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Markov Decision Problems

1. Review of linear programming

2. MDP planning through linear programming
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Linear Programming
@ To solve for real-valued variables xi, X, . . ., X, such that

» a given linear function of the variables is maximised, while
» given linear constraints on the variables are satisfied.
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Linear Programming
@ To solve for real-valued variables xi, X, . . ., X, such that
» a given linear function of the variables is maximised, while
» given linear constraints on the variables are satisfied.
Maximise x; +2x, //Objective function
subject to: //Constraints

Xy + X0 <9, (C1)
4X1 — 13X2 < —75, (02)
X <5. (C3)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/12



Linear Programming
@ To solve for real-valued variables xi, x, . . ., X, such that
» a given linear function of the variables is maximised, while
» given linear constraints on the variables are satisfied.
Maximise x; +2x, //Objective function
subject to:  //Constraints

X1+ Xo S 97 (C1)
4X1 — 13X2 < —75, (02)
X1 <5. (C3)

@ Well-studied problem with wide-ranging applications in mathematics,
engineering.
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Linear Programming
@ To solve for real-valued variables xi, x, . . ., X, such that
» a given linear function of the variables is maximised, while
» given linear constraints on the variables are satisfied.
Maximise x; +2x, //Objective function
subject to:  //Constraints

Xy + X0 <9, (C1)
4X1 — 13X2 < —75, (CZ)
X <5. (C3)

@ Well-studied problem with wide-ranging applications in mathematics,
engineering.

@ Today’s solvers (commercial, as well as open source) can handle LPs with
millions of variables.



Conceptual Steps towards Solving a Linear Program
@ Step 1: Identify the feasible set, which contains all the points satisfying the
constraints. Might be empty, but otherwise will be convex.

Maximise x; + 2x»
subject to:

X; + X2 <9,
4X1 — 13X2 < —75,
X1 < 5.
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Conceptual Steps towards Solving a Linear Program
@ Step 1: Identify the feasible set, which contains all the points satisfying the
constraints. Might be empty, but otherwise will be convex.

Maximise x; + 2x»
subject to:

X; + X2 <9,
4X1 — 13X2 < —75,
X1 < 5.
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Conceptual Steps towards Solving a Linear Program
@ Step 1: Identify the feasible set, which contains all the points satisfying the
constraints. Might be empty, but otherwise will be convex.
@ Step 2: Identify points within the feasible set that maximise the objective.
Usually a single point.

X
Maximise x; + 2x»

subject to: P s

Xy + X0 <9, (C1)
4x; —13% < —75,  (C2) 4,2
X <5. (C3)
0,0) x|
™~
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Actually Solving a Linear Program

@ Common approaches: Simplex, interior-point methods.
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Actually Solving a Linear Program

@ Common approaches: Simplex, interior-point methods.

@ LP with d variables, m constraints, B-bit representation of floats.
- Can be solved in poly(d, m, B) operations.

- Can be solved in poly(d, m) - €2V ?"°e(m) expected “real RAM” operations.
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Actually Solving a Linear Program

@ Common approaches: Simplex, interior-point methods.

@ LP with d variables, m constraints, B-bit representation of floats.
- Can be solved in poly(d, m, B) operations.

- Can be solved in poly(d, m) - €2V ?"°e(m) expected “real RAM” operations.

@ Modern LP solvers can solve LPs with thousands/millions of
variables/constraints in reasonable time (hours/days).

@ Engineer’s focus is on formulating, rather than solving, LP.
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Markov Decision Problems

1. Review of linear programming

2. MDP planning through linear programming
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Bellman Optimality Equations as an LP

@ Bellman optimality equations: for s € S,
V*(S) = maxaca) o5 7(s,a 8){R(s as) +~yV*(s)}.
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Bellman Optimality Equations as an LP

@ Bellman optimality equations: for s € S,
V*(S) = maxaca) o5 7(s,a 8){R(s as) +~yV*(s)}.

@ Let us create nvariables V(sy), V(s2),..., V(sn), and attempt to create an LP
whose unique solution is V*.
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@ Bellman optimality equations: for s € S,

V*(S) = maxaca ) ocs 1(S:a,8'){R(s,a, ) +~yV*(s)}.

@ Let us create nvariables V(sy), V(s2),..., V(sn), and attempt to create an LP
whose unique solution is V*.

@ Although the Bellman optimality equations are non-linear, we can easily
create linear constraints. For s € S,a € A:

V(s) > > aes T(s,a 8){R(s,as)+~V(s)}.
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Bellman Optimality Equations as an LP

@ Bellman optimality equations: for s € S,

V*(S) = maxaca ) ocs 1(S:a,8'){R(s,a, ) +~yV*(s)}.

@ Let us create nvariables V(sy), V(s2),..., V(sn), and attempt to create an LP
whose unique solution is V*.

@ Although the Bellman optimality equations are non-linear, we can easily
create linear constraints. For s € S,a € A:

V(s) > > ses T(s,a,8){A(s,a,s)+vV(s)}.
@ These are nk linear constraints.
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Bellman Optimality Equations as an LP

@ Bellman optimality equations: for s € S,

V*(S) = maxaca ) ocs 1(S:a,8'){R(s,a, ) +~yV*(s)}.

@ Let us create nvariables V(sy), V(s2),..., V(sn), and attempt to create an LP
whose unique solution is V*.

@ Although the Bellman optimality equations are non-linear, we can easily
create linear constraints. For s € S,a € A:

V(s) > > scs T(s,a,8'){R(s a,s)+~V(s)}.
@ These are nk linear constraints.
@ Observe that V* is in the feasible set.
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Bellman Optimality Equations as an LP

@ Bellman optimality equations: for s € S,

V*(S) = maxaca ) ocs 1(S:a,8'){R(s,a, ) +~yV*(s)}.

@ Let us create nvariables V(sy), V(s2),..., V(sn), and attempt to create an LP
whose unique solution is V*.

@ Although the Bellman optimality equations are non-linear, we can easily
create linear constraints. For s € S,a € A:

V(s) > > scs T(s,a,8'){R(s a,s)+~V(s)}.
@ These are nk linear constraints.
@ Observe that V* is in the feasible set.

Can we construct an objective function for which V* is the sole optimiser?
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Vector Comparison
@ ForX:S—Rand Y :S — R (equivalently X, Y € R"), we define

XY < VseS:X(s)>Y(s),
X>=Y < X>Yand3dse S: X(s) > Y(s).
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@ ForX:S—Rand Y :S — R (equivalently X, Y € R"), we define

XY < VseS:X(s)>Y(s),
X>=Y < X>Yand3dse S: X(s) > Y(s).

@ For policies w1, m € I, we define

T = Mo <— v >~ V7r27
T o= < V™ = V72,
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Vector Comparison
@ ForX:S—Rand Y :S — R (equivalently X, Y € R"), we define

XY < VseS:X(s)>Y(s),
X>=Y < X>Yand3dse S: X(s) > Y(s).

@ For policies w1, m € I, we define
T = Mo <— v >~ VTFZ,

T o= < V™ = V72,

@ Note that we can have incomparable policies 1, mo € I1: that is, neither
T >~ o NOI o > 1.
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Vector Comparison
@ ForX:S—Rand Y :S — R (equivalently X, Y € R"), we define

XY < VseS:X(s)>Y(s),
X>=Y < X>Yand3dse S: X(s) > Y(s).

@ For policies w1, m € I, we define

T = Mo <— v >~ V7r2’
T o= < V™ = V72,

@ Note that we can have incomparable policies 1, mo € I1: that is, neither
T >~ o NOI o > 1.

@ Also note that if 74 = m and m» > 7, then V™ = V™2,
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B* Preserves =
@ Fact. For X:S—Rand Y:S — R,
X =Y = B*(X) = B*(Y).
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B* Preserves >~
@ Fact. For X:S—Rand Y:S — R,
X =Y = B*(X) = B*(Y).
As proof it suffices to show that if X = Y, then for s € S,

(B (X))(s) = (B*(Y))(s) = 0.
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B* Preserves >~
@ Fact. For X:S—Rand Y:S — R,
X =Y = B*(X) = B*(Y).
As proof it suffices to show that if X = Y, then for s € S,

(B (X))(s) = (B*(Y))(s) = 0.

We use: max, f(a) — maxa g(a) > ming(f(a) — g(a)).
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B* Preserves >~
@ Fact. For X:S—Rand Y:S — R,
X =Y = B*(X) = B*(Y).
As proof it suffices to show that if X = Y, then for s € S,

(B (X))(s) = (B*(Y))(s) = 0.

We use: max, f(a) — max, g(a) > ming(f(a) — g(a)).

(B*(X))(s) = (B'(Y))(s) =max > _ T(s,a ){A(s.a ) +X(s)}-

s'eS
max ¥ T(s,a 8){R(s,as)+~Y(s)}
acA s'eS
> . / N N>
> 7?6'252 T(s.as){X(s) - Y(s)} = 0.
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Examining the Feasible Set of our LP
@ Each V: S — Rin our feasible set satisfies V > B*(V).
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Examining the Feasible Set of our LP
@ Each V: S — Rin our feasible set satisfies V > B*(V).
@ Since B* preserves =, we get

V = B*(V)
= B (V)= (B)*(V)
= (B(V) = (B)*(V)
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Examining the Feasible Set of our LP

@ Each V: S — Rin our feasible set satisfies V > B*(V).

@ Since B* preserves =, we get

V = B(V)
= B (V)= (B)*(V)
= (B(V) = (B)*(V)

@ By implication and by Banach’s Fixed-point Theorem,

V = limise (BY)(V) = V.
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Examining the Feasible Set of our LP
@ Each V: S — Rin our feasible set satisfies V > B*(V).
@ Since B* preserves =, we get

V = B (V)
— B(V) = (BY(V)
— (BY(V) = (BY(V)

@ By implication and by Banach’s Fixed-point Theorem,
V = im0 (B*)(V) = V=
@ We “linearise” this result: for V : S — R in the feasible set.
Zses V(S) > Zses V*(S)-
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Linear Programming Formulation

Maximise (— Z V(s))

seS
subject to
V(s) > ) T(s,as){R(s.as)+V(s)}.Vsc S, acA
s'eS

@ This LP has n variables, nk constraints.
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Linear Programming Formulation

Maximise (— Z V(s))

seS
subject to
V(s) > ) T(s,as){R(s.as)+V(s)}.Vsc S, acA
s'eS

@ This LP has n variables, nk constraints.

@ There is also a dual LP formulation with nk variables and n constraints. See
Littman et al. (1995) if interested.
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Markov Decision Problems

1. Review of linear programming

2. MDP planning through linear programming
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Markov Decision Problems

1. Review of linear programming
2. MDP planning through linear programming

Next class: policy iteration.
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