CS 747, Autumn 2022: Lecture 17

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2022

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 1/18

Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD())

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 2/18

Half Field Offense

Offense 0 0 Defense

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/18

Half Field Offense

Offense 0 0 Defense

@ Decision-making restricted to offense player with ball.

@ Based on state, choose among DRIBBLE, PASS, SHOOT.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

3/18

Half Field Offense

Offense 0 0 Defense

@ Decision-making restricted to offense player with ball.

@ Based on state, choose among DRIBBLE, PASS, SHOOT.

@ How many states are there?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

3/18

Half Field Offense

Offense 0 0 Defense

@ Decision-making restricted to offense player with ball.

@ Based on state, choose among DRIBBLE, PASS, SHOOT.

@ How many states are there? An infinite number!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

3/18

Half Field Offense

Offense 0 0 Defense

@ Decision-making restricted to offense player with ball.

@ Based on state, choose among DRIBBLE, PASS, SHOOT.

@ How many states are there? An infinite number!
@ What to do?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

3/18

Features
@ State s is defined by positions and velocities of players, ball.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

Features
@ State s is defined by positions and velocities of players, ball.
@ Velocities might not be important for decision making.
@ Position coordinates might not generalise well.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

Features
@ State s is defined by positions and velocities of players, ball.
@ Velocities might not be important for decision making.
@ Position coordinates might not generalise well.
@ Define features x : S — R. Idea is that states with similar features will have
similar consequences of actions, values.

@ xi(s): Distance to teammate.

@ Xx»(s): Distance to nearest
opponent.

@ x3(s): Largest open angle to goal.

@ xu(s): Distance of teammate to
goal.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/18

Compact Representation of Q
@ lllustration of Q approximated using a neural network.
@ Input: (features of) state. One output for each action.
@ Similar states will have similar Q-values.
@ Can we learn weights w so that Q(s, a) ~ Q*(s, a)?

a(s, ay)

Q. a)

Qs a)

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5/18

Compact Representation of Q
@ lllustration of Q approximated using a neural network.
@ Input: (features of) state. One output for each action.
@ Similar states will have similar Q-values.
@ Can we learn weights w so that Q(s, a) ~ Q*(s, a)?

6(5, a)

6(& a3)

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

@ Might not be able to represent Q*!
@ Unlike supervised learning, convergence not obvious!
@ Even if convergent, might induce sub-optimal behaviour!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

5/18

Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD())

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/18

Prediction with a Linear Architecture
@ Suppose we are to evaluate 7 on MDP (S, A, T, R, 7).
@ Say we choose to approximate V= by V/: for s € S,

A

V(w,s) =w- x(s), where

x : S — R%is a d-dimensional feature vector, and
w € RY is the weight/coefficient vector.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/18

Prediction with a Linear Architecture
@ Suppose we are to evaluate 7 on MDP (S, A, T, R, v).
@ Say we choose to approximate V= by V/: for s € S,

A

V(w,s) = w- x(s), where

x : S — R%is a d-dimensional feature vector, and
w € RY is the weight/coefficient vector.

@ Usually d <« |S|.

@ lllustration with |S| = 3,d = 2. Take w = (wy, W»).

s | V7(s) | xi(s) | x2(s) | V(w,s)
Sq 7 2 —1 2wy — W
S> 2 4 0 4w,

S3 —4 2 3 2wy + 3w,

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

7/18

The Best Approximation

s | V(s) | xi(s) | x(s) | V(w,s)
S 7 2 —1 2W1 — Wo
S 2 4 0 4w,

S3 —4 2 3 2wy + 3w,

o Observe that for all w € R?, V/(w, s) = 3V V(wse)

@ In general, V cannot be made equal to V™.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 8/18

The Best Approximation

s | V(s) | xi(s) | x(s) | V(w,s)
S 7 2 —1 2W1 — Wo
S 2 4 0 4w,

S3 —4 2 3 2wy + 3w,

o Observe that for all w € R?, V/(w, s) = 3V V(wse)

@ In general, V cannot be made equal to V™.
@ Which w provides the best approximation?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 8/18

The Best Approximation

s | V(s) | x(s) | xe(s) | V(w,s)
Sq 7 2 —1 2wy — Wo
S 2 4 0 4W1

S3 —4 2 3 2W1 + 3W2

o Observe that for all w € R?, V/(w, s) = 3V V(wse)

@ In general, ¥ cannot be made equal to V.
@ Which w provides the best approximation?
@ A common choice is

w* = argmin MSVE(w),
weRd
MSVE(w)=5 > u(s){V7(s) - V(w,s)}%,
seS

where p™ : S — [0, 1] is the stationary distribution of 7.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 8/18

Geometric View

(u"-scaling not explicitly shown.)

59

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

Geometric View

(u"-scaling not explicitly shown.)

59

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

Geometric View

(u"-scaling not explicitly shown.)

How to find w*?

59

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD(\)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/18

Gradient Descent
@ lteratively take steps in the w space in the direction minimising MSVE (w).

55

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11/18

Gradient Descent
@ lteratively take steps in the w space in the direction minimising MSVE (w).

55

@ Feasible here?
Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11/18

Gradient Descent
@ lteratively take steps in the w space in the direction minimising MSVE (w).

55

@ Feasible here? Sort of.
11/18

Gradient Descent
@ Initialise w® € RY arbitrarily. For t > 0 update as

Wt — w! — a1V, (Z“ V7™ (s) — V(w!, s)})

seS

=w'+a Y i (S){V(s) - V(w' s)}V, V(' s).

seS

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/18

Gradient Descent
@ Initialise w® € RY arbitrarily. For t > 0 update as

wt — wh — a1V (Z“ V™ (s) — V(w', s)}2>

seS
=w'+a Y i (S){V(s) - V(w' s)}V, V(' s).

seS

@ But we don’t know u"(s), V7(s) for all s € S. We’re learning, remember?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

12/18

Gradient Descent
@ Initialise w® € RY arbitrarily. For t > 0 update as

wt — wh — a1V (Zu V7 (s) - V(w!, 3)}2)

seS

= W'+ oy g Zu WV (s) — V(w!, s)}V, V(W s).

seS

@ But we don’t know u"(s), V7(s) for all s € S. We’re learning, remember?
@ Luckily, stochastic gradient descent allows us to update as

wit — w4 aq {V7(s)) = V(w!, s}V, V(w!, s')

since s' ~ ™ anyway (as t — oo).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/18

Gradient Descent
@ Initialise w® € RY arbitrarily. For t > 0 update as

wt — wh — a1V (Zu V7 (s) - V(w!, 3)}2)

seS

= W'+ oy g Zu WV (s) — V(w!, s)}V, V(W s).

seS
@ But we don’t know u"(s), V7(s) for all s € S. We’re learning, remember?
@ Luckily, stochastic gradient descent allows us to update as
wit — w4 aq {V7(s)) = V(w!, s}V, V(w!, s')

since s' ~ ™ anyway (as t — oo).
@ But still, we don’t know V™ (s!)! What to do?
12/18

Gradient Descent
@ Although we cannot perform update

W — w4 g {V7(s) — V(w!, sV, V(W) sh),
we can do

Wit — W+ a1 {Groo — V(W')}V, V(W S,
since E[G.o] = V7 (s!).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/18

Gradient Descent
@ Although we cannot perform update

W — w4 g {V7(s) — V(w!, sV, V(W) sh),
we can do
W W+ a1 {Groo — V(W)}V, V(W s,

since E[G.o] = V7 (s!).
@ In practice, we also do

wit — wl + a1 {G) — V(w!, sV, V(W) s!),
for A < 1, even if E[G}] # V7(s') in general.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/18

Gradient Descent
@ Although we cannot perform update

W — w4 g {V7(s) — V(w!, sV, V(W) sh),
we can do
Wt — W+ a1 {Gro — V(W!, SV, V(W s,
since E[G;.] = V™(s!).
@ In practice, we also do
W — Wl + a1 {G) — V(w!, s}V, V(w!, sh),

for A < 1, even if E[G}] # V™ (s!) in general. For example, Linear TD(0)
performs the update

Wt wh b ap g {rf Fwt - x(sTT) — wt x(sh)}x(s).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/18

Gradient Descent
@ Although we cannot perform update

W — w4 g {V7(s) — V(w!, sV, V(W) sh),
we can do
Wt — W+ a1 {Gro — V(W!, SV, V(W s,
since E[G;.] = V™(s!).
@ In practice, we also do
W — Wl + a1 {G) — V(w!, s}V, V(w!, sh),
for A < 1, even if E[G}] # V™ (s!) in general. For example, Linear TD(0)
performs the update
W wh Faq {rf - awt e x(sTT) — wh - x(sh)}x(sh).

@ For X < 1, the process is not true gradient descent. But it still converges with
linear function approximation.

Linear TD()\) algorithm

@ Maintains an eligibility trace z € R¢.
@ Recall that V(w,s) = w- x(s), hence V,, V(w, s) = x(s).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/18

Linear TD()\) algorithm

@ Maintains an eligibility trace z € R¢.
@ Recall that V(w,s) = w- x(s), hence V,, V(w, s) = x(s).

Initialise w € R? arbitrarily.
Repeat for each episode:
Set z — 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:
Take action a; obtain reward r, next state s'.
J—r+~yV(w,s)— V(w,s).
Z P2+ Vi V(w,s).
W< W+ adZ.
S« §.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/18

Linear TD()\) algorithm

@ Maintains an eligibility trace z € R¢.
@ Recall that V(w,s) = w- x(s), hence V,, V(w, s) = x(s).

Initialise w € R? arbitrarily.
Repeat for each episode:
Set z — 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:
Take action a; obtain reward r, next state s'.
J—r+~yV(w,s)— V(w,s).
Z P2+ Vi V(w,s).
W< W+ adZ.
S« §.
@ See Sutton and Barto (2018) for variations (accumulating, replacing, and
dutch traces).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/18

Convergence of Linear TD())

MSVE(w®) < 11_ A MSVE(w?).

-
S
2
VTC
w \—\
W*

By

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 15/18

Convergence of Linear TD())

MSVE(w®) < 11_ A MSVE(w?).
-7

VTI'.

W m

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 15/18

Control with Linear Function Approximation

@ Linear function approximation is implemented in the control by approximating
Q(s,a) ~ w- x(s, a).

@ Linear Sarsa()\) is a very popular algorithm.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 16/18

RL on Half Field Offense

@ Uses Linear Sarsa(0) with tile coding.

Learning Performance
0.35 . .

With Communication

4
@
T

o

IS

a
T

Without Communication|

o
)
T

UvA Offense

4
o

o

Handcoded

Average Goals Scored per Episode

0.05
Random

0 5,000 10,000 15,000 20,000 25,000 30,000
Number of Episodes

Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case Study. Shivaram
Kalyanakrishnan, Yaxin Liu, and Peter Stone. RoboCup 2006: Robot Soccer World Cup X, pp. 72-85, Springer, 2007.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17/18

Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD())

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18/18

