̂π(s,a) as average of
episodic returns.
Take action
π′(s) = argmaxa∈A Q̂π(s,a).
Repeat same process
from next state s′.
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Monte Carlo Tree Search (UCT Algorithm)
Build out a tree up to height h (say 5–10) from current state
scurrent. “Data” for the tree are samples returned by M.
For (s,a) pairs reachable from scurrent in ≤ h steps, maintain

I Q(s,a): average of returns of rollouts passing through (s,a).
I ucb(s,a) = Q(s,a) + Cp

√
ln(t)

visits(s,a) .
s current

Grow up to height h

a1 a a2 3

Until end of episode

π

.  .  .

Repeat N times from scurrent:
1. Generate trajectory by
calling M. From stored state
s, “take” argmaxa∈A ucb(s,a);
from leaf follow rollout policy
π until end of episode.

2. Update Q, ucb for (s,a)
pairs visited in trajectory.

Take argmaxa∈A ucb(s,a).
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Monte Carlo Tree Search (UCT Algorithm)
Main parameters of UCT: rollout policy π, search tree height
h, number of rollouts N.
π typically an associative/look-up policy, often even a
random policy.
Better guarantees as h is increased (if N =∞).
In practice N limited by available “think” time.

Cp in the UCB formula needs to be large to deal with
nonstationarity (from changes downstream).
In general there could be multiple paths to any particular
stored (s,a) pair starting from scurrent.
UCT focuses attention on rewarding regions of state space.
Rollouts can easily be parallelised.
Extremely successful algorithm in practice.
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Search in AI/ML

Heuristic search (“problem-solving”) is among the earliest
topics studied in AI.
Applications: Theorem-proving, constraint satisfaction
problems/integer programming, robotic path planning,
logistics, Video games (movement of characters).
A? search (and variants such as IDA?) used widely in
practice.
Search is different from learning, although these two
attributes of intelligence often come together.
Main technical challenge: large (exponentially growing)
number of states in most practical tasks.
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Search in On-line Decision Making

Key requirement: simulator (model).
More computationally expensive than lookup of π or Q.
MCTS with rollout policies an effective approach to handle
stochasticity as well as large state spaces.
Learning (say an evaluation function) can also help solution
quality of search in practice.
Proof of all these claims: AlphaGo!

We’ll cover more model-based methods, as well as
AlphaGo, in upcoming lectures.
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