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Reinforcement Learning

1. Least-squares and maximum likelihood estimators

2. TD(0) algorithm

3. Convergence of batch TD(0)
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Estimate p
@ You have two coins. You are told that the probability of a head (1-reward) for
Coin 1 is p € [0,0.5], and that for Coin 2 is 2p.

P{heads} = p P{heads} =2p
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Estimate p
@ You have two coins. You are told that the probability of a head (1-reward) for
Coin 1 is p € [0,0.5], and that for Coin 2 is 2p.
@ Hence the corresponding probabilities of a tail (0-reward) are 1 — p and
1 — 2p, respectively.

Coin 1
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P{heads} = p P{heads} =2p
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Estimate p
@ You have two coins. You are told that the probability of a head (1-reward) for
Coin 1 is p € [0,0.5], and that for Coin 2 is 2p.
@ Hence the corresponding probabilities of a tail (0-reward) are 1 — p and
1 — 2p, respectively.
@ You toss each coin once and see these outcomes.

P{heads} = p P{heads} =2p
Outcome =1 Outcome =0
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Estimate p
@ You have two coins. You are told that the probability of a head (1-reward) for
Coin 1 is p € [0,0.5], and that for Coin 2 is 2p.
@ Hence the corresponding probabilities of a tail (0-reward) are 1 — p and
1 — 2p, respectively.
@ You toss each coin once and see these outcomes.

P{heads} = p P{heads} =2p
Outcome =1 Outcome =0

What is your estimate of p (call it p)?
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Two Common Estimates
@ Least-squares estimate.
For g € [0,0.9],

SE(q) = (g —1)* + (29 — 0).

PrLs E argmin SE(q) =0.2.
q¢[0,0.5]

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/13



Two Common Estimates
@ Least-squares estimate.
For g € [0,0.9],
SE(q) = (q—1)?+ (29 — 0)%.

Prs = argmin SE(q) = 0.2.
qe[0,0.5]

@ Maximum likelihood estimate.
For g € [0,0.5],

L(q) = q(1 —29).

P Z argmax L(g) =0.25.
ge[0,0.5]
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Two Common Estimates
o Least-squares estimate.
For g € [0,0.9],
SE(q) = (q—1)?+ (29 — 0)%.

Prs = argmin SE(q) = 0.2.
qe[0,0.5]

@ Maximum likelihood estimate.
For g € [0,0.5],
L(q) = q(1 —29).

P Z argmax L(g) =0.25.
ge[0,0.5]

@ Which estimate is “correct”?
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Two Common Estimates
@ Least-squares estimate.
For g € [0,0.9],

SE(q) = (g —1)* + (29 — 0).

Prs = argmin SE(q) = 0.2.
qe[0,0.5]

@ Maximum likelihood estimate.
For g € [0,0.5],
L(q) = q(1 —29).

P Z argmax L(g) =0.25.
ge[0,0.5]

@ Which estimate is “correct”? Neither!
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Two Common Estimates
@ Least-squares estimate.
For g € [0,0.5],

SE(q) = (g —1)* + (29 — 0).

Prs = argmin SE(q) = 0.2.
q€[0,0.5]

@ Maximum likelihood estimate.
For g € [0,0.5],
L(q) = q(1 —29).

P e argmax L(q) = 0.25.
q<[0,0.5]

@ Which estimate is “correct”? Neither!
@ Which estimate is more useful?
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Two Common Estimates
o Least-squares estimate.
For g € [0,0.5],
SE(q) = (g —1)* + (29 — 0).

Prs = argmin SE(q) = 0.2.
q€[0,0.5]

@ Maximum likelihood estimate.
For g € [0,0.5],
L(q) = q(1 —29).

P e argmax L(q) = 0.25.
q<[0,0.5]

@ Which estimate is “correct”? Neither!
@ Which estimate is more useful? Depends on the use!
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Two Common Estimates
@ Least-squares estimate.
For g € [0,0.5],
SE(q) = (9 —1)*+ (29 — 0)*.
Prs = argmin SE(q) = 0.2.
g€[0,0.5]

@ Maximum likelihood estimate.
For g € [0,0.5],

L(q) = q(1 —29).
P £ argmax L(q) = 0.25.
ge[0,0.5]
@ Which estimate is “correct”? Neither!
@ Which estimate is more useful? Depends on the use!
@ Note that there are other estimates, too.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/13



Reinforcement Learning

1. Least-squares and maximum likelihood estimators

2. TD(0) algorithm

3. Convergence of batch TD(0)
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Bootstrapping

@ Suppose V! is our current estimate of state-values.
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Bootstrapping
@ Suppose V! is our current estimate of state-values.
@ Say we generate this episode.
| 52,2,83,1,83,1,83,2,52,1,57.
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Bootstrapping
@ Suppose V! is our current estimate of state-values.
@ Say we generate this episode.
| 52,2,83,1,83,1,83,2,52,1,57.

@ At what point of time can we update our estimate V/!(s;)?
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Bootstrapping
@ Suppose V! is our current estimate of state-values.
@ Say we generate this episode.
| 52,2,83,1,83,1,83,2,52,1,57.

@ At what point of time can we update our estimate V/!(s;)?
@ With MC methods, we would wait for s, and then update

Vi1 (s2) < Vi($2)(1 — at1) + a1 M, where
M=2+7-14+72-1+7-2+9*1.
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Bootstrapping

@ Suppose V't is our current estimate of state-values.
@ Say we generate this episode.
’ S2727S371)S37178372732)17ST- ‘

@ At what point of time can we update our estimate V/!(s;)?

@ With MC methods, we would wait for s, and then update
Vi1 (s2) + Vi(s2)(1 — aes1) + arpt M, where
M=2+7-14+72-1+7-2+9*1.

@ Instead, how about this update as soon as we see s3?
V1 (sp) « V(sp)(1 — avpt) + st B, where
B=2+V(ss).
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Bootstrapping

@ Suppose V't is our current estimate of state-values.
@ Say we generate this episode.
’ S2727S371)S37178372732)17ST- ‘

@ At what point of time can we update our estimate V/!(s;)?

@ With MC methods, we would wait for s, and then update
V1 (sz) < Vi(s2)(1 — azs1) + ey M, Where
M=2+~-1++2-1++%.24++*.1. Monte Carlo estimate.

@ Instead, how about this update as soon as we see s3?
VtH1(sp) « V!(s2)(1 — ag1) + o1 B, where
B =2+~V!(s;). Bootstrapped estimate.
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Temporal Difference Learning: TD(0)

Assume policy to be evaluated is .
Initialise V° arbitrarily.
Assume that the agent is born in state s°.

Fort=0,1,2,...:
Take action a' ~ =(s).
Obtain reward r!, next state s**'.
\“/t+1(st) . \“/t(st) +at+1{r’+7\7t(s’“) _ \“/t(st)}_
Fors e S\ {s}: V**(s) « V!(s). //Often left implicit.
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Temporal Difference Learning: TD(0)

Assume policy to be evaluated is .
Initialise V° arbitrarily.
Assume that the agent is born in state s°.

Fort=0,1,2,...:
Take action a' ~ =(s).
Obtain reward r!, next state s**'.
\“/t+1(st) . \“/t(st) +at+1{r’+7\7t(s”1) _ \“/t(st)}_
Fors e S\ {s}: V**(s) « V!(s). //Often left implicit.

e V!(s!): current estimate; r' +~ V!(st*"): new estimate.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/13



Temporal Difference Learning: TD(0)

Assume policy to be evaluated is .
Initialise VO arbitrarily.
Assume that the agent is born in state s°.

Fort=0,1,2,...:
Take action a' ~ (s?).
Obtain reward r', next state s"*'. X
Vt+1(st) — Vt(st) +at+1{rt+vvt(st+1) _ Vt(st)}_
Fors e S\ {s}: V**(s) « V!(s). //Often left implicit.
@ V!(s!): current estimate; r' + v V!(st*1): new estimate.
o rt+~Vt(stt!) — V!(s!): temporal difference prediction error.
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Temporal Difference Learning: TD(0)

Assume policy to be evaluated is .
Initialise VO arbitrarily.
Assume that the agent is born in state s°.

Fort=0,1,2,...:
Take action a' ~ (s?).
Obtain reward r!, next state s**'.
\“/t+1(st) . \“/t(st) +at+1{r’+7\7t(s”1) _ \“/t(st)}_
For s e S\ {s'}: Vt*1(s) « V!(s). //Often left implicit.

e V!(s!): current estimate; r' +~ V!(st*"): new estimate.

o rt+~Vt(stt!) — V!(s!): temporal difference prediction error.
@ «y.1: learning rate.
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Temporal Difference Learning: TD(0)

Assume policy to be evaluated is .
Initialise VO arbitrarily.
Assume that the agent is born in state s°.

Fort=0,1,2,...:
Take action a' ~ (s?).
Obtain reward r!, next state s**'.
\“/t+1(st) . \“/t(st) +at+1{r’+7\7t(s”1) _ \“/t(st)}_
For s e S\ {s'}: Vt*1(s) « V!(s). //Often left implicit.

e V!(s!): current estimate; r' +~ V!(st*"): new estimate.

o rt+~V1(stt?) — Vi(s!): temporal difference prediction error.
@ «y.4: learning rate.

@ Under standard conditions, lim;_,., V! = V~.
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Temporal Difference Learning: TD(0)

Assume policy to be evaluated is .
Initialise VO arbitrarily.
Assume that the agent is born in state s°.

Fort=0,1,2,...:
Take action a' ~ (s?).
Obtain reward r!, next state s**'.
\“/t+1(st) . \“/t(st) +at+1{r’+7\7t(s”1) _ \“/t(st)}_
For s e S\ {s'}: Vt*1(s) « V!(s). //Often left implicit.

e V!(s!): current estimate; r' +~ V!(st*"): new estimate.

o rt+~V1(stt?) — Vi(s!): temporal difference prediction error.

@ «y.4: learning rate.

@ Under standard conditions, lim;_, Vt = v~. How to run on episodic tasks?
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Reinforcement Learning

1. Least-squares and maximum likelihood estimators

2. TD(0) algorithm

3. Convergence of batch TD(0)
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First-visit MC Estimate

Episode 1: 51,5,51,2,55,3, 8., 1, S7.
Episode 2: s,,2,83,1,83,1,83,2,8,,1, s7.
Episode 3: 51,2, 5,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: s;,3, 52,2, 81,1, 7.

@ Recall that for s € S,

N .

N - . G(s,i,1

Vlé\ilrst—visit(s) = Elﬁ1 ( . )
Zi=1 1(S>Ia 1)
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First-visit MC Estimate

Episode 1: 51,5,51,2,55,3, 8., 1, S7.
Episode 2: s,,2,83,1,83,1,83,2,8,,1, s7.
Episode 3: 51,2, 5,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: s;,3, 52,2, 81,1, 7.

@ Recall that for s € S,

(7N Z:\L1 G(Sviv1)
VFirst—visit(S) = N . .
Zi:1 1(3717 1)
@ Forse S, V:S — R, define

N
Errore(V,8) 2 1(s,i,1) (V(s) — G(s,i,1)).

i=1
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First-visit MC Estimate

Episode 1: 51,5,51,2,55,3, 8., 1, S7.
Episode 2: s,,2,83,1,83,1,83,2,8,,1, s7.
Episode 3: 51,2, 5,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: s;,3, 52,2, 81,1, 7.

@ Recall that for s € S,

(7N le\i1 G(Sviv1)
VFirst—visit(S) = N . .
Zi:1 1(3717 1)
@ Forse S, V:S — R, define

N
Errore(V,8) 2 1(s,i,1) (V(s) — G(s,i,1)).
i=1
@ Observe thatfor s e S, V¥ ..(s) = argminy Errore(V, 8).



Every-visit MC Estimate

Episode 1: s1,5,51,2,5,,3, 82,1, S7.
Episode 2: s5,2,53,1,83,1,83,2,82,1, 57.
Episode 3: 51,2, 55,2, 51,5, 51,1, 57.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,2, 81,1, S7.

@ Recall that for s € S,

_ T X% Gls. i)
Sy o 1S, ))

(/N
VEvery-visit(s)
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Every-visit MC Estimate

Episode 1: s1,5,51,2,5,,3, 82,1, S7.
Episode 2: s5,2,53,1,83,1,83,2,82,1, 57.
Episode 3: 51,2, 55,2, 51,5, 51,1, 57.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,2, 81,1, S7.

@ Recall that for s € S,

S R G(s,i)
SN SRS i)

VEvery-visit(s)

@ Forsec S, V:S — R, define

N o
Errofeern(V,8) 2> Y 1(s,1,)) (V(s) — G(s,1,)))*.
i=1 j=1
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Every-visit MC Estimate

Episode 1: s1,5,51,2,52,3, 85,1, St.
Episode 2: s5,2,53,1,83,1,83,2,82,1, 57.
Episode 3: 51,2, 55,2, 51,5, 51,1, S7.
Episode 4: s3,1, s7.

Episode 5: s;,3, 5,2, 51,1, S7.

@ Recall that for s € S,

S R G(s,i)
SN SRS i)

VEvery-visit(s)

@ Forse S, V:S — R, define

N o
Erroreer (V. 8) 2> > 1(s,i.j) (V(s) — G(s,i.j))*.

i=1 j=1
@ Observe for s € S, V., isi(S) = argminy Erroreen(V, s).
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Batch TD(0) Estimate

Episode 1: s1,5,51,2,5,,3, 8,1, 57.
Episode 2: s5,2,53,1,53,1,53,2,55, 1, S7.
Episode 3: 51,2, 5,2, 51,5, 81,1, 7.
Episode 4: s3,1, s7.

Episode 5: s,,3, 55,2, 51,1, 57.

@ After any finite N episodes, the estimate of TD(0) will depend on the initial
estimate V°.

@ To “forget” VO, run the N collected episodes over and over again, and make
TD(0) updates.
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Batch TD(0) Estimate

Episode 1

Episode 2

Episode 3

Episode 4

Episode 5

Episode 6 (= Episode 1)
Episode 7 (= Episode 2)
Episode 8 (= Episode 3)
Episode 9 (= Episode 4)
Episode 10 (= Episode 5)
Episode 11 (= Episode 1)
Episode 12 (= Episode 2)

@ Anneal the learning rate as usual (a; = 17).
@ lim . V! will not depend on /.
@ It only depends on N episodes of real data.
@ Refer to lim/ ., V" as Vil rp0)-

@ Can we conclude something relevant about
vy ?
Batch-TD(0) *
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Batch TD(0) Estimate

Episode 1: 51,5,51,2,55,3, 8., 1, S7.
Episode 2: s,,2,83,1,83,1,83,2,8,,1, s7.
Episode 3: 51,2, 5,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: s;,3, 52,2, 81,1, 7.

/6, 5 /7,3 2/4, 1

@ Let My,c be the MDP (S, A, T, R, )

Q 2/6,2 Q 17,2 Q : _ VD! .
@ ) @ @ with the highest likelihood of generating

1/4,2

- this data (true T, R unknown).
2/6, 1 /

)
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Batch TD(0) Estimate

Episode 1: 51,5,51,2,55,3, 8., 1, S7.
Episode 2: s,,2,83,1,83,1,83,2,8,,1, s7.
Episode 3: 51,2, 5,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: s;,3, 52,2, 81,1, 7.

/6, 5 /7,3 2/4, 1

@ Let My,c be the MDP (S, A, T, R, )

Q 2/6,2 Q 17,2 Q : _ VD! .
@ ) @ @ with the highest likelihood of generating

1/4,2 .
- this data (true T, R unknown).
2/6, 1 ’ 1/4, 1
(/N H ™
@ VgaenTp(o) 1S the same as V™ on My.g!

)
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Comparison
@ Data.

Episode 1: s1,5,51,2,52,3, 82,1, 57.
Episode 2: s5,2,53,1,83,1,83,2,82, 1, 57.
Episode 3: s1,2,55,2, 51,5, 51,1, 57.
Episode 4: s3,1, s7.

Episode 5: s,,3, 55,2, 81,1, S7.

@ Estimates. ‘ ‘ ‘
Sq So S3

\A/F-’i-rst-visit 7336253
Woryisit | 5:83 | 4.29 | 3.25

VeaenTo) | 75 |7 6
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Comparison

@ Data.
Episode 1: s1,5,51,2,55,3, 85,1, S7.
Episode 2: 55,2, 53,1, 83,1, 83,2, 5,1, s7.
Episode 3: 51,2, 5,,2, 51,5, 51,1, 7.
Episode 4: s3,1, s7.
Episode 5: s»,3, S2,2, S, 1, S

@ Estimates.

1S1 [ S |
‘A/FTirst-visit 73316253
VETvery_visit 583|429 | 325
VBTatch-TD(O) 7.5 7 6
@ Which estimate is “correct”? Which is more useful?
@ |s it recommended to bootstrap or not?
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Comparison

@ Data.
Episode 1: s5¢,5,51,2, 55,3, 5,1, s7.
Episode 2: s5,2,53,1,83,1,83,2,82, 1, 57.
Episode 3: 51,2, 55,2, 51,5,81, 1, s7.
Episode 4: s3,1, s7.
Episode 5: s,,3, 55,2, 81,1, S7.
@ Estimates.
EEE
‘A/FTirst-visit 7336253

VT

_ Every-visit 2.83 429|325

VBTatch-TD(O) 7.5 7 6

@ Which estimate is “correct”? Which is more useful?
@ |s it recommended to bootstrap or not?

@ Usually a “middle path” works best. Coming up next week!
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