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Reinforcement Learning

1. Least-squares and maximum likelihood estimators
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Estimate p
You have two coins. You are told that the probability of a head (1-reward) for
Coin 1 is p ∈ [0,0.5], and that for Coin 2 is 2p.

Hence the corresponding probabilities of a tail (0-reward) are 1− p and
1− 2p, respectively.
You toss each coin once and see these outcomes.

Coin 1 Coin 2

P{heads} = p P{heads} = 2p

Outcome = 1 Outcome = 0

What is your estimate of p (call it p̂)?
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Two Common Estimates
Least-squares estimate.
For q ∈ [0,0.5],

SE(q) = (q − 1)2 + (2q − 0)2.

p̂LS
def
=argmin

q∈[0,0.5]
SE(q) = 0.2.

Maximum likelihood estimate.
For q ∈ [0,0.5],

L(q) = q(1− 2q).

p̂ML
def
=argmax

q∈[0,0.5]
L(q) = 0.25.

Which estimate is “correct”? Neither!
Which estimate is more useful? Depends on the use!
Note that there are other estimates, too.
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Reinforcement Learning

1. Least-squares and maximum likelihood estimators

2. TD(0) algorithm

3. Convergence of batch TD(0)
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Bootstrapping
Suppose V̂ t is our current estimate of state-values.

Say we generate this episode.
s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.

At what point of time can we update our estimate V̂ t(s2)?

With MC methods, we would wait for s⊤, and then update
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1M, where
M = 2 + γ · 1 + γ2 · 1 + γ3 · 2 + γ4 · 1. Monte Carlo estimate.

Instead, how about this update as soon as we see s3?
V̂ t+1(s2)← V̂ t(s2)(1− αt+1) + αt+1B, where
B = 2 + γV̂ t(s3). Bootstrapped estimate.
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Temporal Difference Learning: TD(0)
Assume policy to be evaluated is π.
Initialise V̂ 0 arbitrarily.
Assume that the agent is born in state s0.

For t = 0,1,2, . . . :
Take action at ∼ π(st).
Obtain reward r t , next state st+1.
V̂ t+1(st)← V̂ t(st) + αt+1{r t + γV̂ t(st+1)− V̂ t(st)}.
For s ∈ S \ {st}: V̂ t+1(s)← V̂ t(s). //Often left implicit.

V̂ t(st): current estimate; r t + γV̂ t(st+1): new estimate.
r t + γV̂ t(st+1)− V̂ t(st): temporal difference prediction error.
αt+1: learning rate.
Under standard conditions, limt→∞ V̂ t = V π. How to run on episodic tasks?
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Reinforcement Learning

1. Least-squares and maximum likelihood estimators

2. TD(0) algorithm

3. Convergence of batch TD(0)
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First-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,2, s1,1, s⊤.

Recall that for s ∈ S,

V̂ N
First-visit(s) =

∑N
i=1 G(s, i ,1)∑N
i=1 1(s, i ,1)

.

For s ∈ S, V : S → R, define

ErrorFirst(V , s) def
=

N∑
i=1

1(s, i ,1) (V (s)−G(s, i ,1))2 .

Observe that for s ∈ S, V̂ N
First-visit(s) = argminV ErrorFirst(V , s).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9 / 13



9/13

First-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,2, s1,1, s⊤.

Recall that for s ∈ S,

V̂ N
First-visit(s) =

∑N
i=1 G(s, i ,1)∑N
i=1 1(s, i ,1)

.

For s ∈ S, V : S → R, define

ErrorFirst(V , s) def
=

N∑
i=1

1(s, i ,1) (V (s)−G(s, i ,1))2 .

Observe that for s ∈ S, V̂ N
First-visit(s) = argminV ErrorFirst(V , s).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9 / 13



9/13

First-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,2, s1,1, s⊤.

Recall that for s ∈ S,

V̂ N
First-visit(s) =

∑N
i=1 G(s, i ,1)∑N
i=1 1(s, i ,1)

.

For s ∈ S, V : S → R, define

ErrorFirst(V , s) def
=

N∑
i=1

1(s, i ,1) (V (s)−G(s, i ,1))2 .

Observe that for s ∈ S, V̂ N
First-visit(s) = argminV ErrorFirst(V , s).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9 / 13



10/13

Every-visit MC Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,2, s1,1, s⊤.

Recall that for s ∈ S,

V̂ N
Every-visit(s) =

∑N
i=1

∑∞
j=1 G(s, i , j)∑N

i=1

∑∞
j=1 1(s, i , j)

.

For s ∈ S, V : S → R, define

ErrorEvery(V , s) def
=

N∑
i=1

∞∑
j=1

1(s, i , j) (V (s)−G(s, i , j))2 .

Observe for s ∈ S, V̂ N
Every-visit(s) = argminV ErrorEvery(V , s).
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Batch TD(0) Estimate

Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,2, s1,1, s⊤.

After any finite N episodes, the estimate of TD(0) will depend on the initial
estimate V 0.
To “forget” V 0, run the N collected episodes over and over again, and make
TD(0) updates.
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Batch TD(0) Estimate
Episode 1
Episode 2
Episode 3
Episode 4
Episode 5
Episode 6 (= Episode 1)
Episode 7 (= Episode 2)
Episode 8 (= Episode 3)
Episode 9 (= Episode 4)
Episode 10 (= Episode 5)
Episode 11 (= Episode 1)
Episode 12 (= Episode 2)
...

Anneal the learning rate as usual (αt =
1
t ).

limt→∞ V t will not depend on V̂ 0.

It only depends on N episodes of real data.

Refer to limt→∞ V̂ t as V̂ N
Batch-TD(0).

Can we conclude something relevant about
V̂ N

Batch-TD(0)?
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Batch TD(0) Estimate
Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,2, s1,1, s⊤.

s s1 2

s

s 3

2/6, 5 2/7, 3 2/4, 1

2/6, 2 1/7, 2

2/7, 2 1/4, 2

2/6, 1

2/7, 1

1/4, 1

Let MMLE be the MDP (S,A, T̂ , R̂, γ)
with the highest likelihood of generating
this data (true T , R unknown).

V̂ N
Batch-TD(0) is the same as V π on MMLE !
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Comparison
Data.

Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,2, s1,1, s⊤.

Estimates.
s1 s2 s3

V̂ T
First-visit 7.33 6.25 3

V̂ T
Every-visit 5.83 4.29 3.25

V̂ T
Batch-TD(0) 7.5 7 6

Which estimate is “correct”? Which is more useful?
Is it recommended to bootstrap or not?
Usually a “middle path” works best. Coming up next week!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 13



13/13

Comparison
Data.

Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,2, s1,1, s⊤.

Estimates.
s1 s2 s3

V̂ T
First-visit 7.33 6.25 3

V̂ T
Every-visit 5.83 4.29 3.25

V̂ T
Batch-TD(0) 7.5 7 6

Which estimate is “correct”? Which is more useful?
Is it recommended to bootstrap or not?

Usually a “middle path” works best. Coming up next week!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 13



13/13

Comparison
Data.

Episode 1: s1,5, s1,2, s2,3, s2,1, s⊤.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.
Episode 3: s1,2, s2,2, s1,5, s1,1, s⊤.
Episode 4: s3,1, s⊤.
Episode 5: s2,3, s2,2, s1,1, s⊤.

Estimates.
s1 s2 s3

V̂ T
First-visit 7.33 6.25 3

V̂ T
Every-visit 5.83 4.29 3.25

V̂ T
Batch-TD(0) 7.5 7 6

Which estimate is “correct”? Which is more useful?
Is it recommended to bootstrap or not?
Usually a “middle path” works best. Coming up next week!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 13


