CS 747, Autumn 2022: Lecture 4

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2022

Multi-armed Bandits

- 1. Concentration bounds
- 2. Analysis of UCB

Multi-armed Bandits

- 1. Concentration bounds
- 2. Analysis of UCB

• Let X be a random variable bounded in [0,1], with $\mathbb{E}[X] = \mu$;

- Let X be a random variable bounded in [0, 1], with $\mathbb{E}[X] = \mu$;
- Let u > 1;
- Let x_1, x_2, \ldots, x_u be i.i.d. samples of X; and

- Let X be a random variable bounded in [0, 1], with $\mathbb{E}[X] = \mu$;
- Let u > 1;
- Let x_1, x_2, \dots, x_u be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an *empirical* mean):

$$\bar{x} = \frac{1}{u} \sum_{i=1}^{u} x_i.$$

- Let X be a random variable bounded in [0, 1], with $\mathbb{E}[X] = \mu$;
- Let u > 1;
- Let x_1, x_2, \ldots, x_u be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an *empirical* mean):

$$\bar{x} = \frac{1}{u} \sum_{i=1}^{u} x_i.$$

• Then, for or any fixed $\epsilon > 0$, we have

$$\mathbb{P}\{\bar{\mathbf{x}} \geq \mu + \epsilon\} \leq \mathbf{e}^{-2u\epsilon^2}, \text{ and }$$

 $\mathbb{P}\{\bar{\mathbf{x}} \leq \mu - \epsilon\} \leq \mathbf{e}^{-2u\epsilon^2}.$

- Let X be a random variable bounded in [0,1], with $\mathbb{E}[X] = \mu$;
- Let u > 1;
- Let x_1, x_2, \ldots, x_u be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an *empirical* mean):

$$\bar{x} = \frac{1}{u} \sum_{i=1}^{u} x_i.$$

• Then, for or any fixed $\epsilon > 0$, we have

$$\mathbb{P}\{\bar{\mathbf{x}} \geq \mu + \epsilon\} \leq \mathbf{e}^{-2u\epsilon^2}, \text{ and }$$

 $\mathbb{P}\{\bar{\mathbf{x}} \leq \mu - \epsilon\} \leq \mathbf{e}^{-2u\epsilon^2}.$

• Note the bounds are trivial for large ϵ , since $\bar{x} \in [0, 1]$.

• For given mistake probability δ and tolerance ϵ , how many samples u_0 of X do we need to guarantee that with probability at least $1 - \delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more?

• For given mistake probability δ and tolerance ϵ , how many samples u_0 of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more? $u_0 = \lceil \frac{1}{2\epsilon^2} \ln(\frac{1}{\delta}) \rceil$ pulls are sufficient, since Hoeffding's Inequality gives

$$\mathbb{P}\{\bar{\mathbf{x}} \geq \mu + \epsilon\} \leq \mathbf{e}^{-2u_0\epsilon^2} \leq \delta.$$

• For given mistake probability δ and tolerance ϵ , how many samples u_0 of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more? $u_0 = \lceil \frac{1}{2\epsilon^2} \ln(\frac{1}{\delta}) \rceil$ pulls are sufficient, since Hoeffding's Inequality gives

$$\mathbb{P}\{\bar{\mathbf{x}} \ge \mu + \epsilon\} \le \mathbf{e}^{-2u_0\epsilon^2} \le \delta.$$

• We have u samples of X. How do we fill up this blank?: With probability at least $1 - \delta$, the empirical mean \bar{x} exceeds the true mean μ by at most $\epsilon_0 = \underline{\hspace{1cm}}$.

• For given mistake probability δ and tolerance ϵ , how many samples u_0 of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more? $u_0 = \lceil \frac{1}{2\epsilon^2} \ln(\frac{1}{\delta}) \rceil$ pulls are sufficient, since Hoeffding's Inequality gives

$$\mathbb{P}\{\bar{\mathbf{x}} \ge \mu + \epsilon\} \le \mathbf{e}^{-2u_0\epsilon^2} \le \delta.$$

• We have u samples of X. How do we fill up this blank?: With probability at least $1-\delta$, the empirical mean \bar{x} exceeds the true mean μ by at most $\epsilon_0 = \underline{\hspace{1cm}}$. We can write $\epsilon_0 = \sqrt{\frac{1}{2u} \ln(\frac{1}{\delta})}$; by Hoeffding's Inequality:

$$\mathbb{P}\{\bar{\mathbf{x}} \ge \mu + \epsilon_0\} \le \mathbf{e}^{-2u(\epsilon_0)^2} \le \delta.$$

• Suppose *X* is a random variable bounded in [*a*, *b*]. Can we still apply Hoeffding's Inequality?

 Suppose X is a random variable bounded in [a, b]. Can we still apply Hoeffding's Inequality?

Yes. Assume $u; x_1, x_2, \dots, x_u; \epsilon$ as defined earlier.

 Suppose X is a random variable bounded in [a, b]. Can we still apply Hoeffding's Inequality?

Yes. Assume $u; x_1, x_2, \dots, x_u; \epsilon$ as defined earlier.

Consider
$$Y = \frac{X-a}{b-a}$$
; for $1 \le i \le u$, $y_i = \frac{x_i-a}{b-a}$; $\bar{y} = \frac{1}{u} \sum_{i=1}^{u} y_i$.

 Suppose X is a random variable bounded in [a, b]. Can we still apply Hoeffding's Inequality?

Yes. Assume $u; x_1, x_2, \dots, x_u; \epsilon$ as defined earlier.

Consider
$$Y = \frac{X-a}{b-a}$$
; for $1 \le i \le u$, $y_i = \frac{x_i-a}{b-a}$; $\bar{y} = \frac{1}{u} \sum_{i=1}^{u} y_i$.

Since Y is bounded in [0, 1], we get

$$\begin{split} \mathbb{P}\{\bar{x} \geq \mu + \epsilon\} &= \mathbb{P}\left\{\bar{y} \geq \frac{\mu - a}{b - a} + \frac{\epsilon}{b - a}\right\} \leq e^{-\frac{2u\epsilon^2}{(b - a)^2}}, \text{ and} \\ \mathbb{P}\{\bar{x} \leq \mu - \epsilon\} &= \mathbb{P}\left\{\bar{y} \leq \frac{\mu - a}{b - a} - \frac{\epsilon}{b - a}\right\} \leq e^{-\frac{2u\epsilon^2}{(b - a)^2}}. \end{split}$$

A "KL" Inequality

- Let X be a random variable bounded in [0,1], with $\mathbb{E}[X] = \mu$;
- Let $u \ge 1$;
- Let x_1, x_2, \ldots, x_u be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an *empirical* mean):

$$\bar{x} = \frac{1}{u} \sum_{i=1}^{u} x_i.$$

A "KL" Inequality

- Let X be a random variable bounded in [0,1], with $\mathbb{E}[X] = \mu$;
- Let $u \ge 1$;
- Let x_1, x_2, \ldots, x_u be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an *empirical* mean):

$$\bar{x} = \frac{1}{u} \sum_{i=1}^{u} x_i.$$

• Then, for or any fixed $\epsilon \in [0, 1 - \mu]$, we have

$$\mathbb{P}\{\bar{\mathbf{x}} \ge \mu + \epsilon\} \le \mathbf{e}^{-u\mathsf{KL}(\mu + \epsilon, \mu)},$$

and for or any fixed $\epsilon \in [0, \mu]$, we have

$$\mathbb{P}\{ar{\mathbf{x}} \leq \mu - \epsilon\} \leq \mathbf{e}^{-u\mathsf{KL}(\mu - \epsilon, \mu)},$$

where for $p,q \in [0,1]$, $KL(p,q) \stackrel{\text{def}}{=} p \ln(\frac{p}{q}) + (1-p) \ln(\frac{1-p}{1-q})$.

Some Observations

• The KL inequality gives a tighter upper bound: For $p, q \in [0, 1]$,

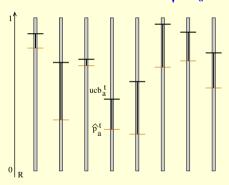
$$KL(p,q) \ge 2(p-q)^2 \implies e^{-uKL(p,q)} \le e^{-2u(p-q)^2}.$$

- Both bounds are instances of "Chernoff bounds", of which there are many more forms.
- Similar bounds can also be given when X has infinite support (such as a Gaussian), but might need additional assumptions.

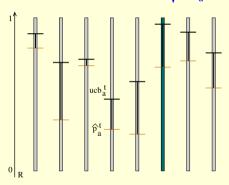
Multi-armed Bandits

- 1. Concentration bounds
- 2. Analysis of UCB

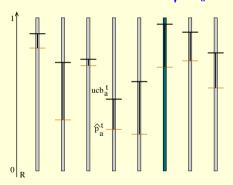
- Pull each arm once.
- For $t \in \{n, n+1, \dots\}$, for $a \in A$, $\mathrm{ucb}_a^t \stackrel{\mathsf{def}}{=} \hat{p}_a^t + \sqrt{\frac{2 \ln(t)}{u_a^t}}$; pull $\mathrm{argmax}_{a \in A} \, \mathrm{ucb}_a^t$.



- Pull each arm once.
- For $t \in \{n, n+1, \dots\}$, for $a \in A$, $\mathrm{ucb}_a^t \stackrel{\mathsf{def}}{=} \hat{p}_a^t + \sqrt{\frac{2 \ln(t)}{u_a^t}}$; pull $\mathrm{argmax}_{a \in A} \, \mathrm{ucb}_a^t$.

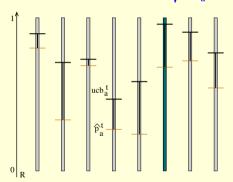


- Pull each arm once.
- For $t \in \{n, n+1, \dots\}$, for $a \in A$, $\mathsf{ucb}_a^t \stackrel{\mathsf{def}}{=} \hat{p}_a^t + \sqrt{\frac{2 \ln(t)}{u_a^t}}$; pull $\mathsf{argmax}_{a \in A} \, \mathsf{ucb}_a^t$.



• Recall that $R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t]$.

- Pull each arm once.
- For $t \in \{n, n+1, \dots\}$, for $a \in A$, $\mathsf{ucb}_a^t \stackrel{\mathsf{def}}{=} \hat{\rho}_a^t + \sqrt{\frac{2 \ln(t)}{u_a^t}}$; pull $\mathsf{argmax}_{a \in A} \, \mathsf{ucb}_a^t$.



- Recall that $R_T = Tp^* \sum_{t=0}^{T-1} \mathbb{E}[r^t]$.
- We shall show that UCB achieves $R_T = O\left(\sum_{a:p_a \neq p^*} \frac{1}{p^* p_a} \log(T)\right)$.

• $\Delta_a \stackrel{\text{def}}{=} p^* - p_a$ (instance-specific constant); \star an optimal arm.

- $\Delta_a \stackrel{\text{def}}{=} p^* p_a$ (instance-specific constant); \star an optimal arm.
- Let Z_a^t be the event that arm a is pulled at time t.

- $\Delta_a \stackrel{\text{def}}{=} p^* p_a$ (instance-specific constant); \star an optimal arm.
- Let Z_a^t be the event that arm a is pulled at time t.
- Let z_a^t be a random variable that takes value 1 if arm a is pulled at time t, and 0 otherwise.

- $\Delta_a \stackrel{\text{def}}{=} p^* p_a$ (instance-specific constant); \star an optimal arm.
- Let Z_a^t be the event that arm a is pulled at time t.
- Let z_a^t be a random variable that takes value 1 if arm a is pulled at time t, and 0 otherwise.
 - Observe that $\mathbb{E}[z_a^t] = \mathbb{P}\{Z_a^t\}(1) + (1 \mathbb{P}\{Z_a^t\})(0) = \mathbb{P}\{Z_a^t\}.$

- $\Delta_a \stackrel{\text{def}}{=} p^* p_a$ (instance-specific constant); * an optimal arm.
- Let Z_a^t be the event that arm a is pulled at time t.
- Let z_a^t be a random variable that takes value 1 if arm a is pulled at time t, and 0 otherwise.
 - Observe that $\mathbb{E}[z_a^t] = \mathbb{P}\{Z_a^t\}(1) + (1 \mathbb{P}\{Z_a^t\})(0) = \mathbb{P}\{Z_a^t\}.$
- As in the algorithm, u_a^t is a random variable that denotes the number of pulls arm a has received up to time t:

$$u_a^t = \sum_{i=0}^{t-1} z_a^i.$$

- $\Delta_a \stackrel{\text{def}}{=} p^* p_a$ (instance-specific constant); * an optimal arm.
- Let Z_a^t be the event that arm a is pulled at time t.
- Let z_a^t be a random variable that takes value 1 if arm a is pulled at time t, and 0 otherwise.
 - Observe that $\mathbb{E}[z_a^t] = \mathbb{P}\{Z_a^t\}(1) + (1 \mathbb{P}\{Z_a^t\})(0) = \mathbb{P}\{Z_a^t\}.$
- As in the algorithm, u_a^t is a random variable that denotes the number of pulls arm a has received up to time t:

$$u_a^t = \sum_{i=0}^{t-1} z_a^i.$$

• We define an instance-specific constant $\bar{u}_a^T \stackrel{\text{def}}{=} \left\lceil \frac{8}{(\Delta_a)^2} \ln(T) \right\rceil$ that will serve in our proof as a "sufficient" number of pulls of arm a for horizon T.

Proof Sketch

- To upper-bound R_T , upper-bound the number of pulls of each sub-optimal arm a.
- Give each such arm $a \bar{u}_a^T$ pulls for free.
- Beyond \bar{u}_a^T pulls, arm a's UCB will have width at most $\Delta_a/2$.
- If a continues to be pulled beyond \bar{u}_a^T pulls, either its empirical mean has deviated by more than $\Delta_a/2$ from its true mean, or \star 's UCB has fallen below its true mean.
- Both events above have a low probability—in aggregate at most a constant even if summed over an infinite horizon.

Proof Sketch

- To upper-bound R_T , upper-bound the number of pulls of each sub-optimal arm a.
- Give each such arm $a \bar{u}_a^T$ pulls for free.
- Beyond \bar{u}_a^T pulls, arm a's UCB will have width at most $\Delta_a/2$.
- If a continues to be pulled beyond \bar{u}_a^T pulls, either its empirical mean has deviated by more than $\Delta_a/2$ from its true mean, or \star 's UCB has fallen below its true mean.
- Both events above have a low probability—in aggregate at most a constant even if summed over an infinite horizon.
- KL-UCB uses the KL inequality, and slightly more sophisticated analysis.

Step 1: Show that $R_T = \sum_{a:p_a \neq p^*} \mathbb{E}[u_a^T] \Delta_a$.

Step 1: Show that $R_T = \sum_{a: p_a \neq p^*} \mathbb{E}[u_a^T] \Delta_a$.

$$R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t]$$

Step 1: Show that $R_T = \sum_{a:p_a \neq p^*} \mathbb{E}[u_a^T] \Delta_a$.

$$R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t] = Tp^* - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\{Z_a^t\} \mathbb{E}[r^t | Z_a^t]$$

Step 1: Show that $R_T = \sum_{a:p_a \neq p^*} \mathbb{E}[u_a^T] \Delta_a$.

$$R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t] = Tp^* - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\{Z_a^t\} \mathbb{E}[r^t | Z_a^t]$$
$$= Tp^* - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{E}[z_a^t] \rho_a$$

Step 1: Show that $R_T = \sum_{a: p_a \neq p^*} \mathbb{E}[u_a^T] \Delta_a$.

$$egin{aligned} R_T &= T p^\star - \sum_{t=0}^{T-1} \mathbb{E}[r^t] = T p^\star - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\{Z_a^t\} \mathbb{E}[r^t | Z_a^t] \ &= T p^\star - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{E}[z_a^t] p_a = \left(\sum_{a \in A} \mathbb{E}[u_a^T]\right) p^\star - \sum_{a \in A} \mathbb{E}[u_a^T] p_a \end{aligned}$$

Step 1: Show that $R_T = \sum_{a: p_a \neq p^*} \mathbb{E}[u_a^T] \Delta_a$.

$$R_{T} = T\rho^{\star} - \sum_{t=0}^{T-1} \mathbb{E}[r^{t}] = T\rho^{\star} - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\{Z_{a}^{t}\}\mathbb{E}[r^{t}|Z_{a}^{t}]$$

$$= T\rho^{\star} - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{E}[z_{a}^{t}]\rho_{a} = \left(\sum_{a \in A} \mathbb{E}[u_{a}^{T}]\right)\rho^{\star} - \sum_{a \in A} \mathbb{E}[u_{a}^{T}]\rho_{a}$$

$$= \sum_{a \in A} \mathbb{E}[u_{a}^{T}](\rho^{\star} - \rho_{a})$$

Step 1: Show that $R_T = \sum_{a: p_a \neq p^*} \mathbb{E}[u_a^T] \Delta_a$.

$$egin{aligned} R_T &= T p^\star - \sum_{t=0}^{T-1} \mathbb{E}[r^t] = T p^\star - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\{Z_a^t\} \mathbb{E}[r^t | Z_a^t] \ &= T p^\star - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{E}[z_a^t] p_a = \left(\sum_{a \in A} \mathbb{E}[u_a^T]\right) p^\star - \sum_{a \in A} \mathbb{E}[u_a^T] p_a \ &= \sum_{a \in A} \mathbb{E}[u_a^T] (p^\star - p_a) = \sum_{a : p_a
eq p^\star} \mathbb{E}[u_a^T] \Delta_a. \end{aligned}$$

Step 1: Show that $R_T = \sum_{a:p_a \neq p^*} \mathbb{E}[u_a^T] \Delta_a$.

$$egin{aligned} R_T &= T p^\star - \sum_{t=0}^{T-1} \mathbb{E}[r^t] = T p^\star - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\{Z_a^t\} \mathbb{E}[r^t|Z_a^t] \ &= T p^\star - \sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{E}[z_a^t] p_a = \left(\sum_{a \in A} \mathbb{E}[u_a^T]\right) p^\star - \sum_{a \in A} \mathbb{E}[u_a^T] p_a \ &= \sum_{a \in A} \mathbb{E}[u_a^T] (p^\star - p_a) = \sum_{a : p_a
eq p^\star} \mathbb{E}[u_a^T] \Delta_a. \end{aligned}$$

To show the regret bound, we shall show for each sub-optimal arm a that

$$\mathbb{E}[u_a^T] = O\left(\frac{1}{(\Delta_a)^2}\log(T)\right).$$

$$\mathbb{E}[u_a^T] = \sum_{t=0}^{T-1} \mathbb{E}[z_a^t]$$

$$\mathbb{E}[u_a^T] = \sum_{t=0}^{T-1} \mathbb{E}[z_a^t] = \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t\}$$

$$\mathbb{E}[u_a^T] = \sum_{t=0}^{T-1} \mathbb{E}[z_a^t] = \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t\}$$

$$= \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t < \bar{u}_a^T)\} + \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t \ge \bar{u}_a^T)\}$$

$$\mathbb{E}[u_a^T] = \sum_{t=0}^{T-1} \mathbb{E}[z_a^t] = \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t\}$$

$$= \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t < \bar{u}_a^T)\} + \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t \ge \bar{u}_a^T)\}$$

$$= A + B.$$

To prove $\mathbb{E}[u_a^T] = O\left(\frac{1}{\Delta_a^2}\log(T)\right)$, we show $\mathbb{E}[u_a^T] \leq \bar{u}_a^T + C$ for constant C.

$$\mathbb{E}[u_a^T] = \sum_{t=0}^{T-1} \mathbb{E}[z_a^t] = \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t\}$$

$$= \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t < \bar{u}_a^T)\} + \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t \ge \bar{u}_a^T)\}$$

$$= A + B.$$

We show A is upper-bounded by \bar{u}_a^T and B is upper-bounded by a constant.

$$A = \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t < \bar{u}_a^T)\}$$

$$A = \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t < \bar{u}_a^T)\}$$

$$= \sum_{t=0}^{T-1} \sum_{m=0}^{\bar{u}_a^T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t = m)\}$$

$$A = \sum_{t=0}^{T-1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t < \bar{u}_a^T) \}$$

$$= \sum_{t=0}^{T-1} \sum_{m=0}^{\bar{u}_a^T - 1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t = m) \} = \sum_{m=0}^{\bar{u}_a^T - 1} \sum_{t=0}^{T-1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t = m) \}$$

$$A = \sum_{t=0}^{T-1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t < \bar{u}_a^T) \}$$

$$= \sum_{t=0}^{T-1} \sum_{m=0}^{\bar{u}_a^T - 1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t = m) \} = \sum_{m=0}^{\bar{u}_a^T - 1} \sum_{t=0}^{T-1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t = m) \}$$

$$= \sum_{t=0}^{\bar{u}_a^T - 1} \mathbb{P} \{ Z_a^0, (u_a^0 = m) \text{ or } Z_a^1, (u_a^1 = m) \text{ or } \dots \text{ or } Z_a^{T-1}, (u_a^{T-1} = m) \}$$

$$A = \sum_{t=0}^{T-1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t < \bar{u}_a^T) \}$$

$$= \sum_{t=0}^{T-1} \sum_{m=0}^{\bar{u}_a^T - 1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t = m) \} = \sum_{m=0}^{\bar{u}_a^T - 1} \sum_{t=0}^{T-1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t = m) \}$$

$$= \sum_{m=0}^{\bar{u}_a^T - 1} \mathbb{P} \{ Z_a^0, (u_a^0 = m) \text{ or } Z_a^1, (u_a^1 = m) \text{ or } \dots \text{ or } Z_a^{T-1}, (u_a^{T-1} = m) \}$$

$$\leq \sum_{m=0}^{\bar{u}_a^T - 1} 1$$

$$A = \sum_{t=0}^{T-1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t < \bar{u}_a^T) \}$$

$$= \sum_{t=0}^{T-1} \sum_{m=0}^{\bar{u}_a^T - 1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t = m) \} = \sum_{m=0}^{\bar{u}_a^T - 1} \sum_{t=0}^{T-1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t = m) \}$$

$$= \sum_{m=0}^{\bar{u}_a^T - 1} \mathbb{P} \{ Z_a^0, (u_a^0 = m) \text{ or } Z_a^1, (u_a^1 = m) \text{ or } \dots \text{ or } Z_a^{T-1}, (u_a^{T-1} = m) \}$$

$$\leq \sum_{m=0}^{\bar{u}_a^T - 1} 1 = \bar{u}_a^T.$$

$$A = \sum_{t=0}^{T-1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t < \bar{u}_a^T) \}$$

$$= \sum_{t=0}^{T-1} \sum_{m=0}^{\bar{u}_a^T - 1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t = m) \} = \sum_{m=0}^{\bar{u}_a^T - 1} \sum_{t=0}^{T-1} \mathbb{P} \{ Z_a^t \text{ and } (u_a^t = m) \}$$

$$= \sum_{m=0}^{\bar{u}_a^T - 1} \mathbb{P} \{ Z_a^0, (u_a^0 = m) \text{ or } Z_a^1, (u_a^1 = m) \text{ or } \dots \text{ or } Z_a^{T-1}, (u_a^{T-1} = m) \}$$

$$\leq \sum_{m=0}^{\bar{u}_a^T - 1} 1 = \bar{u}_a^T.$$

We have used the fact that for $0 \le i < j \le t - 1$, $(Z_a^i, (u_a^i = m))$ and $(Z_a^j, (u_a^j = m))$ are mutually exclusive.

$$B = \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t \geq \bar{u}_a^T)\}$$

$$B = \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t \geq \bar{u}_a^T)\}$$

$$= \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t \geq \bar{u}_a^T)\}$$

$$\begin{split} B &= \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t \geq \bar{u}_a^T)\} \\ &= \sum_{t=n}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t \geq \bar{u}_a^T)\} \\ &\leq \sum_{t=n}^{T-1} \mathbb{P}\left\{ \left(\hat{p}_a^t + \sqrt{\frac{2}{u_a^t} \ln(t)} \geq \hat{p}_\star^t + \sqrt{\frac{2}{u_\star^t} \ln(t)}\right) \text{ and } (u_a^t \geq \bar{u}_a^T) \right\} \end{split}$$

$$\begin{split} B &= \sum_{t=0}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t \geq \bar{u}_a^T)\} \\ &= \sum_{t=n}^{T-1} \mathbb{P}\{Z_a^t \text{ and } (u_a^t \geq \bar{u}_a^T)\} \\ &\leq \sum_{t=n}^{T-1} \mathbb{P}\left\{ \left(\hat{p}_a^t + \sqrt{\frac{2}{u_a^t} \ln(t)} \geq \hat{p}_\star^t + \sqrt{\frac{2}{u_\star^t} \ln(t)} \right) \text{ and } (u_a^t \geq \bar{u}_a^T) \right\} \\ &\leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \mathbb{P}\left\{ \hat{p}_a(x) + \sqrt{\frac{2}{x} \ln(t)} \geq \hat{p}_\star(y) + \sqrt{\frac{2}{y} \ln(t)} \right\} \text{ where} \end{split}$$

 $\hat{p}_a(x)$ is the empirical mean of the first x pulls of arm a, and $\hat{p}_{\star}(y)$ is the empirical mean of the first y pulls of arm \star .

• Fix $x \in \{\bar{u}_a^T, \bar{u}_a^T + 1, \dots, t\}$ and $y \in \{1, 2, \dots, t\}$.

- Fix $x \in \{\bar{u}_a^T, \bar{u}_a^T + 1, \dots, t\}$ and $y \in \{1, 2, \dots, t\}$.
- 1. We have:

$$\hat{p}_a(x) + \sqrt{rac{2}{x}\ln(t)} \geq \hat{p}_\star(y) + \sqrt{rac{2}{y}}\ln(t) \ \implies \left(\hat{p}_a(x) + \sqrt{rac{2}{x}\ln(t)} \geq p_\star
ight) ext{ or } \left(\hat{p}_\star(y) + \sqrt{rac{2}{y}\ln(t)} < p_\star
ight).$$

- Fix $x \in \{\bar{u}_a^T, \bar{u}_a^T + 1, \dots, t\}$ and $y \in \{1, 2, \dots, t\}$.
- 1. We have:

$$\hat{p}_a(x) + \sqrt{rac{2}{x}\ln(t)} \geq \hat{p}_\star(y) + \sqrt{rac{2}{y}}\ln(t) \ \implies \left(\hat{p}_a(x) + \sqrt{rac{2}{x}\ln(t)} \geq p_\star
ight) ext{ or } \left(\hat{p}_\star(y) + \sqrt{rac{2}{y}\ln(t)} < p_\star
ight).$$

Fact: If $\alpha > \beta$, then $\alpha \ge \gamma$ or $\beta < \gamma$. Holds for arbitrary α, β, γ !

- Fix $x \in \{\bar{u}_a^T, \bar{u}_a^T + 1, \dots, t\}$ and $y \in \{1, 2, \dots, t\}$.
- 1. We have:

$$\hat{p}_a(x) + \sqrt{rac{2}{x}\ln(t)} \geq \hat{p}_\star(y) + \sqrt{rac{2}{y}}\ln(t) \ \implies \left(\hat{p}_a(x) + \sqrt{rac{2}{x}\ln(t)} \geq p_\star
ight) ext{ or } \left(\hat{p}_\star(y) + \sqrt{rac{2}{y}\ln(t)} < p_\star
ight).$$

Fact: If $\alpha > \beta$, then $\alpha \ge \gamma$ or $\beta < \gamma$. Holds for arbitrary α, β, γ !

2. Since $x \geq \bar{u}_a^T$, we have $\sqrt{\frac{2}{x} \ln(t)} \leq \sqrt{\frac{2}{\bar{u}_a^T} \ln(t)} \leq \frac{\Delta_a}{2}$, and so

$$\hat{p}_a(x) + \sqrt{\frac{2}{x}\ln(t)} \geq p_\star \implies \hat{p}_a(x) \geq p_a + \frac{\Delta_a}{2}.$$

$$B \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T}^t \sum_{y=1}^t \mathbb{P} \left\{ \hat{p}_a(x) + \sqrt{\frac{2}{x} \ln(t)} \geq \hat{p}_\star(y) + \sqrt{\frac{2}{y} \ln(t)} \right\}$$

$$B \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \mathbb{P}\left\{\hat{p}_a(x) + \sqrt{\frac{2}{x}} \ln(t) \geq \hat{p}_\star(y) + \sqrt{\frac{2}{y}} \ln(t)\right\}$$

$$\leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \left(\mathbb{P}\left\{\hat{p}_a(x) \geq p_a + \frac{\Delta_a}{2}\right\} + \mathbb{P}\left\{\hat{p}_\star(y) < p_\star - \sqrt{\frac{2}{y}} \ln(t)\right\}\right)$$

$$\begin{split} &B \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \mathbb{P}\left\{\hat{p}_a(x) + \sqrt{\frac{2}{x}} \ln(t) \geq \hat{p}_\star(y) + \sqrt{\frac{2}{y}} \ln(t)\right\} \\ &\leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \left(\mathbb{P}\left\{\hat{p}_a(x) \geq p_a + \frac{\Delta_a}{2}\right\} + \mathbb{P}\left\{\hat{p}_\star(y) < p_\star - \sqrt{\frac{2}{y}} \ln(t)\right\}\right) \\ &\leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \left(e^{-2x\left(\frac{\Delta_a}{2}\right)^2} + e^{-2y\left(\sqrt{\frac{2}{y}} \ln(t)\right)^2}\right) \end{split}$$

$$\begin{split} &B \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \mathbb{P} \left\{ \hat{p}_a(x) + \sqrt{\frac{2}{x}} \ln(t) \geq \hat{p}_\star(y) + \sqrt{\frac{2}{y}} \ln(t) \right\} \\ &\leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \left(\mathbb{P} \left\{ \hat{p}_a(x) \geq p_a + \frac{\Delta_a}{2} \right\} + \mathbb{P} \left\{ \hat{p}_\star(y) < p_\star - \sqrt{\frac{2}{y}} \ln(t) \right\} \right) \\ &\leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \left(e^{-2x\left(\frac{\Delta_a}{2}\right)^2} + e^{-2y\left(\sqrt{\frac{2}{y}} \ln(t)\right)^2} \right) \\ &\leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \left(e^{-4\ln(t)} + e^{-4\ln(t)} \right) \leq \sum_{t=n}^{T-1} t^2 \left(\frac{2}{t^4} \right) \leq \sum_{t=1}^{\infty} \frac{2}{t^2} = \frac{\pi^2}{3}. \end{split}$$

Continuing from Step 4.1, using the two results from Step 4.2, and invoking Hoeffding's Inequality:

$$\begin{split} &B \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \mathbb{P} \left\{ \hat{p}_a(x) + \sqrt{\frac{2}{x}} \ln(t) \geq \hat{p}_\star(y) + \sqrt{\frac{2}{y}} \ln(t) \right\} \\ &\leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \left(\mathbb{P} \left\{ \hat{p}_a(x) \geq p_a + \frac{\Delta_a}{2} \right\} + \mathbb{P} \left\{ \hat{p}_\star(y) < p_\star - \sqrt{\frac{2}{y}} \ln(t) \right\} \right) \\ &\leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \left(e^{-2x\left(\frac{\Delta_a}{2}\right)^2} + e^{-2y\left(\sqrt{\frac{2}{y}} \ln(t)\right)^2} \right) \\ &\leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_a^T} \sum_{y=1}^t \left(e^{-4\ln(t)} + e^{-4\ln(t)} \right) \leq \sum_{t=n}^{T-1} t^2 \left(\frac{2}{t^4} \right) \leq \sum_{t=1}^{\infty} \frac{2}{t^2} = \frac{\pi^2}{3}. \end{split}$$

We are done!