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1. Multi-step returns

2. TD(\)

3. Control with TD learning
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Multi-step Returns
@ We consider prediction—estimating V.
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Multi-step Returns
@ We consider prediction—estimating V.
@ Suppose we generate this episode.
‘ S»,2,83,1,83,1,83,2,8,,1,57.
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Multi-step Returns
@ We consider prediction—estimating V.
@ Suppose we generate this episode.
‘ 32,2, S3, 1,83, 1,33,2, So, 1 , ST.
@ With TD(0), our first update would be:

V™¥(5p)  VO(8p) + af2 + 7 VO(s5) — VIU(s2)}.
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@ Suppose we generate this episode.
‘ 32,2, S3, 1,33, 1,33,2, So, 1 , ST.
@ With TD(0), our first update would be:

V™¥(5p)  VO(8p) + af2 + 7 VO(s5) — VIU(s2)}.

@ With First-visit Monte Carlo, our update would be
VW (5p) «— Vo) +af2+y-1+~%- 149324741 — V().
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Multi-step Returns
@ We consider prediction—estimating V.
@ Suppose we generate this episode.
‘ 32,2, S3, 1,33, 1,33,2, So, 1 , ST.
@ With TD(0), our first update would be:

V™¥(5p)  VO(8p) + af2 + 7 VO(s5) — VIU(s2)}.

@ With First-visit Monte Carlo, our update would be
VW (5p) «— Vo) +af2+y-1+~%- 149324741 — V().

@ Can we make this update instead?
Vnew(Sg) «— VOId(Sg) + 04{2 = 97 © 1+ ")/2 VOId(S3) = V0|d(32)}.
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Multi-step Returns
@ We consider prediction—estimating V.
@ Suppose we generate this episode.

’ 32,2,33,1,33,1,83,2,52,1,ST. ‘
@ With TD(0), our first update would be:

V™¥(5p)  VO(8p) + af2 + 7 VO(s5) — VIU(s2)}.

@ With First-visit Monte Carlo, our update would be
VW (5p) «— Vo) +af2+y-1+~%- 149324741 — V().

@ Can we make this update instead?
VrW(s5) « VO(85) + af2 + v - 1 +42V%(s5) — Vo9(s5)}.

Yes. It uses a 2-step return as target.
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n-step Returns
@ Trajectory: s°,r% s'. r' .. ..
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n-step Returns
@ Trajectory: s°,r% s'. r' .. ..
@ Fort>0,n> 1, the n-step return G;.;,p, is
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n-step Returns
@ Trajectory: s, r% s r', .. ..
@ Fort>0,n> 1, the n-step return G;.;,,, is

@ Convention: on episodic tasks, if a terminal state is encountered at t + n’ for
1< < n, take Gi.tpn = Grrsr-
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n-step Returns
@ Trajectory: s, r% s r', .. ..
@ Fort>0,n> 1, the n-step return G;.;,,, is

@ Convention: on episodic tasks, if a terminal state is encountered at t + n’ for
1< < n,take Girin = Grisn-

@ n-step TD makes updates of the form

Vt+n(st) «— Vt+n—1(st) +a{Gt:t+n . Vt+n—1(st)}.
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n-step Returns
@ Trajectory: s, r9 st r! .. ..
@ Fort>0,n> 1, the n-step return G;.;,,, is

@ Convention: on episodic tasks, if a terminal state is encountered at t + n’ for
1< < n,take Girin = Grisn-

@ n-step TD makes updates of the form

Vt+n(st) «— Vt+n—1(st) +a{Gt:t+n _ Vt+n—1(st)}.

@ For each n> 1, we have lim;_,,, V! = V™.
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n-step Returns
@ Trajectory: s, r9 st r! .. ..
@ Fort>0,n> 1, the n-step return G;.;,,, is

@ Convention: on episodic tasks, if a terminal state is encountered at t + n’ for
1< < n,take Girin = Grisn-

@ n-step TD makes updates of the form

Vt+n(st) «— Vt+n—1(st) +a{Gt:t+n _ Vt+n—1(st)}.

@ For each n> 1, we have lim;_,,, V! = V™.
@ What is the effect of n on bootstrapping?
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n-step Returns
@ Trajectory: s, r9 st r! .. ..
@ Fort>0,n> 1, the n-step return G;.;,,, is

@ Convention: on episodic tasks, if a terminal state is encountered at t + n’ for
1< < n,take Girin = Grisn-

@ n-step TD makes updates of the form

Vt+n(st) «— Vt+n—1(st) +a{Gt:t+n _ Vt+n—1(st)}.

@ For each n> 1, we have lim;_,,, V! = V™.
@ What is the effect of n on bootstrapping? Small n means more bootstrapping.
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VIH3(s!) < VI2(s") + a{Target — V'™2(sh)}.
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt: t+3-
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes.
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt.t3. Yes. Gr.t41.-
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.
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Gt:t+3- Yes. Gt:t+1 . Yes.
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.
Grt+1 + Grige
5 .
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.
Gi.t+1 —g Gt:t+2' . 2Gri41 + 3C;t:t+2 + Gt:t+3.
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.
Gr.t41 + Gt:t+2' . 2Gtt11 + 3G + Gt:t+3_

2 6
Grt+1 + Griy2 + 3Grigs

4
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt:t+3- Yes. Gt:t+1 . Yes.
Gr.t41 + Gt:t+2' . 2Gtt11 + 3G + Gt:t+3_

2 6
Grt+1 + Griy2 + 3Grigs

No.
2 0
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt:t+3' Yes. Gt:t+1- Yes.

Gt.t41 —g Gt:t+2' . 2Gt.t41 + 3C;t:t+2 + Gt:t+3.
Gt.t+1 + Grir2 + 3Griqs N Gi.t41 — 2Gtt42 + 4Girys
4 . NO. 3 .
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Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt:t+3' Yes. Gt:t+1- Yes.

Gt.t41 —g Gt:t+2' . 2Gt.t41 + 3C;t:t+2 + Gt:t+3.
Gt.t+1 + Grir2 + 3Griqs N Gi.t41 — 2Gtt42 + 4Girys
4 . NO. 3 .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

Yes

No.

5/13



Combining Returns
@ Consider updating the estimate of s’ at step t + 3 using

VI3(sh) « VI2(sh) + a{Target — V'*2(s)}.

@ Can we use this as our target?

Gt:t+3' Yes. Gt:t+1- Yes.

Gt.t41 42— Gt:t+2' . 2Gt.t41 + 3C;t:t+2 + Gt:t+3.
Gt.t+1 + Grir2 + 3Griqs N Gi.t41 — 2Gtt42 + 4Girys
4 . NO. 3 .

@ Can use any convex combination of the applicable G'’s.

Yes

No.
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The A-return
@ A particular convex combination is the A-return, A € [0, 1]:
T—t—1

GrE(1=X) Y N 'Grpn+ AT Ger

n=1

where s™ = st (otherwise T = o0).
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The A-return
@ A particular convex combination is the A-return, A € [0, 1]:
T—t-1

G)\def1_ Z)\n 1th‘ +)\ t1GtT

n=1

where s” = st (otherwise T = ).
@ Observe that G? = G;..+, yielding full bootstrapping.
@ Observe that G} = G;..., a Monte Carlo estimate.
@ In general, A controls the amount of bootstrapping.
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The A-return
@ A particular convex combination is the A-return, A € [0, 1]:
T—t-1

G)\def1_ Z)\n 1th‘ +)\ t1GtT

n=1

where s” = st (otherwise T = ).
@ Observe that G? = G;..+, yielding full bootstrapping.
@ Observe that G} = G;..., a Monte Carlo estimate.
@ In general, A controls the amount of bootstrapping.

e If A > 0, transition (s!, r!, s'*) contributes to the update of
every previously-visited state: that is, s°,s', 52, ..., s’.

@ The amount of contribution falls of geometrically.

@ Updating with the A-return as target can be implemented elegantly by
keeping track of the “eligibility” of each previous state to be updated.
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Reinforcement Learning

1. Multi-step returns

2. TD()\)

3. Control with TD learning
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TD(\) algorithm
@ Maintains an eligibility trace z: S — R.
@ Implementation often called the backward view.
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TD(\) algorithm
@ Maintains an eligibility trace z: S — R.
@ Implementation often called the backward view.

Initialise V : S — R arbitrarily.
Repeat for each episode:
Set z — 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:
Take action a; obtain reward r, next state s'.
d+—r+~V(s)— V(s).
z(s) < z(s) + 1.
For all s:
V(s) < V(s) + adz(s).
Z(8) < v z(s).
S« §.
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Effect of \

M

n O\
V|
0 t=o0
0 A 1

@ Lower \: more bootstrapping, more bias (less variance).
@ Higher X\: more dependence on empirical rewards, more variance (less bias).
@ For finite t, error is usually lowest for intermediate \ value.
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Reinforcement Learning

1. Multi-step returns

2. TD(\)

3. Control with TD learning
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Sketch

1. Maintain action value function estimate Q' : S x A — R for t > 0, initialised
arbitrarily.
We would like to get Q! to converge to Q*.
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Sketch

1. Maintain action value function estimate Q' : S x A — R for ¢ > 0, initialised
arbitrarily.
We would like to get Q! to converge to Q*.

2. Follow policy 7! at time step t > 0, for example one that is ¢;-greedy with
respect to Q.
Set ¢; to ensure infinite exploration of every state-action pair and also being
greedy in the limit.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11/13



Sketch

1. Maintain action value function estimate Q' : S x A — R for t > 0, initialised
arbitrarily.
We would like to get Q! to converge to Q*.

2. Follow policy 7! at time step t > 0, for example one that is ¢;-greedy with
respect to Q.
Set ¢; to ensure infinite exploration of every state-action pair and also being
greedy in the limit.

3. Every transition (s, &', rt, st*1) conveys information about the underlying

MDP. Update Q' based on the transition.
Can use TD learning (suitably adapted) to make the update.
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Sketch

1. Maintain action value function estimate Q' : S x A — R for t > 0, initialised
arbitrarily.

We would like to get Q' to converge to Q*.

2. Follow policy 7! at time step t > 0, for example one that is ¢;-greedy with
respect to Q.
Set ¢; to ensure infinite exploration of every state-action pair and also being
greedy in the limit.

3. Every transition (s, &', rt, st*1) conveys information about the underlying
MDP. Update Q' based on the transition.
Can use TD learning (suitably adapted) to make the update.

We consider three different update rules.
11/13



Three Control Algorithms

@ From state s, action taken is a' ~ 7!(s!).
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Three Control Algorithms
@ From state s, action taken is a' ~ 7!(s!).
@ Update made to Q' after observing transition s’, &, rf, st*1:

Q! (s',a') + @t(st, a') + ar1{Target — ét(sb a)}
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Three Control Algorithms
@ From state s, action taken is a' ~ 7!(s!).
@ Update made to Q' after observing transition s’, &, rf, st*1:

Q(s!, a') « Q'(s', ') + a1 {Target — Q'(sy, ')}

Q-learning: Target = r' + v max Qi(s™, a).
ac

Sarsa: Target = r! + 1 Q!(s"t1, a*).
Expected Sarsa: Target = r! + vzw’(sm )Qt( 1 ).

acA
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Three Control Algorithms
@ From state s, action taken is a' ~ 7!(s!).
@ Update made to Q' after observing transition s’, &, rf, st*1:

Q(s!, a') « Q'(s', ') + a1 {Target — Q'(sy, ')}

Q-learning: Target = r' + v max Qi(s™, a).
ac

Sarsa: Target = r! + 1 Q!(s"t1, a*).
Expected Sarsa: Target = r! + vzw‘(sm )Qt( 1 ).

acA

@ Q-learning’s update is off-policy; the other two are on-policy.
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Three Control Algorithms
@ From state s, action taken is a' ~ 7!(s!).
@ Update made to Q' after observing transition s’, &, rf, st*1:

Q(s!, a') « Q'(s', ') + a1 {Target — Q'(sy, ')}

Q-learning: Target = r' + v max Qi(s™, a).
ac

Sarsa: Target = r! + 1 Q!(s"t1, a*).
Expected Sarsa: Target = r! + vzw‘(sm )Qt( 1 ).

acA

@ Q-learning’s update is off-policy; the other two are on-policy.
@ lim;,,, Q' = @ for all three algorithms if ! is ¢;-greedy w.r.t. Q.
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Three Control Algorithms
@ From state s, action taken is a' ~ 7!(s!).
@ Update made to Q' after observing transition s’, &, rf, st*1:

Q(s, &) « QI(s', @) + ar {Target — Q'(sy, @)}

Q-learning: Target = r' + v max Qi(s™, a).
ac

Sarsa: Target = r! + 1 Q!(s"t1, a*).
Expected Sarsa: Target = r! + Vzﬁt(sm )Qt( 1 ).

acA

@ Q-learning’s update is off-policy; the other two are on-policy.

@ lim;_,., Q' = @Q* for all three algorithms if ! is ¢;-greedy w.r.t. Q'.

o lfrl=m (time-invariant) and it still visits every state-action pair infinitely often,
then lim;_,., Q' is Q™ for Sarsa and Expected Sarsa, but is Q* for Q-learning!
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Temporal Difference Learning: Review

@ Temporal difference (TD) learning is at the heart of RL.

@ Itis an instance of on-line learning (computationally cheap updates after
each interaction).
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Temporal Difference Learning: Review

@ Temporal difference (TD) learning is at the heart of RL.

@ Itis an instance of on-line learning (computationally cheap updates after
each interaction).

@ Bootstrapping exploits the underlying Markovian structure, which Monte
Carlo methods ignore.

@ The TD(A) family of algorithms, A € [0, 1], allows for controlling the extent of
bootstrapping: A = 0 implements “full bootstrapping” and A = 1 is “no
bootstrapping.”

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/13



Temporal Difference Learning: Review

@ Temporal difference (TD) learning is at the heart of RL.

@ Itis an instance of on-line learning (computationally cheap updates after
each interaction).

@ Bootstrapping exploits the underlying Markovian structure, which Monte
Carlo methods ignore.

@ The TD(A) family of algorithms, A € [0, 1], allows for controlling the extent of
bootstrapping: A = 0 implements “full bootstrapping” and A = 1 is “no
bootstrapping.”

@ TD learning applies to both prediction and control.

@ Q-learning, Sarsa, Expected Sarsa are all model-free (use 6(|S||A|)-sized
memory); can still be optimal in the limit.

@ Sarsa()\) commonly used in practice.
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