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How Good is Linear Function Approximation?

x

V

0 1 2 3

π
VVV

V̂1(x) = w1x + w2.

Is V̂ 3 the obvious choice?
V̂ 3 has the highest resolution, but does not generalise well.
How to achieve high resolution along with generalisation?
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b1 =

{
1 if 0 ≤ x < 1,
0 otherwise.

b2 =

{
1 if 1 ≤ x < 2,
0 otherwise.

b3 =

{
1 if 2 ≤ x < 3,
0 otherwise.

V̂2(x) = w1b1 + w2b2 + w3b3.
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Tile coding

x
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Tiling 1
Tiling 2
Tiling 3
Tiling 4
Tiling 5
Tiling 6

A tiling partitions x into
equal-width regions called tiles.

Multiple tilings (say m) are
created, each with an offset (1/m
tile width) from the previous.
Each tile has an associated
weight.
The function value of a point is
the sum of the weights of the tiles
intersecting it (one per tiling).
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Tile coding

x

0 1 2 3

Each tile is a binary feature.
Tile width and the number of
tilings determine generalisation,
resolution.
Observe that two points more
than (tile width / number of tilings)
apart can be given arbitrary
function values.
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Representing Q̂

Given a feature value x as input, the corresponding set of tilings F : R→ R
returns the sum of the weights of the tiles activated by x .

The usual practice is to have a separate set of tilings Faj : R→ R for each
action a and state feature j ∈ {1,2, . . . ,d}. Hence

Q̂(s,a) =
d∑

j=1

Faj(xj(s)).

Usually, tile widths and the number of tilings are configured specifically for
each feature. For example, in soccer, could use 2m as tile width for
“distance” features, and 10◦ as tile width for “angle” features.
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2-d Tile coding
For representing more complex functions, can also have tilings on
conjunctions of features (see below for 2 features).

0 1 2 3
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1

1
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x

x
1

2

Introduces more parameters—which could help or hurt.
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Tile Coding: Summary
Linear function approximation does not restrict us to a representation that is
linear in the given/raw features.

Tile coding a standard approach to discretise input features and tune both
resolution and generalisation.

Many empirical successes, especially in conjunction with Linear Sarsa(λ).

Common to store weights in a hash table (collisions don’t seem to hurt
much), whose size is set based on practical constraints.

1-d tilings most common; rarely see conjunction of 3 or more features.
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Reinforcement Learning

1. Tile coding

2. Issues in control with function approximation

3. The case for policy search
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A Counterexample (Tsitsiklis and Van Roy, 1996)

s s1 2 s

w 2w

1, 0

1 − ε, 0

ε, 0

Prediction problem (policy π).
Episodic, start state is s1.
Observe that V π(s1) = V π(s2) = 0.
Linear function approximation with single parameter w :
x(s1) = 1, x(s2) = 2; hence V̂ (s1) = w , V̂ (s2) = 2w .

What’s the optimal setting of w?
w = 0 gives the exact answer!
We design an iteration w0 → w1 → w2 → . . . , and see if it converges to 0.
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A Counterexample (Tsitsiklis and Van Roy, 1996)

s s1 2 s

w 2w

1, 0

1 − ε, 0

ε, 0

From state s, let s′, r be the (random) next state, reward.

If our current estimate of V π is V̂ , the bootstrapping idea suggests
Eπ[r + γV̂ (s′)] as a “better estimate” of V π(s).
Starting with w = w0, we update w so it best-fits the bootstrapped estimate in
terms of squared error on the states. For k ≥ 0:

wk+1 ← argmin
w∈R

∑
s

(
Eπ[r + γV̂ (wk , x(s′))]− V̂ (w , x(s))

)2
.

Is limk→∞ wk = 0? Let’s see.
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s s1 2 s

w 2w

1, 0
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wk+1 = argmin
w∈R

∑
s

(
Eπ[r + γV̂ (wk , x(s′))]− V̂ (w , x(s))

)2

= argmin
w∈R

(
(2γwk − w)2 + (2γ(1− ϵ)wk − 2w)2) = γ

6− 4ϵ
5

wk .

For w0 = 1, ϵ = 0.1, γ = 0.99, limk→∞ wk =∞; divergence!
The failure owes to the combination of three factors: off-policy updating,
generalisation, bootstrapping.
But these are almost always used together in practice!
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Summary of Theoretical Results⋆

Method Tabular Linear FA Non-linear FA
TD(0) C, O C NK
TD(λ), λ ∈ (0,1) C, O C NK
TD(1) C, O C, “Best” C, Local optimum

Sarsa(0) C, 0 Chattering NK
Sarsa(λ), λ ∈ (0,1) NK Chattering NK
Sarsa(1) NK NK NK

Q-learning(0) C, 0 NK NK

(C: Convergent; O: Optimal; NK: Not known.)

⋆: to the best of your instructor’s knowledge.
Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12 / 14
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Reinforcement Learning
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So Near, Yet So Far
Q*(x, RED)

Q*(x, BLUE)

REDm       x + cRED

x

BLUEm        x + cBLUE

(mRED, cRED,mBLUE, cBLUE) a “good” approximation of Q⋆.

But induces non-optimal actions for x ∈ (A,B).
(m̄RED, c̄RED, m̄BLUE, c̄BLUE) a “bad” approximation of Q⋆.
But induces optimal actions for all x !
Perhaps we found (mRED, cRED,mBLUE, cBLUE) by Q-learning.
How to find (m̄RED, c̄RED, m̄BLUE, c̄BLUE)?

Next class: policy search.
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