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Reinforcement Learning

1. Batch reinforcement learning
▶ Experience replay
▶ Fitted Q iteration

2. Applications
▶ Keepaway soccer
▶ Atari 2600 games
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Batch Updates to Q̂
We are back to value function-based learning (with function approximation).

On-line methods such as Q-learning “extract” very little information from each
transition; are computationally lightweight.
In many applications, samples are more expensive than computation; need
to get more out of samples.
Batch RL keeps transitions in memory, performs more
computationally-intensive updates.

Batch RL outer loop
Q̂ ← 0, D → ∅.
Repeat for ever: //Each iteration is a batch.

π ← ϵ-greedy(Q̂).
Follow π for N episodes; gather data D′ = (si ,ai , ri , si+1)

L
i=1.

D ← D ∪ D′.
Q̂ ← BatchUpdate(D, Q̂).//Q̂ optional in RHS.
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Experience Replay
Reference: Lin (1992).
Assume Q̂ is function-approximated, say by a neural network.

BatchUpdateExperienceReplay(D, Q̂)

Repeat M times:
-Pick (s,a, r , s′) uniformly at random from D.
-Tweak Q̂ so that for input (s,a), the output
“better-matches” target r + γmaxa′∈A Q̂(s′,a′)
(for example by gradient descent).

Return Q̂.

Sometimes Q̂ reset/forgotten before the batch update.
M usually large; hence multiple updates using each sample.
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Fitted Q Iteration
Reference: Ernst, Geurts, Wehenkel (2005).
Idea: obtain Q̂ using supervised learning. Wait—labels?

BatchUpdateFittedQIteration(D)

Q̂0 ← 0.
For i = 0,1, . . . ,H − 1:

For j ∈ {1,2, . . . ,L}: //Create a labeled data set.
xj ← FeatureVector(sj ,aj).
yj ← rj + γmaxa∈A Q̂i(sj+1,a).

Q̂i+1 ← SupervisedLearning((xj , yj)
L
j=1).

Return Q̂H .
Will not diverge if the supervised learning model is an averager (nearest
neighbour methods, decision trees, etc.).
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Reinforcement Learning

1. Batch reinforcement learning
▶ Experience replay
▶ Fitted Q iteration

2. Applications
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Keepaway Task, Learning Architecture

See video: https://www.cs.utexas.edu/~AustinVilla/sim/
keepaway/mp4/InitialResults/learn360.mp4.

Only learn policy of keeper with ball.
States: specified distances, angles between players, play area.
Actions: hold ball; pass to closer teammate; pass to farther teammate.
Reward: Time between state and next state.
No discounting.

Q̂ approximated by (1) tile coding, (2) neural network with 1 hidden layer.
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Comparison: On-line vs. Batch RL
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FQI−NNet

ER−NNet

ER−CMACFQI−CMAC

OL−NNet

OL−CMAC

Batch Reinforcement Learning in a Complex Domain. Shivaram Kalyanakrishnan and Peter Stone, In
Proceedings of the Sixth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2007), pp.650–657, IFAAMAS, 2007.
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Breakout

Human-level control through deep reinforcement learning.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis, Nature, 518:529–533, 2015.

See video: https://www.youtube.com/watch?v=TmPfTpjtdgg.
Observe early, middle, and late stages of training.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9 / 13

https://www.youtube.com/watch?v=TmPfTpjtdgg


9/13

Breakout

Human-level control through deep reinforcement learning.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis, Nature, 518:529–533, 2015.

See video: https://www.youtube.com/watch?v=TmPfTpjtdgg.

Observe early, middle, and late stages of training.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9 / 13

https://www.youtube.com/watch?v=TmPfTpjtdgg


9/13

Breakout

Human-level control through deep reinforcement learning.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis, Nature, 518:529–533, 2015.

See video: https://www.youtube.com/watch?v=TmPfTpjtdgg.
Observe early, middle, and late stages of training.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9 / 13

https://www.youtube.com/watch?v=TmPfTpjtdgg


10/13

Atari 2600 Games: Aggregate Results

From Mnih et al. (2015); for full reference see Slide 9.
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Neural Network-based Representation of Q
Input: 4 most-recent 84× 84 frames. Output: 18 action values.

From Mnih et al. (2015); for full reference see Slide 9.

Tens of thousands of weights! How to train?
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DQN Algorithm
Batch RL, using experience replay.

- A “mini-batch” of (s,a, r , s′) tuples replayed for a few iterations.
- Q network for providing targets not updated after every atomic update, but

still at regular intervals.

Rewards clipped to [−1,1].
No game-specific features or hyperparameter-tuning.

Applied and evaluated on ≈ 50 games.
Code published: many implementations now available.
Results have been improved, new algorithms (such as A3C) have emerged.
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Summary

Batch RL motivated by need to
- conserve samples (by trading off with compute time),
- handle stability issues with function approximation.

Experience replay most simple, common, effective variant.

Fitted Q iteration also popular; enjoys stability guarantee.

Data set D can interpreted as an implicit representation of model.

Next class: Model-based methods (again).
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