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Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
- Basic tools
- Howard’s PI with k = 2
- BSPI with k = 2
- Open problems

3. Review of MDP planning
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Policy Iteration Algorithm

π ← Arbitrary policy.
While π has improvable states:

π′ ← PolicyImprovement(π).
π ← π′.

Return π.

Path taken (and hence the number of
iterations) in general depends on the
switching strategy.
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Howard’s Policy Iteration
Reference: Howard (1960).
Greedy; switch all improvable states.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement
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Random Policy Iteration
Reference: Mansour and Singh (1999).
Switch a non-empty subset of improvable states chosen uniformly at random.
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Simple Policy Iteration
Reference: Melekopoglou and Condon (1994).
Assume a fixed indexing of states.
Switch the improvable state with the highest index.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement
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Upper and Lower Bounds

U(n, k) is an upper bound applicable to
a set of PI variants L if

for each n-state, k -action
MDP M = (S,A,T ,R, γ),
for each policy π : S → A,
for each algorithm L ∈ L,

the expected number of policy
evaluations performed by L on M if
initialised at π is at most U(n, k).

L(n, k) is a lower bound applicable to a
set of PI variants L if

there exists an n-state, k -action
MDP M = (S,A,T ,R, γ),
there exists a policy π : S → A,
there exists an algorithm L ∈ L,

such that the expected number of policy
evaluations performed by L on M if
initialised at π is at least L(n, k).
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Switching Strategies and Bounds
Upper bounds on number of iterations

PI Variant Type k = 2 General k
Howard’s (Greedy) PI Deterministic O

(
2n

n

)
O
(

kn

n

)
[H60, MS99]

Mansour and Singh’s Randomised 1.7172n ≈ O
(

k
2

)n

Random PI [MS99]

Mansour and Singh’s Randomised poly(n) · 1.5n –Random PI [HPZ14]

Lower bounds on number of iterations
Ω(n) Howard’s PI on n-state, 2-action MDPs [HZ10].

Ω(2n) Simple PI on n-state, 2-action MDPs [MC94].
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PI: Some Recent Results
(Polynomial factors ignored. Authors with names underlined once took CS 747!)

Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI
algorithm (deterministic), and show an upper bound of 1.6479n for k = 2.
Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper
bound k0.7207n. Taraviya and Kalyanakrishnan (2019) improve to k0.7019n.

Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of
(2 + ln(k − 1))n for a randomised PI variant.
Taraviya and Kalyanakrishnan (2019) show an upper bound of
(O(

√
k log(k)))n for a randomised variant of Howard’s PI.

Ashutosh, Consul, Dedhia, Khirwadkar, Shah, and Kalyanakrishnan (2020)
show a lower bound of

√
k

n
iterations for a deterministic variant of PI.
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Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
- Basic tools
- Howard’s PI with k = 2
- BSPI with k = 2
- Open problems

3. Review of MDP planning
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1. Policy Improvement and Policy “Deprovement”
π′ ≻ π.

s s s s s s ss1 2 3 4 5 6 7 8

π

s s s s s s ss1 2 3 4 5 6 7 8

π

Policy Improvement

π ⪰ π′′.
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2. Improvement sets in 2-action MDPs

Non-optimal policies π, π′ ∈ Π cannot
have the same set of improvable states.

1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1
≻ ≻

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1

⪰ ⪰

1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0

Contradiction!
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Markov Decision Problems
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2. Analysis of bounds
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Howard’s Policy Iteration (2-action MDPs)
Switch actions in every improvable state.

Possible?
π′ 0 0 0 0 0 0 0 1 1 1 1 1

π1 0 0 0 0 0 0 0 1 1 1 1 0
π2 0 0 0 0 0 0 0 1 1 1 0 0
π3 0 0 0 0 0 0 0 1 1 0 0 0
π4 0 0 0 0 0 0 0 1 0 0 0 0
π 0 0 0 0 0 0 0 0 0 0 0 0

If π has m improvable states and π
Howard’s PI−−−−−−→ π′, then

there exist m policies π′′ such that π′ ⪰ π′′ ≻ π.
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Howard’s Policy Iteration (2-action MDPs)
Take m⋆ = n

3 .

Number of policies with m⋆ or more improvable states visited

≤ 2n

m⋆
=

2n

n/3
.

Number of policies with fewer than m⋆ improvable states visited

≤
(

n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n

m⋆ − 1

)
≤ 3

2n

n
.

Number of iterations taken by Howard’s PI: O
(

2n

n

)
[MS99, HGDJ14].
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Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
- Basic tools
- Howard’s PI with k = 2
- BSPI with k = 2
- Open problems

3. Review of MDP planning
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Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

Howard’s Policy Iteration takes at most ___ iterations on a 2-state MDP!
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Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

Howard’s Policy Iteration takes at most _3_ iterations on a 2-state MDP!
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Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

Howard’s Policy Iteration takes at most _3_ iterations on a 2-state MDP!
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Batch-Switching Policy Iteration (BSPI)
Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.

π4 0 1 1 0 1 1 1 1 1 0x
π3 0 1 1 0 1 1 1 0 1 0x x
π2 0 1 1 0 0 0 1 0 1 0x
π1 0 1 1 0 0 0 1 0 0 0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Left-most batch can change only when all other columns are non-improvable.
Left-most batch can change at most 3 times (following previous result).
T (n) ≤ 3× T (n − 2) ≤

√
3

n
.
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Batch-Switching Policy Iteration (BSPI)
Howard’s Policy Iteration takes at most 5 iterations on a 3-state MDP!
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The structures above are called Trajectory-bounding Trees (TBTs) [KMG16a]
(and correspond to the Order Regularity Problem [H12, GHDJ15]).

BSPI with 3-sized batches gives T (n) ≤ 5× T (n − 3) ≤ 1.71n.
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Upper Bounds

Batch size Depth of TBT Bound on number of iterations

1 2 2n

2 3 1.7321n

3 5 1.7100n

4 8 1.6818n

5 13 1.6703n

6 21 1.6611n

7 33 1.6479n

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].
Will the bound continue to be non-increasing in the batch size?
If so, 1.6479n would be a bound for Howard’s Policy Iteration!
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BSPI: Effect of Batch Size b
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Averaged over n-state, 2-action MDPs with randomly generated transition and
reward functions. Each point is an average over 100 randomly-generated MDP

instances and initial policies [KMG16a].
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Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
- Basic tools
- Howard’s PI with k = 2
- BSPI with k = 2
- Open problems

3. Review of MDP planning

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 22 / 25



23/25

Open Problems

Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the
Fibonacci sequence (≈ 1.6181n)?
Is Howard’s PI the most efficient among deterministic PI algorithms (worst
case over all MDPs)?
Is there a super-linear lower bound on the number of iterations taken by
Howard’s PI on 2-action MDPs?
Is Howard’s PI strongly polynomial on deterministic MDPs?
Is there a variant of PI that can visit all kn policies in some n-state, k -action
MDP—implying an Ω(kn) lower bound?
Is there a strongly polynomial algorithm for MDP planning?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 23 / 25



24/25

Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
- Basic tools
- Howard’s PI with k = 2
- BSPI with k = 2
- Open problems

3. Review of MDP planning

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 24 / 25



25/25

Summary of MDP Planning
MDPs are an abstraction of sequential decision making.
Many applications; many different formulations.
Essential solution concept: optimal policy (known to exist).

Three main families of planning algorithms: value iteration, linear
programming, policy iteration.
Have strengths and weaknesses in theory and in practice. Can combine.

We showed correctness of all three methods.
Used Banach’s fixed-point theorem, Bellman (optimality) operator.

What if T , R were not given, but have to be learned from interaction? Can
we still learn to act optimally?
Yes: that’s the reinforcement learning problem. Next week!
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