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Reinforcement Learning

1. Policy search

2. Case study 1: Humanoid robot soccer

3. Case study 2: Railway scheduling
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Black Box Optimisation
An abstract model:

Input w = (w1,w2, . . . ,wd) −→ System −→ Output f (w).

For what input w is output f (w) maximum?

System: chemical manufacturing plant.
w : process parameters (temperature, ratio of chemical mixture, time
duration, pressure, etc.)
f (w): product yield.

System: Your MDP!
w : parameters defining your policy.
f (w): expected long-term reward (as a scalar).

Is finding the optimal w easy? Why is this approach called black box
optimisation?
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Typical Context for Black Box Optimisation
Little/nothing known/assumed about f—can be discontinuous, non-linear,
“erratic”.
Given w , evaluating f (w) is relatively efficient.
Calculating f (w) usually involves a computer simulation.
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How to find a “relatively good” w?
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Some Natural Approaches
Random weight guessing Grid search
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These approaches work for small dimensions d (say d ≤ 5).
No method can be expected to work well for very large d (1000’s or higher).
Local search works for intermediate d (10’s, 100’s).
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Local Search
Illustrative method: Hill Climbing.
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Local Search

Several other local search variants: simulated annealing, ant-colony
optimisation, particle swarm optimisation, evolutionary algorithms, . . . .

No decided winner among these (depends on problem, not much guidance).

All instances of the generate and test paradigm.
− Ignores the structure of f .
+ Highly parallelisable.
+ Allow easy integration of domain knowledge.
Validation/successes primarily empirical; not much theoretical justification.

Called policy search when applied on the RL problem.
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Reinforcement Learning

1. Policy search

2. Case study 1: Humanoid robot soccer
Joint work with Patrick MacAlpine, Yinon Bentor, Daniel Urieli, and Peter
Stone (UT Austin Villa robot soccer team).

3. Case study 2: Railway scheduling
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Gait Optimisation: Policy Parameters
Notation Description

maxStep∗
i Maximum step sizes allowed for x , y , and θ

y∗
shift Side to side shift amount with no side velocity

z∗
torso Height of the torso from the ground

z∗
step Maximum height of the foot from the ground

f∗g
Fraction of a phase that the swing

foot spends on the ground before lifting
fa Fraction that the swing foot spends in the air
f∗s Fraction before the swing foot starts moving
fm Fraction that the swing foot spends moving

ϕ∗
length Duration of a single step
δ∗ Factors of how fast the step sizes change

ysep Separation between the feet
x∗

offset Constant offset between the torso and feet

x∗
factor

Factor of the step size applied to
the forwards position of the torso

err∗norm Maximum COM error before the steps are slowed
err∗max Maximum COM error before all velocity reach 0

Design and Optimization of an Omnidirectional Humanoid Walk: A WinningApproach at the RoboCup 2011 3D Simulation Competition. Patrick
MacAlpine, Samuel Barrett, Daniel Urieli, Victor Vu, and Peter Stone. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI
2012), AAAI Press, 2012.
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Progress of Forward Speed Optimisation

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50

F
it

n
es

s 
/ 

m

generation

#avg=10 pop-size=30

On Optimizing Interdependent Skills: A Case Study in Simulated 3D Humanoid Robot Soccer. Daniel Urieli, Patrick MacAlpine, Shivaram
Kalyanakrishnan, Yinon Bentor, and Peter Stone. In Proceedings of the Tenth International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2011), pp. 769–776, IFAAMAS, 2011.
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RoboCup 2011 3D Simulation Competition
UT Austin Villa combined score: 136–0 (over 24 games).

Rank Team Goal Difference
3 apollo3d 1.45 (0.11)

5-8 boldhearts 2.00 (0.11)
5-8 robocanes 2.40 (0.10)
2 cit3d 3.33 (0.12)

5-8 fcportugal3d 3.75 (0.11)
9-12 magmaoffenburg 4.77 (0.12)
9-12 oxblue 4.83 (0.10)

4 kylinsky 5.52 (0.14)
9-12 dreamwing3d 6.22 (0.13)
5-8 seuredsun 6.79 (0.13)

13-18 karachikoalas 6.79 (0.09)
9-12 beestanbul 7.12 (0.11)

UT Austin Villa 2011: A Champion Agent in the RoboCup 3D Soccer Simulation Competition. Patrick MacAlpine, Daniel Urieli, Samuel Barrett,
Shivaram Kalyanakrishnan, Francisco Barrera, Adrian Lopez-Mobilia, Nicolae Ştiurcă, Victor Vu, and Peter Stone. In Proceedings of the Eleventh
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), pp. 129–136, IFAAMAS, 2012.
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Reinforcement Learning

1. Policy search

2. Case study 1: Humanoid robot soccer

3. Case study 2: Railway scheduling
Joint work with Rohit Prasad, Harshad Khadilkar.
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Railways and the Economy

[1]

Indian Railways, 20000+ trains, 9.1 billion yearly ridership.
Delay incurs economic costs
[1] https://pixabay.com/photos/transportation-system-travel-vehicle-3351330/.
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Railway Rescheduling Problem
Train Station Timetable Timetable Minimum Minimum Scheduled Scheduled Delay

Arrival Departure Halt Run Arrival Departure
Time Time Time Time Time Time

101 Alpha 4:30 4:40 10 30
102 Alpha 4:20 4:40 20 10
601 Echo 9:15 9:16 1 60
401 Delta 3:20 3:35 15 20

Given an initial timetable
compute a feasible timetable
subject to resource allocation and time constraints
minimising

Priority-weighted departure delay

=
∑

Train t, Resource r

Delay of train t at resource r
Priority of train t

.
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Illustration

A hypothetical railway line with 8 trains and 5 stations

Alpha Bravo Charlie Delta Echo

Moving trains
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Illustration

A hypothetical railway line with 8 trains and 5 stations

Alpha Bravo Charlie Delta Echo
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Illustration

A hypothetical railway line with 8 trains and 5 stations

Alpha Bravo Charlie Delta Echo

Deadlock!
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Illustration

A hypothetical railway line with 8 trains and 5 stations

Alpha Bravo Charlie Delta Echo

No Deadlock!
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Our Solution

List of 
train 

events

Set time to
earliest

event time

Sort trains by 
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& priority

Pick next train

Compute decision 
& update event list

Yes No

Yes

No
More 
events 
at this 
time?

Empty 
or 

Time 
out?

Start
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The wrapper layer picks a potential train to move.
We optimise the module that decides MOVE / STOP.
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State Space

Fairly Empty

Nearly Full

Totally Full

Horizon considered for state formation

Current
resource

0 0 0 0112 2 21

Current
train

Priority of 
current train

State vector: 
(1,0,2,0,1,0,1,0,2,2)
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Policy Representation

Move

Stop
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Weights being minimised using CMA-ES

d = 352.
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Benchmark Railway Lines

Scenario Type Stations Trains Events Timetable span
HYP-2 Line 11 60 1320 4 hours
HYP-3 Line 11 120 2640 7 hours
KRCL Line 59 85 5418 3 days
Kanpur Line 27 190 7716 3 days
Ajmer Line 52 444 26258 7 days
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Results
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Summary of Results

Priority-weighted departure delay.

Policy search RL TAH-FP TAH-CF Naive GWP PTD
HYP-2 4.28 (0) 4.78 (0) 4.58 (0) 5.93 (0) 11.16 (2) 4.35 (0) 714.00 (0)
HYP-3 15.50 (0) 18.54 (0) 61.89 (97) 140.14 (95) - (100) 16.35 (0) 2003.98 (0)
KRCL 42.34 (0) 43.04 (0) 46.41 (8) 47.02 (0) - (100) 42.40 (0) 4714.08 (0)
Ajmer 3.92 (0) 4.65 (0) 10.76 (3) 5.99 (0) 9.25 (76) 3.99 (3) 8304.84 (0)
Kanpur 1.54 (0) 1.66 (0) 2.19 (0) 2.28 (0) 1.85 (0) 1.54 (0) 313.60 (0)
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Comparison with RL (Q-learning)
Priority-weighted departure delay.
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Summary
Initial lectures assumed finite state spaces.
Seldom seen in practice!
Need to generalise over states (sometimes actions).
Function approximation has many empirical successes, yet is often
problematic, especially for control.
Quality of features/representation determines the validity of Markovian
assumption.
Policy search ignores Markovian structure—which sometimes works to its
advantage!
Conceptually simple; also has many empirical successes.

Next class: policy gradient methods.
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