
CS 747 (Autumn 2025): End-semester Examination

1.30 p.m. – 4.30 p.m., November 22, 2025, LA 001 and LA 002

Name: Roll number:

Note. There are five questions in this test. Provide your answer to
each question in the space following the question (and before the next
question if one exists). You can use any blank space in the paper for
rough work by drawing a line (either vertical or horizontal), writing
“Rough work” on one side of it, and using the demarcated space for
rough work.

Question Marks
1 /5
2 /5
3 /5
4 /5
5 /5

Total: /25

Question 1. An undiscounted episodic MDP M is such that every policy for M is either “good” or “bad”.
Policies are classified good or bad depending on their value for starting state s0: good policies have “high”
values and bad policies have “low” values. Formally, for every good policy πg and every bad policy πb,

V πg(s0)− V πb(s0) > ∆,

where ∆ is a known positive quantity. It is also known that at least a ρ-fraction of the set of policies for
M are good policies, where ρ ∈ (0, 1) is another known parameter. The set of policies is finite.

We have an agent that aims to identify a good policy for M . Unlike our usual setup, there is no
requirement that the policy found be optimal; it only needs to be good. The agent does not have knowledge
of the transition dynamics and rewards of M . However, the agent can interact with M by starting at s0
and following any policy π. Upon doing so, a state-action-reward sequence is generated according to π
and the transition and reward functions of M . Each reward lies in [0, 1], and each episode has at most H
transitions.

The agent implements the following algorithm to identify a good policy for M .

1. Select N policies uniformly at random (with replacement) from the set of all policies for M . Let
these policies be π1, π2, . . . , πN .

2. For i = 1, 2, . . . , N : generate L episodes by following πi, and let Vi be the average episodic reward
from these L episodes.

3. Return a policy that maximises the average episodic reward: that is, return πi where
i = argmaxNj=1 Vj.

As you can see, the algorithm need not always return a good policy. However, the agent would like to
provide a probabilistic guarantee that the policy returned is good. Formally, suppose the agent is given a
“mistake probability” δ ∈ (0, 1) as input. We need to guarantee that the policy returned by the agent will
be good with probability at least 1− δ.

Work out the values of N and L in terms of problem parameters—∆, ρ, H, and δ—such that the policy
returned by the specified algorithm is good with probability at least 1−δ. Clearly explain how your choices
of N and L deliver this probabilistic guarantee. [5 marks]

1



Answer 1. The overall idea is that if N is large enough, then at least one good policy will be selected in
Step 1 with sufficiently high probability. Then, in Step 2, if L is large enough, then the empirical values
of the policies will lie sufficiently close to their true values, again with sufficiently high probability—hence,
picking the empirical winner will mean selecting a good policy.

Formally, we would like N to be such that the probability of no good policy being selected in Step 1 is
at most δ

2
. Thus, N must satisfy (1− ρ)N ≤ δ

2
. This is satisfied by setting

N =

⌈
ln 2

δ

log 1
1−ρ

⌉
or (sufficiently and more conventionally) N =

⌈
1

ρ
ln

2

δ

⌉
.

Now, suppose Π is a fixed set of N policies that contains a good policy. Suppose Π is the set selected
in Step 1. For any bad policy in Π, by Hoeffding’s inequality, the probability that its empirical value

exceeds the true value by ∆
2

or more is at most exp(−2L (∆/2)2

H2 ) (observe that values are supported in
[0, H]). Similarly, for any good policy in Π, the probability that its empirical value falls below the true

value by ∆
2
or more is at most exp(−2L (∆/2)2

H2 ). Unless some bad policy exceeds or some good policy falls
below, the empirical best policy must be a good policy. Hence, the probability of a good policy not being
selected from Π is at most N exp(−L∆2

2H2 ). By setting

L =

⌈
2H2

∆2
ln

2N

δ

⌉
,

we are assured that the probability of a mistake being made given Π is selected in Step 1 is at most δ
2
.

Let Πgood be the set of all sets of N policies that contain a good policy, and let Πbad be the set of all
sets of N policies that are all bad. Our overall mistake probability is

P{mistake} =
∑

Π∈Πgood

P{mistake|Π}P{Π is selected in Step 1}+
∑

Π∈Πbad

P{mistake|Π}P{Π is selected in Step 1}

≤
∑

Π∈Πgood

δ

2
P{Π is selected in Step 1}+

∑
Π∈Πbad

P{Π is selected in Step 1}

≤ δ

2
+

δ

2
= δ.

The last step is shown for full clarity on how the mistake probability is accounted for. An informal
argument that corrrectly sets N to select at least one good policy and correctly sets L to identify a winner
in the chosen set will be considered satisfactory.
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Question 2. An agent is to take part in a lottery, which works as follows. There are m tickets available,
m ≥ 1. Each ticket i ∈ {1, 2, . . . ,m} has an associated cost ci > 0, and an associated probability pi ∈ [0, 1]
of winning the lottery. The agent begins with initial funds C > 0, and proceeds in rounds. On each round,
the agent can purchase any ticket that has not been bought earlier, and whose cost does not exceed the
agent’s available funds. Suppose that the agent buys ticket j. With probability pj, the agent wins the
lottery and the run ends, while with probability 1 − pj, the agent proceeds to the next round with its
available funds decremented by cj. If, after some rounds, the agent does not have the funds to buy any
remaining ticket, then the run ends unsuccessfully for the agent. The aim of the agent is to maximise the
probability of winning the lottery, while being constrained not to spend more than C.

For illustration, consider the problem instance shown on
the right. One possible successful run on this instance
could be (buy ticket 2 and fail, buy ticket 1 and succeed),
while one possible unsuccessful run could be (buy ticket 2
and fail, buy ticket 1 and fail, buy ticket 4 and fail). Note
that the agent cannot possibly buy all four tickets on any
run in this instance, since their total cost exceeds C.

Ticket i Cost ci Win-probability pi
1 15 0.1
2 10 0.05
3 10 0.08
4 18 0.12

C = 50

Answer the following questions for a general instance (not for the specific example shown).

2a. Suppose the agent has the knowledge of all the associated parameters: that is, the cost ci and win-
probability pi for each ticket i, and also the initial funds C. Describe how the agent can compute an
optimal way to execute its task. Recall that the goal is to maximise the probability of winning the
lottery. [4 marks]

2b. Suppose the agent knows all the parameters of the instance, but not the win-probabilities p1, p2, . . . , pm.
However, the agent is allowed to play on this fixed instance for many runs, so it can learn about
the instance and use this knowledge to try to win the lottery many times. On each run the budget
available is C. Briefly describe the learning approach that you would recommend for the agent, such
that the agent’s number of wins can be improved over relatively short horizons, and not just be
asymptotically optimal. Emphasise exactly what will be learned, and how it will be put to use. 3–4
lines of qualitative description will suffice; do not specify the full implementation in detail. [1 mark]

5



Answer 2a. We can formulate an MDP such that an optimal policy for the MDP will translate into
optimal decision-making by this agent.

• Each decision-making state s of the agent would be a proper subset of the set tickets such that the
total cost of the subset cs and the cost ci of some remaining ticket sum to C or less. There would
also be separate “success” and “failure” terminal states.

• For each state s the set of available actions would be the tickets that are not a part of s, and whose
cost does not exceed the difference between C and the total cost of s. If our convention is to include
all possible tickets as actions, we can set the rewards for taking illegal actions to be −∞.

• Taking action i from state s will lead to terminal state “success” with probability pi, and with the
remaining probability, would go into the union of the tickets in s and i if this is a valid state, else
terminate in “failure”.

• The reward for reaching “success” is 1; every other reward is 0.

• There is no discounting.

The MDP defined above corresponds exactly to the process defined in the question. Hence, its solution
yields optimal behaviour for the agent.

Interestingly, note that although the MDP is stochastic, the only uncertainty about the next state
is whether it is terminal or not. If a transition is not to a terminal state, then the next state is fully
determined: it is the union of the tickets in the current state and the one specified by the action. Hence,
starting from the initial (null) state, executing an optimal policy would only require us to memorise a
single sequence of tickets. Moreover, any permutation of a sequence of tickets will have exactly the same
probability of succeesing on a run. Thus, it is sufficient to consider all feasible subsets of tickets that
can be bought with the budget of C, and find one that maximises the probability of succeeding. If the
tickets in a subset are are i1, i2, . . . , ik, then the probability of the subset succeeding is is 1−

∏k
j=1(1−pij).

In summary, we can enumerate all qualifying subsets, calculate the win probability for each, and pick a
maximising one. On any run, the agent can play the tickets from that subset in any sequence.

Answer 2b. The unknown parameters are the win probabilities p1, p2, . . . , pm. The ideal learning algo-
rithm will estimate these by sampling, and exploit based on the current estimates. Like in the model-based
algorithm presented in class, we could pick a qualifying ticket uniformly at random with probability ϵ, and
with the remaining probability, play according to an optimal policy for the current empirical model.

It would not be efficient to treat each Q-value in the MDP defined above as a separate parameter and
estimate it, say, using an on-line learning method such as Q-learning. There are only m free parameters,
but an exponential-in-m number of state-action pairs.
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Question 3. This question has four parts: (a) through (d). Answer all four parts.

3a. In the context of generalisation and function approximation, why is tile coding considered a linear
scheme? On the other hand, in what sense can tile coding also be interpreted as non-linear? [1
mark]

3b. Consider the n-step bootstrapping algorithm TD(n), where n = 1, 2, 3, . . . , and also consider the
more commonly-used bootstrapping algorithm TD(λ), where λ ∈ [0, 1]. In terms of computation and
memory, what is the major differentiating factor between these two algorithms? [1 mark]

3c. Consider a continuing MDP M = (S,A, T,R, γ), with notation as usual. Let π : S → A be some de-
terministic policy for this MDP. Now, letM′ be the set of all MDPs of the form M ′ = (S,A, T,R′, γ),
wherein each reward assigned by R′ is either 0 or 1. Observe that every MDP inM′ shares S, A, T ,
and γ with M ; the only possible difference is the binary reward structure in the MDPs ofM′. Does
M′ necessarily contain an MDP for which π is the unique optimal policy? Answer yes or no, and
justify your answer. [1 mark]
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3d. Provide the update rule for and explain the Expected Sarsa learning algorithm. Can Expected Sarsa
achieve convergence to an optimal policy? [2 marks]
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Answer 3a. Under tile coding, the function is expressed as a linear combination of features. For example,
if the action value function is approximated, it would be of the form

Q(s, a) ≈ w1ϕ1(s, a) + w2ϕ2(s, a) + · · ·+ wmϕm(s, a),

where the ϕ’s are binary features and the w’s are the weights being learned. Due to this architecture, the
method would enjoy certain theoretical guarantees, such as the convergence of linear TD(λ).

However, the ϕ’s are not necessarily the raw features provided by the designer. For example, the
application could have a real-valued feature x(s, a), which gives rise to a number of binary features ϕi(s, a),
called tiles. For example, we could set

ϕi(s, a) = 1 if and only if
x(s, a)

tile width
∈ (i, i+ 1].

Notice that while it is linear in the ϕ’s, the approximation is non-linear in the x’s.

Answer 3b. To implement TD(n), the agent needs to keep the preceding n transitions in memory. How-
ever, to implement TD(λ), it needs to maintain an eligibility trace, comprising one real value for each
state. The latter is usually preferred in practice, since it facilitates a recursive implementation that can
also be adapted to function approximation.

Answer 3c. Yes. Consider M ′ ∈M′, where M ′ = (S,A, T,R′, γ), in which for (s, a, s′) ∈ S × A× S:

R′(s, a, s′) =

{
1 if π(s) = a,

0 otherwise.

Clearly, π gives a value of 1
1−γ

from each state, since it receives a reward of 1 at each time step. Every
other policy will receive a 0-reward from at least one state, and at most 1 in every state, and hence have
a strictly dominated value function.

Answer 3d. Expeccted Sarsa is an on-policy, on-line learning algorithm for the controls of MDPs. As
the agent goes through its life, suppose that it follows policy πt at time step t. Expected Sarsa can be
executed to work for any choice of πt, but it is commonly an ϵ–greedy policy with respect to the action
value function being learned. Now, suppose the agent encounters a transition (st, at, rt, st+1). At time step
t+ 1, the agent performs the following learning update under Expected Sarsa.

Q(st, at)← Q(st, at)(1− α) + α

(
rt +

∑
a∈A

πt+1(st+1, a)Qt(st+1, a)

)
,

where α is a learning rate. If the exporation and learning rates are both annealed, say as 1
t+1

, indeed
Expected Sarsa will converge to the optimal action values and induce an optimal policy.
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Question 4. An agent is set up to execute experience replay on an MDP that has states s1, s2, and
actions a1, a2. The agent has collected the batch of four transitions shown in the table below.

Transition
State Action Reward

Next
number State

1 s1 a1 2 s1
2 s1 a1 0 s2
3 s2 a2 3 s2
4 s2 a1 1 s1

The agent replays the transitions in round robin, in the sequence 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, . . . .
The discount factor used in γ = 2

3
. All the entries of the Q-table are initialised to 0, and the update rule

used is that of Q-learning.

4a. Suppose the agent uses a constant learning rate of α = 0.5. What is the Q-table after the first pass
is completed over the set of transitions—that is, after the first four updates are made? [2 marks]

4b. Suppose the agent uses a learning rate that is annealed suitably (say set to 1/(i + 1) for the i-th
pass). To what values will the entries in the Q-table converge as more and more passes are made
over this batch of transitions? [3 marks]

Answer 4a. Each update applies to only one of the Q-values; the others remain unchanged.
The first update sets Q(s1, a1) to Q(s1, a1)(1− α) + α(2 + γmax{Q(s1, a1), Q(s1, a2)} = 1.
The second update sets Q(s1, a1) to Q(s1, a1)(1− α) + α(0 + γmax{Q(s2, a1), Q(s2, a2)} = 1

2
.

The third update sets Q(s2, a2) to Q(s2, a2)(1− α) + α(3 + γmax{Q(s2, a1), Q(s2, a2)} = 3
2
.

The fourth update sets Q(s2, a1) to Q(s2, a1)(1− α) + α(1 + γmax{Q(s1, a1), Q(s1, a2)} = 2
3
.

The table below summarises the Q-table after each update is made.

Q(s1, a1) Q(s1, a2) Q(s2, a1) Q(s2, a2)
Initially 0 0 0 0
After first update 1 0 0 0
After second update 1

2
0 0 0

After third update 1
2

0 0 3
2

After fourth update 1
2

0 2
3

3
2

Answer 4b. Since (s1, a2) is never visited, its Q-value remains untouched. The other Q-values converge to
the optimal action values (Q⋆ values) of the MDP shown below. Arrows are annotated with “probability,
reward”. Action a1 is solid, black, and action a2 is dashed, blue. Note that γ = 2

3
.

s1 s2

1
2
, 2

1
2
, 0

1, 1

1, 3

Upon calculating for this MDP, we obtain Q⋆(s2, a2) = 9;Q⋆(s1, a1) = 6;Q⋆(s2, a1) = 5. Hence, in
summary, the eventual values in our Q-table are:

Q(s1, a1) = 6;Q(s1, a2) = 0;Q(s2, a1) = 5;Q(s2, a2) = 9.
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Question 5. Consider the zero sum matrix game shown on the
right, with two players: A (row) and B (column). A can take actions
a1, a2, and a3, while B can take actions b1 and b2. Each entry in
the matrix shows A’s reward when A and B play actions from the
corresponding row and column, respectively (B gets the negative of
the same reward).

b1 b2
a1 3 6
a2 5 0
a3 2 5

5a. Compute minimax-optimal strategies for A and B, and also provide the value for each player when
they play these strategies against each other. [4 marks]

5b. Suppose B plays a strategy that picks each action with equal probability (that is, b1 with probability
50% and b2 with probability 50%). What is the maximum value (that is, expected reward) that A
can achieve against this strategy of B? How must A play to achieve this value? [1 mark]

Answer 5a. Suppose that A plays the strategy (p1, p2, p3), where p1, p2, p3 ∈ [0, 1] and p1 + p2 + p3 = 1.
It is apparent by looking at the reward matrix that for A, action a1 dominates action a3 whatever be the
action of B (numerically, 3 > 2 and 6 > 5). Hence, a minimax-optimal strategy for A must have p3 = 0.
If A plays p = (p1, 1− p1, 0) and B plays q = (q1, 1− q1), the expected reward for A is

RA(p, q) = 3p1q1 + 6p1(1− q1) + 5(1− p1)q1 + 0(1− p1)(1− q1)

= −8p1q1 + 6p1 + 5q1

= q1(5− 8p1) + 6p1.

= p1(6− 8q1) + 5q1

If 5 − 8p1 is positive, B will set q1 = 0 to maximise its own reward, and the resulting reward for A
would be 6p1. If 5 − 8p1 is non-positive, B will set q1 = 1 to maximise its own reward, and the resulting
reward for A would be 5 − 2p1. It is seen that A has the highest assured reward by playing p1 = 5

8
; the

corresponding reward is 15
4
.

If 6−8q1 is positive, A will set p1 = 1 to maximise its own reward, and the resulting reward for A would
be 6−3q1. If 6−8q1 is non-positive, A will set p1 = 0 to maximise its own reward, and the resulting reward
for A would be 5q1. It is seen that B has the highest assured reward by playing q1 =

3
4
; the corresponding

reward is −15
4
.

In summary, A’s minimax-optimal strategy is (5
8
, 3
8
, 0), while B’s minimax-optimal strategy is (3

4
, 1
4
).

When both players use these strategies, A gets an expected reward of 15
4
and B the negative of the same.

Answer 5b. For the same reasons as in 5a, we conclude that A will not play action a3. Given B’s strategy,
we have RA(p, q) = 2p1 + 2.5, which is maximised by setting p1 = 1. Thus, A must deterministically play
a1, which will give it an expected reward of 4.5.

13



14



15



16


