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Markov Decision Problems

1. Banach’s fixed-point theorem
2. Bellman optimality operator

3. Value iteration
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Complete, Normed Vector Spaces

X2

@ A vector space X has objects called vectors v
that can be added and scaled. vV-u
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Complete, Normed Vector Spaces

X2
@ A vector space X has objects called vectors \

that can be added and scaled. vV—u

@ A norm ||-|| associates a length with each |v| |[V-u|
vector (and satisfies some conditions).

@ A complete, normed vector space (X, ||||) is u

one in which every Cauchy sequence has a |u
limit in X. 0. 0) X,

@ A complete, normed vector space is called a Banach space.
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Two Definitions

@ Let (X,]||) be a normed vector space, and
let0 <7< 1.
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Two Definitions

@ Let (X,]||) be a normed vector space, and

let0 </ < 1.
\"
@ Contraction mapping. A mapping
Z : X — X is called a contraction mapping ; Zu
with contraction factor ¢ if Vu, v € X, \‘/A
u
|2Zv — Zu|| < 4||v — u|. Zv
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Two Definitions

@ Let (X,]||) be a normed vector space, and
let0 < /¢ < 1.
v
@ Contraction mapping. A mapping
Z : X — X is called a contraction mapping i Zu
with contraction factor ¢ if Vu, v € X, ‘/A )
-7 u
|2v — Zul| < €llv — ul. Zy
e Fixed-point. x* € X is called a fixed-point XF g
of Z if Zx* = x*.
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Banach’s Fixed-point Theorem
(Adapted from Szepesvari, 2009 (see Appendix A.1).)

Let (X, ||-||) be a Banach space, and let Z : X — X be a contraction mapping
with contraction factor ¢ € [0,1). Then:

1. Z has a unique fixed point x* € X.

2. Forx e X,m>0: ||[Z"x — x*|| < £™||x — x*||.
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Markov Decision Problems

1. Banach’s fixed-point theorem
2. Bellman optimality operator

3. Value iteration
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Bellman Optimality Operator

@ Take S={si,sz,...,8n}. Afunction F : S — R is equivalently a point in R".
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Bellman Optimality Operator
@ Take S={si,sz,...,8n}. Afunction F : S — R is equivalently a point in R".

@ The Bellman optimality operator B* : R” — R" for MDP (S, A, T, R, ) is
defined as follows. For F € R", s € S:

(B*(F))(s)Z max Y T(s.as){R(s,a )+ F(s)}.

s’eS
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Bellman Optimality Operator
@ Take S = {s1,s,,...,8,}. Afunction F : S — R is equivalently a point in R".

@ The Bellman optimality operator B* : R” — R" for MDP (S, A, T, R, ) is
defined as follows. For F € R", s € S:

(B*(F))(s)Z max Y T(s.as){R(s,a )+ F(s)}.

s'eS
@ Recall that the max norm ||-|| of F = (fi,f,...,f,) € R"is
HFHoo = max{]f1 |7 ’f2’7 poog |fn’}

@ ltis an established result that (R”, ||-||..) is @ Banach space.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/12



Bellman Optimality Operator
@ Take S = {s1,s,,...,8,}. Afunction F : S — R is equivalently a point in R".

@ The Bellman optimality operator B* : R” — R" for MDP (S, A, T, R, ) is
defined as follows. For F € R", s € S:

(B*(F))(s)Z max Y T(s.as){R(s,a )+ F(s)}.

s'eS
@ Recall that the max norm ||-|| of F = (fi,f,...,f,) € R"is
HFHoo = max{]f1|, ’f2’7 poog |fn’}

@ ltis an established result that (R”, ||-||..) is @ Banach space.

Fact. B* is a contraction mapping in the (R", ||-||») Banach space
with contraction factor ~.
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Proof that B* is a Contraction Mapping

We use: | max, f(a) — maxz g(a)| < maxg|f(a) — g(a)l.
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We use: | max, f(a) — maxz g(a)| < maxg|f(a) — g(a)l.
1B*(F) = B*(G)lloe = max|(B*(F))(s) - (B*(G))(s)]

- T 1R )+ F(s)} -
max Tg}y%;s (s,a,s"){R(s,a,s") +~F(s")}

max > T(s,a,8){A(s,a,¢) +1G(s)}
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We use: | max, f(a) — maxz g(a)| < maxg|f(a) — g(a)l.
1B*(F) = B*(G)lloe = max|(B*(F))(s) - (B*(G))(s)]

= max
seS

/ / 1
TGE‘/Z(SZG;S T(s,a,s'){R(s,a,s")+~F(s')}
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<7 max
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The Fixed-point of B*

@ Banach’s Fixed-point Theorem implies there is a unique fixed point for B*.
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@ Banach’s Fixed-point Theorem implies there is a unique fixed point for B*.

@ Denote the fixed point V* : S — R. Note that B*(V*) = V*. In other words,
forse S:

V*(8) = maxaca Y oes T(S,a, 8){R(s.a,s) +~yV*(s)}.
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n equations, n unknowns, but non-linear!

@ Value iteration, linear programming, and policy iteration are three distinct
families of algorithms to compute V*.

@ Fact. V* is the value function of every policy 7* : S — A such that for s € S:
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The Fixed-point of B*

@ Banach’s Fixed-point Theorem implies there is a unique fixed point for B*.

@ Denote the fixed point V* : S — R. Note that B*(V*) = V*. In other words,
forse S:

V*(8) = maxaca Y oes T(S,a, 8){R(s.a,s) +~yV*(s)}.
@ These are the Bellman optimality equations for MDP (S, A, T, R, ).
n equations, n unknowns, but non-linear!

@ Value iteration, linear programming, and policy iteration are three distinct
families of algorithms to compute V*.

@ Fact. V* is the value function of every policy 7* : S — A such that for s € S:
T (8) = argmax,ca > s 1(S,a,8'){R(s,a,8) +~yV*(s)}.
@ We shall prove next week that every such policy 7* is an optimal policy.
Hence V* is the optimal value function.
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Markov Decision Problems

1. Banach’s fixed-point theorem
2. Bellman optimality operator

3. Value iteration
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Value lteration

@ lterative approach to compute V*.
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Value lteration

° Iterative approach to compute V*.
° Vo V1 V2
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Value lteration

° Iterative approach to compute V*.
(] Vo V1 V2

Vo < Arbitrary, element-wise bounded, n-length vector.
t+< 0.
Repeat:
Forse S:
Vi1(8) < maxaca D gcs T(S,a,8) (R(s,a,8) + 7y Vi(s)).
t+—t+1.
Until V; = V;_; (up to machine precision).
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Value lteration

° Iterative approach to compute V*.
(] Vo V1 V2

Vo < Arbitrary, element-wise bounded, n-length vector.
t+< 0.
Repeat:
Forse S:
Vi1(8) < maxaca D gcs T(S,a,8) (R(s,a,8) + 7y Vi(s)).
t+—t+1.
Until V; = V;_; (up to machine precision).

@ Popular; easy to implement; quick to converge in practice.
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Markov Decision Problems

1. Banach’s fixed-point theorem
2. Bellman optimality operator
3. Value iteration

Next class: MDP planning through linear programming.
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