
CS 747 (Autumn 2025) Week 10 Test (Batch 1)

5.35 p.m. – 6.00 p.m., October 21, 2025, LA 001

Name: Roll number:

Note. There is one question in this test. You can use the space on both pages for your answer. Draw a
line (either vertical or horizontal) and do all your rough work on one side of it.

Question 1. An MDP has 4 states, namely s1, s2, s3, and s4. The value function of a particular policy
π is learned, using tile coding for function approximation. A single feature “ϕ” is employed. The feature
value of each state s, as well as its value under π, is provided below.

s ϕ(s) V π(s)

s1 0.8 5
s2 1.1 3
s3 2.1 2
s4 2.6 7

The tile coding architecture uses two infinite tilings, both with a tile width of 1. The first tiling has
tiles in the ranges (1, 2], (2, 3], (3, 4], etc. The second tiling is offset by 0.5, and hence has tiles in the
ranges (0.5, 1.5], (1.5, 2.5], (2.5, 3.5], etc.

Suppose that the four states occur with equal probability in the long term: that is, the stationary
probability of each state is 1

4
. What is the least possible value of mean-squared value error that this

particular function approximation architecture can achieve? Provide a detailed justification, and suitably
introduce/define any notation that you use. [3 marks]
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Answer 1. Denote by wα the weight corresponding to the tile that covers the interval (α, α+1]. The tile
coding scheme implies the following approximation scheme.

V π(s1) ≈ w0 + w0.5,

V π(s2) ≈ w1 + w0.5,

V π(s3) ≈ w2 + w1.5,

V π(s4) ≈ w2 + w2.5.

To what can we set these eight weights so that the apprixomation error is smallest? Upon visual inspection,
it is apparent that we can achieve 0 error. Several possible configurations of the weight vector can do this,
for example

w0 = V π(s1) = 5,

w1 = V π(s2) = 3,

w2 = V π(s3) = 2,

w0.5 = 0,

w1.5 = 0,

w2.5 = V π(s4)− V π(s3) = 5.

Consequently the mean-squared value error is

1

4

(

(5− w0 − w0.5)
2 + (3− w1 − w0.5)

2 + (2− w2 − w1.5)
2 + (7− w2 − w2.5)

2
)

= 0.
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CS 747 (Autumn 2025) Week 10 Test (Batch 2)

6.15 p.m. – 6.40 p.m., October 21, 2025, LA 001

Name: Roll number:

Note. There is one question in this test. You can use the space on both pages for your answer. Draw a
line (either vertical or horizontal) and do all your rough work on one side of it.

Question 1. An agent interacts with an MDP M in which every reward is 0. The agent follows a fixed
policy π, whose value function it estimates using linear function approximation. In particular, the agent
uses Linear TD(0) (which is the version with full bootstrapping) to make its learning updates.

For each state s, the value estimate is w · ϕ(s), where w is the weight vector and ϕ(s) is the feature
vector, both of the same dimension. The dimension is smaller than the number of states, implying that
there is generalisation across states. Linear TD(0) is initialised with a non-zero weight vector, and is run
with an appropriate schedule for the learning rate.

Can the agent be guaranteed to converge to a weight vector that minimises the mean-squared value
error? Answer yes or no, and provide sufficient justification for your answer. While working out your
answer, consider the similarities and differences between this setup and that in Tsitsiklis and Van Roy’s
counterexample. [3 marks]
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Answer 1. Yes.
In common with Tsitsiklis and Van Roy’s counterexample, this setup involves two of the three elements

of the deadly triad, namely bootstrapping and generalisation. However, by making updates along the
trajectory that is encountered while following π, the updates are on-policy (not off-policy).

On the other hand, we notice that the value function of π is 0, and hence the weight vector w⋆ = 0
will achive 0 mean-squared value error. We know that that Linear TD(1) will therefore achieve 0 MSVE.
In turn, this means that TD(0) will also achieve 0 MSVE, since the error of the latter is at most 1

1−γ
of

the former.
In summary, Linear TD(0) does achieve 0 mean-squared value error, which is clearly the least possible.
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