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Multi-armed Bandits
@ The exploration-exploitation dilemma
@ Definitions: Bandit, Algorithm
@ e-greedy algorithms
@ Evaluating algorithms: Regret
@ Achieving sub-linear regret
@ A lower bound on regret
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Upper Confidence Bounds = UCB (Auer et al., 2002)
- Attime t, for every arm a, define ucb}, = pf + /2%,

- p! is the empirical mean of rewards from arm a.
- u!, the number of times a has been sampled at time t.
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Upper Confidence Bounds = UCB (Auer et al., 2002)

- Attime t, for every arm a, define ucbfa = pL+ 2In(?)

pL is the empirical mean of rewards from arm a.
u!, the number of times a has been sampled at time .
Pull an arm a for which ucb, is maximum.

ORf

utot

Achieves regret of O (log(T)):
optimal dependence on T.
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KL-UCB (Garivier and Cappé, 2011)

@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.
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KL-UCB (Garivier and Cappé, 2011)

@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.

ucb-kl’, = max{q € [p, 1] s. t. ULKL(PL, q) < In(t) + cIn(In(t))}, where ¢ > 3.
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KL-UCB (Garivier and Cappé, 2011)
@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.
uch-kl}, = max{q € [}, 1] s. t. ULKL(DL, @) < In(t) + cIn(In(t))}, where ¢ > 3.

Equivalently, ucb-kl’ is the solution g € [p}, 1] to KL(p}, g) = mOH+enln®),
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KL-UCB (Garivier and Cappé, 2011)

@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.
uch-kl}, = max{q € [}, 1] s. t. ULKL(DL, @) < In(t) + cIn(In(t))}, where ¢ > 3.
Equivalently, ucb-kl, is the solution g € [, 1] to KL(p!, q) = mreintn®)

Ua

KL-UCB algorithm: at step ¢, pull argmax _, uch-k’.
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KL-UCB (Garivier and Cappé, 2011)

@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.
ucb-kl, = max{q € [P}, 1] s. t. ULKL(PL, g) < In(t) + cIn(In(t))}, where ¢ > 3.
Equivalently, uch-kl} is the solution g € [, 1] to KL(p}, q) = (0tenlnl),

KL-UCB algorithm: at step ¢, pull argmax _, uch-k’.

@ Observe that KL(p., g) monotonically increases with g, and
» KL(PL, 1) = oo.
Easy to compute ucb-kI, numerically (for example through binary search).
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KL-UCB (Garivier and Cappé, 2011)

@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.
ucb-kl, = max{q € [P}, 1] s. t. ULKL(PL, g) < In(t) + cIn(In(t))}, where ¢ > 3.
Equivalently, uch-kl} is the solution g € [, 1] to KL(p}, q) = (0tenlnl),

KL-UCB algorithm: at step ¢, pull argmax _, uch-k’.

@ Observe that KL(p., g) monotonically increases with g, and
» KL(PL, 1) = oo.
Easy to compute ucb-kI, numerically (for example through binary search).

@ ucb-kl} is a tighter confidence bound than ucb!.
Regret of KL-UCB asymptotically matches Lai and Robbins’ lower bound!
4/14



Multi-armed Bandits

1. UCB, KL-UCB algorithms

2. Thompson Sampling algorithm

3. Concentration bounds
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Background: Beta Distribution
@ Beta(a, f) defined on [0, 1]. Two parameters: o and f.
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http://gnuplot.sourceforge.net/demo/prob.5.gnu

Background: Beta Distribution
@ Beta(a, f) defined on [0, 1]. Two parameters: o and f.
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Thompson Sampling (Thompson, 1933)

- Attime t, let arm a have s! successes (1’s/heads) and f! failures (0’s/tails).
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Thompson Sampling (Thompson, 1933)
- Attime t, let arm a have s! successes (1’s/heads) and f! failures (0’s/tails).
- Beta(sl, + 1, f{ + 1) represents a “belief” about the true mean of arm a.

st : (s;+1)(fg,+1)
ooz variance = (o 22) 2[4 A73)

- Mean = <
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Thompson Sampling (Thompson, 1933)
- Attime t, let arm a have s! successes (1’s/heads) and f! failures (0’s/tails).
- Beta(st, + 1, f + 1) represents a “belief” about the true mean of arm a.

st (st+1)(r+1)
Sryzs variance = (o 12) 2(+ 53)"

- Mean = <

- Computational step: For every arm ) N T S B S B
a, draw a sample (in agent’s mind) ‘
x} ~ Beta(s!, +1, fi +1). ?

- Sampling step: Pull (in real world) )
arm a for which x! is maximum.
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Thompson Sampling (Thompson, 1933)
- Attime t, let arm a have s! successes (1’s/heads) and f! failures (0’s/tails).
- Beta(st, + 1, f + 1) represents a “belief” about the true mean of arm a.

st (st+1)(r+1)
Sryzs variance = (o 12) 2(+ 53)"

- Mean = <

- Computational step: For every arm T mnon R0
a, draw a sample (in agent’s mind)
x4 ~ Beta(s,+ 1, fi+1). r

- Sampling step: Pull (in real world) )
arm a for which x! is maximum.

Achieves optimal regret (Kaufmann
et al., 2012); is excellent in practice
(Chapelle and Li, 2011). ol Ul | | S
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Multi-armed Bandits

1. UCB, KL-UCB algorithms

2. Thompson Sampling algorithm

3. Concentration bounds
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Hoeffding’s Inequality (Hoeffding, 1963)

@ Let X be a random variable bounded in [0, 1], with E[X] = y;
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Hoeffding’s Inequality (Hoeffding, 1963)
@ Let X be a random variable bounded in [0, 1], with E[X] = y;
@ Letu>1,;
@ Let xq,x0,..., x, bei.i.d. samples of X; and
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Hoeffding’s Inequality (Hoeffding, 1963)
@ Let X be a random variable bounded in [0, 1], with E[X] = y;
@ Letu>1;
@ Let xq,x0,..., x, bei.i.d. samples of X; and
@ Let X be the mean of these samples (an empirical mean):

1 u
X =— E X;.
u 4
i=1
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Hoeffding’s Inequality (Hoeffding, 1963)
@ Let X be a random variable bounded in [0, 1], with E[X] = y;
@ Letu>1;
@ Let xq,x0,..., x, bei.i.d. samples of X; and
@ Let X be the mean of these samples (an empirical mean):

1 u
X =— E X;.
u 4
i=1

@ Then, for or any fixed ¢ > 0, we have

P{X > p+e} < e 2 and
P{X < i —¢} < &2
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Hoeffding’s Inequality (Hoeffding, 1963)
@ Let X be a random variable bounded in [0, 1], with E[X] = y;
@ Letu>1;
@ Let xq,x0,..., x, bei.i.d. samples of X; and
@ Let x be the mean of these samples (an empirical mean):

1 u

@ Then, for or any fixed ¢ > 0, we have

P{x>p+e} < e‘2”€2, and
P{X < i —¢} < &2

@ Note the bounds are trivial for large ¢, since x < [0, 1].
9/14



Applications

@ For given mistake probability 6 and tolerance ¢, how many samples uy of X
do we need to guarantee that with probability at least 1 — §, the empirical
mean X will not exceed the true mean p by ¢ or more?
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Applications

@ For given mistake probability 6 and tolerance ¢, how many samples uy of X
do we need to guarantee that with probability at least 1 — ¢, the empirical
mean X will not exceed the true mean p by ¢ or more?

Uo = [ In(3)] pulls are sufficient, since Hoeffding’s Inequality gives

P{X > pu+ ¢} < e2% <5,
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Applications

@ For given mistake probability 6 and tolerance ¢, how many samples uy of X
do we need to guarantee that with probability at least 1 — ¢, the empirical
mean X will not exceed the true mean p by ¢ or more?

Uo = [ In(3)] pulls are sufficient, since Hoeffding’s Inequality gives

P{X > ju+ ¢} < @29 <5,

@ We have u samples of X. How do we fill up this blank?:
With probability at least 1 — ¢, the empirical mean x exceeds the true mean p
by at most ¢g =
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Applications
@ For given mistake probability 6 and tolerance ¢, how many samples uy of X
do we need to guarantee that with probability at least 1 — ¢, the empirical
mean X will not exceed the true mean . by € or more?
Uo = [ In(3)] pulls are sufficient, since Hoeffding’s Inequality gives

P{X > ju+ ¢} < @29 <5,

@ We have u samples of X. How do we fill up this blank?:
With probability at least 1 — ¢, the empirical mean x exceeds the true mean p
by at most ¢g =

We can write ¢g = 2— (%) by Hoeffding’s Inequality:

P{x>pu+e} < g~2u«)l® < 4.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14



Arbitrary Bounded Range

@ Suppose X is a random variable bounded in [a, b]. Can we still apply
Hoeffding’s Inequality?
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Arbitrary Bounded Range

@ Suppose X is a random variable bounded in [a, b]. Can we still apply
Hoeffding’s Inequality?

Yes. Assume u; X1, X, . .., X,; € as defined earlier.
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Arbitrary Bounded Range

@ Suppose X is a random variable bounded in [a, b]. Can we still apply
Hoeffding’s Inequality?

Yes. Assume u; X1, X, . .., X,; € as defined earlier.
g X-a. ; i—a. o _ 1w
Consider Y = 7=2;for1 <i<u, =32,y =>4 Vi-
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Arbitrary Bounded Range

@ Suppose X is a random variable bounded in [a, b]. Can we still apply
Hoeffding’s Inequality?
Yes. Assume U' x1 , X, ..., Xy; € as defined earlier.
Consider Y = for1</<uy,—x'_a,}7—1z,1y,
Since Y is bounded in [0, 1], we get

2ué?

€ _
+ } <e ®-a* and

P{Xx>p+e}= ]P’{}_/z

2

€ __2ue
_ <e (b—a)2

IP’{)?SM—E}IP{I/
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A “KL’ Inequality
@ Let X be a random variable bounded in [0, 1], with E[X] = 4;
@ Letu>1;
@ Let x1,Xx,...,x, be i.i.d. samples of X; and
@ Let x be the mean of these samples (an empirical mean):

1 u
= E;X,’.

I
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A “KL’ Inequality
@ Let X be a random variable bounded in [0, 1], with E[X] = u;
@ Letu>1,;
@ Let x1,Xx,...,x, be i.i.d. samples of X; and
@ Let x be the mean of these samples (an empirical mean):

1 u
)_(—E;X,‘.

@ Then, for or any fixed € € [0,1 — u], we have
IP{)_( >+ 6} < e—uKL(;H—e,u)’
and for or any fixed € € [0, u|, we have

P{X < pu—e} < g tHtlmew),

where for p, g € [0,1], KL(p, q) = pIn(2) + (1 — p) In(1=2).
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Some Observations

@ The KL inequality gives a tighter upper bound:
For p,q € [0, 1],

KL(pv q) > 2(p - Q)Q — e—uKL(p,q) < e—2u(p—q)2’

@ Both bounds are instances of “Chernoff bounds”, of which there are many
more forms.

@ Similar bounds can also be given when X has infinite support (such as a
Gaussian), but might need additional assumptions.
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Multi-armed Bandits

1. UCB, KL-UCB algorithms

2. Thompson Sampling algorithm

3. Concentration bounds
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