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Prediction
Assume we have an episodic task. S = {s1, s2, s3}, γ = 1.
On each episode, start state picked uniformly at random.

Here are the first 5 episodes.

Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,3, s1,1, s⊤

What is your estimate of V π (call it V̂ 5)?
Monte Carlo (MC) methods estimate based on sample averages.
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Defining Relevant Quantities
For s ∈ S, i ≥ 1, j ≥ 1, let

- 1(s, i , j) be 1 if s is visited at least j times on episode i (else 1(s, i , j) = 0), and
- G(s, i , j) be the discounted long-term reward starting from the j-th visit of s

on episode i ,
- Taking G(s, i , j) = 0 if 1(s, i , j) = 0; also 0/0 = 0.

Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,3, s1,1, s⊤

1(s1,1,1) = 1, G(s1,1,1) = 5 + γ · 2 + γ2 · 3 + γ3 · 1 = 11.
1(s1,1,3) = 0.
1(s2,5,1) = 1, G(s2,5,1) = 3 + γ · 3 + γ2 · 1 = 7.
1(s2,5,2) = 1, G(s2,5,2) = 3 + γ · 1 = 4.
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Some Standard Estimates of V π(s)
Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,3, s1,1, s⊤

Let V̂ N denote estimate after N episodes.

First-visit MC: Average the G’s of every first occurrence of s in an episode.

V̂ N
First-visit(s) =

∑N
i=1 G(s, i ,1)∑N
i=1 1(s, i ,1)

.

Hence V̂ 5
First-visit(s2) =

4 + 7 + 8 + 7
4

= 6.5.
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Some Not-so-standard Estimates of V π(s)
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Second-visit MC: Average the G’s of every second occurrence of s in an
episode.
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Question

Recall that we generate N episodes.
Which claims below are true?

lim
N→∞

V̂ N
First-visit = V π.

True.

lim
N→∞

V̂ N
Every-visit = V π.

True.

lim
N→∞

V̂ N
Second-visit = V π.

True.

lim
N→∞

V̂ N
Last-visit = V π.

False.
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Reinforcement Learning

1. Prediction with Monte Carlo methods

2. On-line implementation
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First-visit MC Again
Assume episodic task with S = {s1, s2, s3}; following π.
Say we start each episode with state s (for illustration s2).

Episode 1: s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s2,2, s1,5, s1,1, s⊤.
Episode 4: s2,3, s2,3, s1,1, s⊤

V̂ 1 = G(s2,1,1) = 4.
V̂ 2 = 1

2{G(s2,1,1) + G(s2,2,1)} = 5.5.
V̂ 3 = 1

3{G(s2,1,1) + G(s2,2,1) + G(s2,3,1)} ≈ 6.33.
In general, for t ≥ 1:

V̂ t(s) =
1
t

t∑
i=1

G(s, i ,1).
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An On-line Implementation

V̂ t(s) =
1
t

t∑
i=1

G(s, t ,1)

=
1
t

(
t−1∑
i=1

G(s, i ,1) + G(s, t ,1)

)

=
1
t

(
(t − 1)V̂ t−1(s) + G(s, t ,1)

)
= (1− αt)V̂ t−1(s) + αtG(s, t ,1) for αt =

1
t
, V̂ 0(s) = 0.

We already know that limt→∞ V̂ t(s) = V π(s).
Will we get convergence to V π(s) for other choices for αt , V̂ 0(s)?
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Will we get convergence to V π(s) for other choices for αt , V̂ 0(s)?
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Stochastic Approximation
Result due to Robbins and Monro (1951).

Let the sequence (αt)t≥1 satisfy
▶
∑∞

t=1 αt =∞.
▶
∑∞

t=1(αt)
2 <∞.

For t ≥ 1, set
V̂ t(s)← (1− αt)V̂ t−1(s) + αtG(s, t ,1),

where V̂ 0 is arbitrary (but bounded).
Then limt→∞ V̂ t(s) = V π(s).

(αt)t≥1 is the “learning rate” or “step size”.
Must be large enough, as well as small enough!
No need to store all previous episodes; t and V̂ t suffice.
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Reinforcement Learning

1. Prediction with Monte Carlo methods

2. On-line implementation

Next class: Bootstrapping.
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