CS 747, Autumn 2022: Lecture 18

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2022

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 1/14

Reinforcement Learning

1. Tile coding

2. Issues in control with function approximation

3. The case for policy search

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 2/14

Reinforcement Learning

1. Tile coding

2. Issues in control with function approximation

3. The case for policy search

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 2/14

How Good is Linear Function Approximation?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

How Good is Linear Function Approximation?

Vi(x) = wix + we.

(e)
—_
o+
w

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

How Good is Linear Function Approximation?

— " b — 1 if0<x<1,

—V2 "7 o otherwise.
vT — by — 1 if1<x<2,

— 2700 otherwise.

W, W,

: % 3 b {1 f2x<3,

)10 otherwise.

0 1 % 3

\A/Q(X) = wiby + wobs + Wi bs.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

How Good is Linear Function Approximation?

V5(x): 18 piece-wise constants.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

How Good is Linear Function Approximation?

@ Is V2 the obvious choice?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

How Good is Linear Function Approximation?

0 1 AB 2 3
X

@ Is 3 the obvious choice?
@ V3 has the highest resolution, but does not generalise well.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

How Good is Linear Function Approximation?

0 | AB 2 3
X
@ Is 3 the obvious choice?
@ V3 has the highest resolution, but does not generalise well.
@ How to achieve high resolution along with generalisation?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

Tile coding

__ Tiling 1 0 "y .
- Tﬂ@ng 2 @ Atiling partitions x into _
— Tiling 3 equal-width regions called tiles.
. Tiling4

. Tiling5

. Tiling 6

()
—_—
\S]
w

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/14

Tile coding

>

@ Aftiling partitions x into
equal-width regions called tiles.

@ Multiple tilings (say m) are
created, each with an offset (1/m
tile width) from the previous.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/14

Tile coding

>

@ Aftiling partitions x into
equal-width regions called tiles.

@ Multiple tilings (say m) are
created, each with an offset (1/m
tile width) from the previous.

@ Each tile has an associated
weight.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/14

Tile coding

@ Aftiling partitions x into
equal-width regions called tiles.

@ Multiple tilings (say m) are
created, each with an offset (1/m
tile width) from the previous.

e e — @ Each tile has an associated

weight.

- ; ‘ 5 A @ The function value of a point is

= the sum of the weights of the tiles
intersecting it (one per tiling).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/14

Tile coding

@ Aftiling partitions x into
equal-width regions called tiles.

@ Multiple tilings (say m) are
created, each with an offset (1/m
tile width) from the previous.

S @ Each tile has an associated
—+ weight.
L ' } @ The function value of a point is
0 1 2 3 the sum of the weights of the tiles
intersecting it (one per tiling).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/14

Tile coding

@ Each tile is a binary feature.

@ Tile width and the number of
tilings determine generalisation,
resolution.

— @ Observe that two points more
L than (tile width / number of tilings)
- ‘ apart can be given arbitrary
0 1 2 3 function values.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/14

N

Representing Q

@ Given a feature value x as input, the corresponding set of tilings F : R — R
returns the sum of the weights of the tiles activated by x.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5/14

Representing Q
@ Given a feature value x as input, the corresponding set of tilings F : R — R

returns the sum of the weights of the tiles activated by x.

@ The usual practice is to have a separate set of tilings F; : R — R for each
action a and state feature j € {1,2,...,d}. Hence

d
ZFaf Xj(s
j=1

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5/14

Representing Q

@ Given a feature value x as input, the corresponding set of tilings F : R — R
returns the sum of the weights of the tiles activated by x.

@ The usual practice is to have a separate set of tilings F; : R — R for each
action a and state feature j € {1,2,...,d}. Hence

d
ZFa/ Xj(s
j=1

@ Usually, tile widths and the number of tilings are configured specifically for
each feature. For example, in soccer, could use 2m as tile width for
“distance” features, and 10° as tile width for “angle” features.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5/14

2-d Tile coding

@ For representing more complex functions, can also have tilings on
conjunctions of features (see below for 2 features).

25

@ Introduces more parameters—which could help or hurt.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/14

Tile Coding: Summary

@ Linear function approximation does not restrict us to a representation that is
linear in the given/raw features.

@ Tile coding a standard approach to discretise input features and tune both
resolution and generalisation.

@ Many empirical successes, especially in conjunction with Linear Sarsa(\).

@ Common to store weights in a hash table (collisions don’t seem to hurt
much), whose size is set based on practical constraints.

@ 1-d tilings most common; rarely see conjunction of 3 or more features.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/14

Reinforcement Learning

1. Tile coding

2. Issues in control with function approximation

3. The case for policy search

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 8/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

€0

10680
O ®

w 2w

@ Prediction problem (policy).

@ Episodic, start state is s;.

@ Observe that V™(s1) = V™(s;) = 0.

@ Linear function approximation with single parameter w:
x(s1) = 1,x(s2) = 2; hence V(s1) = w, V(s2) = 2w.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

€0

10680
O ®

w 2w

@ Prediction problem (policy).

@ Episodic, start state is s;.

@ Observe that V™(s1) = V™(s;) = 0.

@ Linear function approximation with single parameter w:
x(s1) = 1,x(s2) = 2; hence V(s1) = w, V(s2) = 2w.

@ What'’s the optimal setting of w?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

€0

10680
O ®

w 2w

@ Prediction problem (policy).

@ Episodic, start state is s;.

@ Observe that V™(s1) = V™(s;) = 0.

@ Linear function approximation with single parameter w:
x(s1) = 1,x(s2) = 2; hence V(s1) = w, V(s2) = 2w.

@ What'’s the optimal setting of w?

@ w = 0 gives the exact answer!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

€0

10680
O O N O

w 2w

@ Prediction problem (policy 7).
@ Episodic, start state is s;.
@ Observe that V™(sy) = V™(s2) = 0.
@ Linear function approximation with single parameter w:
x(s1) = 1,x(s2) = 2; hence V(s;) = w, V(s;) = 2w.
@ What'’s the optimal setting of w?
@ w = 0 gives the exact answer!
@ We design an iteration wop — wy — w» — ..., and see if it converges to 0.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

1-¢0

10@80
@ @0

w 2w

@ From state s, let &/, r be the (random) next state, reward.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

1-¢0

10@80
@ @0

w 2w

@ From state s, let s, r be the (random) next state, reward.
o If our current estimate of V™ is V, the bootstrapping idea suggests
E.[r+~V(s)] as a “better estimate” of V7(s).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

1-¢0

10@80
@ @0

w 2w

@ From state s, let &/, r be the (random) next state, reward.

@ If our current estimate of V7 is V, the bootstrapping idea suggests
E.[r +~V(s)] as a “better estimate” of V7 (s).

@ Starting with w = wy, we update w so it best-fits the bootstrapped estimate in
terms of squared error on the states.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

1-¢0

10@80
@ @0

w 2w

@ From state s, let s', r be the (random) next state, reward.
@ If our current estimate of V™ is V, the bootstrapping idea suggests
E.[r +~V(s)] as a “better estimate” of V7 (s).
@ Starting with w = wy, we update w so it best-fits the bootstrapped estimate in
terms of squared error on the states. For k > 0:
A 2

Wics1 argmin 3 (Eﬁ[r—kv\A/(Wk,x(s’))] ~ (w, x(s))) .

weR

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

1-¢0

10@80
@ @0

w 2w

@ From state s, let s', r be the (random) next state, reward.
@ If our current estimate of V™ is V, the bootstrapping idea suggests
E.[r +~V(s)] as a “better estimate” of V7 (s).
@ Starting with w = wy, we update w so it best-fits the bootstrapped estimate in
terms of squared error on the states. For k > 0:
A 2

Wics1 argmin 3 (Eﬁ[r—kv\A/(Wk,X(s’))] ~ (w, x(s))) .

weR

@ IS limy_yoo Wi = 07

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

1-¢0

10@80
@ @0

w 2w

@ From state s, let s', r be the (random) next state, reward.
@ If our current estimate of V™ is V, the bootstrapping idea suggests
E.[r +~V(s)] as a “better estimate” of V7 (s).
@ Starting with w = wy, we update w so it best-fits the bootstrapped estimate in
terms of squared error on the states. For k > 0:
A 2

Wics1 argmin 3 (Eﬁ[r—kv\A/(Wk,X(s’))] ~ (w, x(s))) .

weR

@ Is limy_oo Wx = 0? Let’s see.
10/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

1-¢0

IOOEO
O O ENO

w 2w

Wk,q = argmin Z (]Eﬁ[r + 7\7(Wk, x(s))] - \7(W, x(s)))2

weR

= argmin ((2ywx — w)* + (2y(1 — e)wi — 2w)?) = 76 — 4
weR 5

Wy.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

1-¢0

IOOEO
O O ENO

w 2w

Wk,q = argmin Z (]Eﬁ[r + ’V\A/(Wk, x(s))] - \7(W, x(s)))2

weR

—4
— argmin (2w —)P + (27(1 —)Wk — 2W)?) =7 5
weR

Wy.

@ Forwp=1,e=0.1,7 =0.99, limk_, ., Wx = oo; divergence!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

1-¢0

IOOSO
O O ENO

w 2w

Wk,q = argmin Z (Eﬂ[r + 7\7(Wk, x(s))] - \7(W, x(s)))2

weR

= argmin ((2ywx — w)* + (2y(1 — e)wi — 2w)?) = 76 — 4
weR 5

Wy.

@ Forwp=1,e=0.1,7 =0.99, limk_, ., Wx = oo; divergence!
@ The failure owes to the combination of three factors: off-policy updating,
generalisation, bootstrapping.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

11/14

A Counterexample (Tsitsiklis and Van Roy, 1996)

1-¢0

IOQEO
O O ENO

w 2w

Wk,q = argmin Z (Eﬂ[r + 7\7(Wk, x(8))] - \7(W, x(s)))2

weR

—4
— argmin (2w —)P + (27(1 —)Wk — 2W)?) =7 5
weR

Wy.

@ Forwp=1,e=0.1,7 =0.99, limk_, ., Wx = oo; divergence!

@ The failure owes to the combination of three factors: off-policy updating,
generalisation, bootstrapping.

@ But these are almost always used together in practice!

11/14

Summary of Theoretical Results*

Method Tabular Linear FA Non-linear FA
TD(0) C, 0 C NK

TD(A), A € (0,1) C, 0 C NK

TD(1) C,0 C, “Best” G, Local optimum
Sarsa(0) C,0 Chattering NK

Sarsa(\), A € (0,1) NK Chattering NK

Sarsa(1) NK NK NK

Q-learning(0) C,0 NK NK

(C: Convergent; O: Optimal; NK: Not known.)

*: to the best of your instructor’s knowledge.

Reinforcement Learning

1. Tile coding

2. Issues in control with function approximation

3. The case for policy search

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/14

So Near, Yet So Far

Q*(x, RED)

mRED x 4 <RED

mBLUEX + CBLUE
Q*(x, BLUE)

X
@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/14

So Near, Yet So Far

Q*(x, RED)

mRED x 4 (RED

3 mBLUEX + CBLUE
‘Q*(x, BLUE)

@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.
But induces non-optimal actions for x € (A, B).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/14

So Near, Yet So Far

Q*(x, RED)

mRED x 4 ¢RED

3 mBLUEy 4 (BLUE
iQ*(x, BLUE)
| . [REDy ,GRED

e mBLUEy 4 GBLUE

X
@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.

But induces non-optimal actions for x € (A, B).

@ (MmREP CREP mPBLUE EBLUE) g “bad” approximation of Q.

But induces optimal actions for all x!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

14/14

So Near, Yet So Far

Q*(x, RED)

mRED x 4 ¢RED

3 I‘IlBLUEX + CBLUE
‘Q*(x, BLUE)
| . [REDy ,GRED

e mBLUEy 4 GBLUE

X
@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.

But induces non-optimal actions for x € (A, B).

@ (MmREP CREP mPBLUE EBLUE) g “bad” approximation of Q.

But induces optimal actions for all x!

@ Perhaps we found (mREP, cREP. mB-UE cBLUE) by Q-learning.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

14/14

So Near, Yet So Far

Q*(x, RED)

mRED x 4 ¢RED

3 mBLUEy 4 (BLUE
iQ*(x, BLUE)
| . [REDy ,GRED

e mBLUEy 4 GBLUE

X
@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.

But induces non-optimal actions for x € (A, B).

@ (MmREP CREP mPBLUE EBLUE) g “bad” approximation of Q.

But induces optimal actions for all x!

@ Perhaps we found (mREP, cREP. mB-UE cBLUE) by Q-learning.

[+] HOW to flnd (mRED’ aRED’ mBLUE, C_;.BLUE)?

14/14

So Near, Yet So Far

Q*(x, RED)

mRED x 4 ¢RED

3 mBLUEy 4 (BLUE
iQ*(x, BLUE)
| . [REDy ,GRED

e mBLUEy 4 GBLUE

X
@ (mREP CcREP mPUE cBLUE) g “good” approximation of Q.
But induces non-optimal actions for x € (A, B).
@ (MmREP CREP mPBLUE EBLUE) g “bad” approximation of Q.
But induces optimal actions for all x!
@ Perhaps we found (mREP, cREP. mB-UE cBLUE) by Q-learning.
@ How to find (m"&° P mP-U5 ¢BUF)? Next class: policy search.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/14

