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Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds

- Basic tools
- Howard’s Pl with kK = 2
- BSPlwith k=2

- Open problems

3. Review of MDP planning
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Policy Iteration Algorithm

7 < Arbitrary policy.

While 7 has improvable states:
7’ < Policylmprovement(r).
R

Return .
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Policy lteration Algorithm
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Policy lteration Algorithm
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Policy lteration Algorithm
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7 < Arbitrary policy.

While 7 has improvable states:

7’ < Policylmprovement(r).

T+ 7.
Return 7.
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Policy lteration Algorithm
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7’ < Policylmprovement(r).

R

While 7 has improvable states:
Return .

7 < Arbitrary policy.
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Policy lteration Algorithm
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Policy lteration Algorithm
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Policy lteration Algorithm
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Howard’s Policy lteration
@ Reference: Howard (1960).
@ Greedy; switch all improvable states.
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Random Policy lteration

@ Reference: Mansour and Singh (1999).
@ Switch a non-empty subset of improvable states chosen uniformly at random.
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Random Policy lteration
@ Reference: Mansour and Singh (1999).
@ Switch a non-empty subset of improvable states chosen uniformly at random.
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Random Policy lteration
@ Reference: Mansour and Singh (1999).
@ Switch a non-empty subset of improvable states chosen uniformly at random.
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Simple Policy lteration
@ Reference: Melekopoglou and Condon (1994).
@ Assume a fixed indexing of states.
@ Switch the improvable state with the highest index.
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Upper and Lower Bounds

U(n, k) is an upper bound applicable to
a set of Pl variants L if

o for each n-state, k-action

MDP M = (S,A, T,R,~),
@ for each policy 7 : S — A,
@ for each algorithm L € L,

the expected number of policy
evaluations performed by L on M if
initialised at = is at most U(n, k).
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Upper and Lower Bounds

U(n, k) is an upper bound applicable to  L(n, k) is a lower bound applicable to a

a set of Pl variants L if set of Pl variants L if

@ for each n-state, k-action @ there exists an n-state, k-action

MDP M = (S,A, T,R,~), MDP M = (S,A, T,R,~),

@ for each policy 7 : S — A, @ there exists a policy 7 : S — A,

@ for each algorithm L € L, @ there exists an algorithm L € L,
the expected number of policy such that the expected number of policy
evaluations performed by L on M if evaluations performed by L on M if
initialised at = is at most U(n, k). initialised at = is at least L(n, k).
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Switching Strategies and Bounds
Upper bounds on number of iterations
Pl Variant Type k=2 General k

Howard’s (Greedy) PI o on K"
[(H60, MS99] Deterministic O(%) O (%)

Mansour and Singh’s
Random Pl [MS99]

Mansour and Singh’s
Random Pl [HPZ14]

Randomised ~ 1.7172"  ~ O (k)"

Randomised poly(n)-1.5" -
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Switching Strategies and Bounds
Upper bounds on number of iterations

Pl Variant Type k=2 General k
Howard’s (Greedy) PI o on P
[(H60, MS99] Deterministic O(%) O (%)

Mansour and Singh’s , n N PN
Random Pl [MS99] Randomised 1.7172 ~ O0(3%)

Mansour and Singh’s : N 3
Random PI [HPZ14] Randomised poly(n)-1.5

Lower bounds on humber of iterations
Q(n) Howard’s Pl on n-state, 2-action MDPs [HZ10].
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Switching Strategies and Bounds
Upper bounds on number of iterations

Pl Variant Type k=2 General k
Howard’s (Greedy) PI o on P
[(H60, MS99] Deterministic O(%) O (%)

Mansour and Singh’s , n N PN
Random Pl [MS99] Randomised 1.7172 ~ O0(3%)

Mansour and Singh’s : N 3
Random PI [HPZ14] Randomised poly(n)-1.5

Lower bounds on number of iterations
Q(n) Howard’s Pl on n-state, 2-action MDPs [HZ10].
Q(2") Simple Pl on n-state, 2-action MDPs [MC94].
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Pl: Some Recent Results
(Polynomial factors ignored. Authors with names underlined once took CS 747!)
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Pl: Some Recent Results
(Polynomial factors ignored. Authors with names underlined once took CS 747!)

@ Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI
algorithm (deterministic), and show an upper bound of 1.6479" for k = 2.
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algorithm (deterministic), and show an upper bound of 1.6479" for k = 2.

@ Gupta and Kalyanakrishnan (2017) give a deterministic Pl variant with upper
bound k%7207 Taraviya and Kalyanakrishnan (2019) improve to k%7017,
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bound k%7207 Taraviya and Kalyanakrishnan (2019) improve to k%7017,

@ Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of
(2 +In(k — 1))" for a randomised PI variant.
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Pl: Some Recent Results
(Polynomial factors ignored. Authors with names underlined once took CS 747!)

@ Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI
algorithm (deterministic), and show an upper bound of 1.6479" for k = 2.

@ Gupta and Kalyanakrishnan (2017) give a deterministic Pl variant with upper
bound k%7207 Taraviya and Kalyanakrishnan (2019) improve to k%7017,

@ Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of
(2 +In(k — 1))" for a randomised PI variant.
@ Taraviya and Kalyanakrishnan (2019) show an upper bound of

(O(\/k log(k)))" for a randomised variant of Howard’s PI.
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Pl: Some Recent Results
(Polynomial factors ignored. Authors with names underlined once took CS 747!)

@ Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI
algorithm (deterministic), and show an upper bound of 1.6479" for k = 2.

@ Gupta and Kalyanakrishnan (2017) give a deterministic Pl variant with upper
bound k%7207 Taraviya and Kalyanakrishnan (2019) improve to k%7017,

@ Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of
(2 +In(k — 1))" for a randomised PI variant.
@ Taraviya and Kalyanakrishnan (2019) show an upper bound of

(O(\/k log(k)))" for a randomised variant of Howard’s PI.

@ Ashutosh, Consul, Dedhia, Khirwadkar, Shah, and Kalyanakrishnan (2020)
show a lower bound of vk iterations for a deterministic variant of PI.
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Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds

- Basic tools
- Howard’s Pl with kK = 2
- BSPlwith k =2

- Open problems

3. Review of MDP planning
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1. Policy Improvement and Policy “Deprovement”
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1. Policy Improvement and Policy “Deprovement”
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2. Improvement sets in 2-action MDPs

Non-optimal policies 7, 7" € [I1 cannot
have the same set of improvable states.
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2. Improvement sets in 2-action MDPs

Non-optimal policies 7, 7" € [I1 cannot
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2. Improvement sets in 2-action MDPs

Non-optimal policies 7, 7" € [I1 cannot
have the same set of improvable states.
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2. Improvement sets in 2-action MDPs

Non-optimal policies 7, 7" € [I1 cannot
have the same set of improvable states.

i1 00O01T1T0 10111101
- —

1 0 qpgo11o (oo 110 1

= a

10111101 1100O0T110

Contradiction!
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Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds

- Basic tools
- Howard’s Pl with kK = 2
- BSPlwith k=2

- Open problems

3. Review of MDP planning
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Howard’s Policy Iteration (2-action MDPs)
Switch actions in every improvable state.
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Howard’s Policy Iteration (2-action MDPs)
Switch actions in every improvable state.
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Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

Possible?
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Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

# 000000 o0o0f [ 1

~ 0000O0O0O0T(DOIQDOGQWODQDN

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/25



Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.
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Howard’s Policy Iteration (2-action MDPs)
Switch actions in every improvable state.
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Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.
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Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.
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Howard’s Policy lteration (2-action MDPs)

Switch actions in every improvable state.

T

T2
3
4

[=NeNolNolNolNe
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O O0O0OO0OO0O0OO0O0O0o
O OO O O0g
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H=)=N=NNRe

Howard’s Pl

If 7 has mimprovable states and m ————— =/, then
there exist m policies " such that 7’ = 7" = .
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Howard’s Policy Iteration (2-action MDPs)
@ Take m* = 3.
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Howard’s Policy Iteration (2-action MDPs)
@ Take m* = 3.
@ Number of policies with m* or more improvable states visited
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Howard’s Policy Iteration (2-action MDPs)
@ Take m* = 3.
@ Number of policies with m* or more improvable states visited

2" 2"

= m n/3

@ Number of policies with fewer than m* improvable states visited
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Howard’s Policy Iteration (2-action MDPs)
@ Take m* = 3.
@ Number of policies with m* or more improvable states visited

2" 2"

= m n/3

@ Number of policies with fewer than m* improvable states visited
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Howard’s Policy Iteration (2-action MDPs)
@ Take m* = 3.
@ Number of policies with m* or more improvable states visited

2" 2"

= m n/3

@ Number of policies with fewer than m* improvable states visited
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Howard’s Policy Iteration (2-action MDPs)
@ Take m* = 3.
@ Number of policies with m* or more improvable states visited

2" 2"

= m n/3

@ Number of policies with fewer than m* improvable states visited
< (D n n n n PR n < 32”
—\0 1 2 m—1)~ " n’

Number of iterations taken by Howard's PI: O (%) [MS99, HGDJ14].
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Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds

- Basic tools
- Howard’s Pl with kK = 2
- BSPlwith k =2

- Open problems

3. Review of MDP planning
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Batch-Switching Policy lteration (BSPI) (2-action MDPs)

Howard’s Policy Iteration takes at most ____ iterations on a 2-state MDP!
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Batch-Switching Policy lteration (BSPI) (2-action MDPs)

Howard’s Policy Iteration takes at most _3 iterations on a 2-state MDP!
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Batch-Switching Policy lteration (BSPI) (2-action MDPs)

Howard’s Policy Iteration takes at most _3 iterations on a 2-state MDP!
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Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.
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Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.
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Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.

o 0 m 1 0 @ @ 1 0| 1 0
o (o0 A1 o0 @1 @ % 0
S1 S2 || S3 Sa || S5 Sg || S7 Ss || S9 S0
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Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.
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Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.
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Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.
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@ Left-most batch can change only when all other columns are non-improvable.
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Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.
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@ Left-most batch can change only when all other columns are non-improvable.
@ Left-most batch can change at most 3 times (following previous result).
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Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.

o |0 11 o1 11 1)1 o
1%}10
31010
@1@%(’

S7 Ss || S9 S10

3 @ m 1 0
o 0 m 1 0

T 0 m 1 0
S So S3  S4

Yo o=

S

o

@ Left-most batch can change only when all other columns are non-improvable.
@ Left-most batch can change at most 3 times (following previous result).
@ T(n)<3x T(n-2) <3



Batch-Switching Policy Iteration (BSPI)

Howard’s Policy lteration takes at most 5 iterations on a 3-state MDP!
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Batch-Switching Policy Iteration (BSPI)

Howard’s Policy lteration takes at most 5 iterations on a 3-state MDP!
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The structures above are called Trajectory-bounding Trees (TBTs) [KMG16a]

(and correspond to the Order Regularity Problem [H12, GHDJ15]).
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Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most 5 iterations on a 3-state MDP!
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The structures above are called Trajectory-bounding Trees (TBTs) [KMG16a]
(and correspond to the Order Regularity Problem [H12, GHDJ15]).

BSPI with 3-sized batches gives T(n) <5 x T(n—3) < 1.71".
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Upper Bounds

Batch size Depth of TBT Bound on number of iterations

1 2
2 3
3 5
4 8
5 13
6 21
7 33

2n
1.7321"
1.7100"
1.6818"
1.6703"
1.6611"
1.6479"
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Upper Bounds

Batch size Depth of TBT Bound on number of iterations

1 2
2 3
3 5
4 8
5 13
6 21
7 33

2n
1.7321"
1.7100"
1.6818"
1.6703"
1.6611"
1.6479"

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].
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Upper Bounds

Batch size Depth of TBT Bound on number of iterations

1 2
2 3
3 5
4 8
5 13
6 21
7 33

2n
1.7321"
1.7100"
1.6818"
1.6703"
1.6611"
1.6479"

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].
Will the bound continue to be non-increasing in the batch size?
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Upper Bounds

Batch size Depth of TBT Bound on number of iterations

2

No ok~ wnNh =

3

5

8

13
21
33

2n
1.7321"
1.7100"
1.6818"
1.6703"
1.6611"
1.6479"

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].
Will the bound continue to be non-increasing in the batch size?
If so, 1.6479" would be a bound for Howard’s Policy lteration!
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BSPI: Effect of Batch Size b

Iterations

(O T N e - -RN
T T T T T T T

123456738910

b
n=10
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Iterations

i

200 400 600 800 1000

n= 1000

Averaged over n-state, 2-action MDPs with randomly generated transition and
reward functions. Each point is an average over 100 randomly-generated MDP
instances and initial policies [KMG16a].
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Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds

- Basic tools
- Howard’s Pl with kK = 2
- BSPlwith k=2

- Open problems

3. Review of MDP planning
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Open Problems

@ Is the complexity of Howard’s Pl on 2-action MDPs upper-bounded by the
Fibonacci sequence (~ 1.6181")?

@ Is Howard'’s PI the most efficient among deterministic Pl algorithms (worst
case over all MDPs)?

@ |s there a super-linear lower bound on the number of iterations taken by
Howard’s Pl on 2-action MDPs?

@ Is Howard’s PI strongly polynomial on deterministic MDPs?

@ Is there a variant of Pl that can visit all k" policies in some n-state, k-action
MDP—implying an (k") lower bound?
@ |s there a strongly polynomial algorithm for MDP planning?
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Summary of MDP Planning
@ MDPs are an abstraction of sequential decision making.
@ Many applications; many different formulations.
@ Essential solution concept: optimal policy (known to exist).

@ Three main families of planning algorithms: value iteration, linear
programming, policy iteration.
@ Have strengths and weaknesses in theory and in practice. Can combine.

@ We showed correctness of all three methods.
@ Used Banach’s fixed-point theorem, Bellman (optimality) operator.

@ What if T, R were not given, but have to be learned from interaction? Can
we still learn to act optimally?
@ Yes: that’s the reinforcement learning problem. Next week!
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