

5.35 p.m. – 6.00 p.m., October 28, 2025, LA 001

Name: _____

Roll number: _____

Note. There is one question in this test. You can use the space on both pages for your answer. Draw a line (either vertical or horizontal) and do all your rough work on one side of it.

Question 1. Consider episodic MDP (S, A, T, R, γ) , notation as usual, in which $S = \{s_1, s_2, s_{\top}\}$, $A = \{a_1, a_2\}$, and $\gamma = 1$. States s_1 and s_2 are non-terminal, whereas s_{\top} is terminal.

An agent follows a policy π_{θ} with 2-dimensional parameter-vector $\theta = (\theta_1, \theta_2) \in \mathbb{R}^2$. The parameters influence decision making as follows:

$$\begin{aligned}\pi_{\theta}(s_1, a_1) &= \frac{1}{1 + \exp(-\theta_1)}; & \pi_{\theta}(s_1, a_2) &= 1 - \pi_{\theta}(s_1, a_1); \\ \pi_{\theta}(s_2, a_1) &= \frac{1}{1 + \exp(-\theta_2)}; & \pi_{\theta}(s_2, a_2) &= 1 - \pi_{\theta}(s_2, a_1).\end{aligned}$$

The agent is initialised with parameter vector $\theta = (0, 0)$. It executes the policy π_{θ} and encounters the following state-action-reward trajectory.

$$s_1, a_1, 4, s_2, a_2, 1, s_{\top}.$$

The agent uses REINFORCE to update its policy parameters at the end of this episode, with learning rate $\alpha = \frac{1}{5}$. The objective function is the value of the starting state s_1 . No baseline subtraction is performed. Work out the parameter vector θ' obtained after making the REINFORCE update. Show the sequence of steps used to arrive at your answer. [3 marks]

Answer 1. We first work out $\nabla_\theta \ln \pi_\theta(s_1, a_1)$ and $\nabla_\theta \ln \pi_\theta(s_2, a_2)$.

$$\frac{\partial}{\partial \theta_1} \ln \pi_\theta(s_1, a_1) = \frac{\exp(-\theta_1)}{1 + \exp(-\theta_1)}; \quad \frac{\partial}{\partial \theta_2} \ln \pi_\theta(s_1, a_1) = 0.$$

$$\frac{\partial}{\partial \theta_1} \ln \pi_\theta(s_2, a_2) = 0; \quad \frac{\partial}{\partial \theta_2} \ln \pi_\theta(s_2, a_2) = -\frac{\exp(-\theta_2)}{1 + \exp(-\theta_2)}.$$

We execute the REINFORCE update rule to obtain our answer for the update from $\theta = (0, 0)$ to θ' :

$$\begin{aligned} \theta' &= \theta + \alpha (\nabla_\theta \ln \pi_\theta(s_1, a_1) \times (4 + 1) + \nabla_\theta \ln \pi_\theta(s_2, a_2) \times 1) \\ &= (0, 0) + \frac{1}{5} \left(\left(\frac{1}{2}, 0 \right) \times 5 + \left(0, -\frac{1}{2} \right) \times 1 \right) \\ &= \left(\frac{1}{2}, -\frac{1}{10} \right). \end{aligned}$$

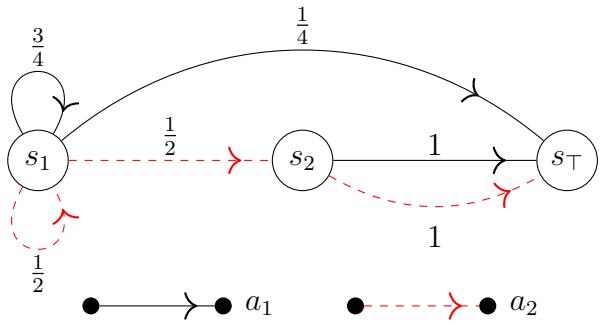
6.15 p.m. – 6.40 p.m., October 28, 2025, LA 001

Name: _____

Roll number: _____

Note. There is one question in this test. You can use the space on both pages for your answer. Draw a line (either vertical or horizontal) and do all your rough work on one side of it.

Question 1. Consider episodic MDP (S, A, T, R, γ) , with notation as usual, in which $S = \{s_1, s_2, s_T\}$, $A = \{a_1, a_2\}$, and $\gamma = 1$. States s_1 and s_2 are non-terminal, whereas s_T is terminal. The figure on the right shows the transitions for all state-action pairs, with each transition annotated with its probability. Every reward is 1. Hence, the value of a state under a policy corresponds to the expected number of time steps to terminate if starting at that state and following that policy.



An agent follows a policy π_θ with a single parameter $\theta \in \mathbb{R}$. Action probabilities under π_θ are:

$$\pi_\theta(s_1, a_1) = \frac{\exp(\theta)}{1 + \exp(\theta)}; \quad \pi_\theta(s_1, a_2) = \frac{1}{1 + \exp(\theta)}; \quad \pi_\theta(s_2, a_1) = \frac{1}{2}; \quad \pi_\theta(s_2, a_2) = \frac{1}{2}.$$

Define the objective $J(\theta) \stackrel{\text{def}}{=} V^{\pi_\theta}(s_1)$. Work out $J(\theta)$ as a function of θ , and then calculate its derivative with respect to θ —that is, $\frac{d}{d\theta}(J(\theta))$ —at $\theta = 0$. Show the sequence of steps used to arrive at your answer. For your convenience, here are the partial derivatives of the action probabilities under π_θ .

$$\begin{aligned} \frac{d}{d\theta}(\pi_\theta(s_1, a_1)) &= \pi_\theta(s_1, a_1)\pi_\theta(s_1, a_2); \\ \frac{d}{d\theta}(\pi_\theta(s_1, a_2)) &= -\pi_\theta(s_1, a_1)\pi_\theta(s_1, a_2); \\ \frac{d}{d\theta}(\pi_\theta(s_2, a_1)) &= 0; \\ \frac{d}{d\theta}(\pi_\theta(s_2, a_2)) &= 0. \end{aligned}$$

[3 marks]

Answer 1. We write down and solve the Bellman equations to obtain V^{π_θ} . First, it is easy to see that

$$V^{\pi_\theta}(s_2) = \pi_\theta(s_2, a_1) \times 1 + \pi_\theta(s_2, a_2) \times 1 = 1.$$

For s_1 , we get

$$V^{\pi_\theta}(s_1) = 1 + \pi_\theta(s_1, a_1) \left(\frac{3}{4}V^{\pi_\theta}(s_1) + \frac{1}{4}(0) \right) + \pi_\theta(s_1, a_2) \left(\frac{1}{2}V^{\pi_\theta}(s_1) + \frac{1}{2}(1) \right),$$

which, upon solving, yields

$$V^{\pi_\theta}(s_1) = J(\theta) = \frac{6 - 2\pi_\theta(s_1, a_1)}{2 - \pi_\theta(s_1, a_1)}.$$

The derivative of this function is

$$\begin{aligned} \frac{d}{d\theta} (J(\theta)) &= \frac{-2}{2 - \pi_\theta(s_1, a_1)} \frac{d}{d\theta} (\pi_\theta(s_1, a_1)) + \frac{6 - 2\pi_\theta(s_1, a_1)}{(2 - \pi_\theta(s_1, a_1))^2} \frac{d}{d\theta} (\pi_\theta(s_1, a_1)) \\ &= \frac{2}{(2 - \pi_\theta(s_1, a_1))^2} \pi_\theta(s_1, a_1) \pi_\theta(s_1, a_2). \end{aligned}$$

For $\theta = 0$, we have $\pi_\theta(s_1, a_1) = \pi_\theta(s_1, a_2) = \frac{1}{2}$ and $\exp(\theta) = 1$, and hence we get

$$\frac{d}{d\theta} (J(\theta)) \Big|_{\theta=0} = \frac{2}{9}.$$

