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Question 1. In an n-armed bandit, n ≥ 2, each arm yields Bernoulli rewards. Let the arms’ means be
p1, p2, . . . , pn. A designer aims to implement Thompson Sampling on this bandit instance. Interestingly,
based on domain knowledge, the designer knows that each arm’s mean comes from a finite set Q =
{q1, q2, . . . , qm}, m ≥ 2, where qi ∈ (0, 1) for 1 ≤ i ≤ m. The designer knows Q. Of course, the designer
does not know which element of Q is the mean for any given arm.

As an illustration of the setting described, consider that there are n = 3 arms, and that the
designer knows that each arm’s mean must be exactly 0.1, 0.4, 0.6, 0.83, or 0.87. In this case m = 5
and Q = {0.1, 0.4, 0.6, 0.83, 0.87}.

Write down an implementation of Thompson Sampling in which the designer’s belief distribution
for each arm is over Q, rather than over [0, 1], as is most commonly taken. Assume a suitable initial
belief, and write down pseudocode for sampling and updating beliefs that would be consistent with
the principle underlying Thompson Sampling. Use any suitable notation, but describe the relevant
quantities in words. For example, use lines such as “let r denote the reward obtained.”

Note that this question is specifically about Thompson Sampling; you will not receive marks for
adapting other algorithms (such as UCB or ϵ-greedy) to incorporate the knowledge of Q. [4 marks]

Answer. Since we know that each mean comes from the set Q, we maintain a belief over Q for each
arm. Let the set of arms be A. We initialise belief with a uniform distribution w0: For a ∈ A, q ∈ Q,

w0
q,a =

1

|Q|
=

1

m
.

The main question is how the belief of arm a must be updated when it receives a reward. We apply the
principle that “posterior is proportional to prior times likelihood”. The prior belief is already available;
the likelihood that a Bernoulli variable wih mean q generates a 1-reward is q, and that it generates a
0-reward is 1− q. Suppose arm at ∈ A is sampled at time step t ≥ 1, and it receives reward rt. We set
for q ∈ Q,

wt
q,at =

wt−1
q,at · qr

t · (1− q)1−rt∑
q̄∈Qwt−1

q̄,at · q̄r
t · (1− q̄)1−rt

.

Since no data has been made available for arms other than at, we carry over the beliefs for them from
t− 1 to t. For a ∈ A \ {at} and q ∈ Q:

wt
q,a = wt−1

q,a .

What remains to be specified is the sampling strategy, which is the same as in Thompson Sampling: we
sample xt

a from the belief distribution of each arm a ∈ A, and pull an arm for which xt
a is maximum.

Note that xt
a will be an element of Q. In case of ties, we perform arbitrary tiebreaking.

The pseudocode below summarises our implementation.

//Initialise beliefs.
For a ∈ A, q ∈ Q:

w0
q,a ← 1

m
.

For t = 1, 2, 3, . . . :
//Select an arm to pull.
For a ∈ A:

xt
a ∼ wt−1

·,a .
at ← argmaxa∈A xt

a.
//Update beliefs.

wt
q,at ←

wt−1

q,at
·qrt ·(1−q)1−rt∑

q̄∈Q wt−1

q̄,at
·q̄rt ·(1−q̄)1−rt

.

For a ∈ A \ {at}:
wt

q,a ← wt−1
q,a .

2



3



Rough work ↓

4



Question 2. Let M = (S,A, T,R, γ) be a continuing MDP, with notation as usual, and with γ ∈ (0, 1).
Your task is to construct an episodic MDP M ′ = (S ′, A′, T ′, R′, γ′) with the following properties.

1. S ′ = S ∪ {s⊤} (M ′ has the same states as M , and additionally a terminal state s⊤).

2. A′ = A (M ′ has the same actions as M).

3. γ′ = 1 (there is no discounting in M ′).

4. For every s ∈ S and π : S → A,
V π
M(s) = V π

M ′(s),

where the subscript denotes the MDP on which the value is defined.

Since S ′, A′, and γ′ are already given to you, it only remains for you to define T ′ and R′. The
fourth condition essentially conveys that any discounted continuing MDP M can be implemented as
an undiscounted episodic MDP M ′, in the sense that every policy will have the same value on both
MDPs. Note that this means that an optimal policy for M ′ will also be an optimal policy for M , and
vice versa.

You must define T ′ and R′ in terms of the components of M , and also give a proof that the fourth
condition is achieved by your construction. [4 marks]

Answer. We start thinking backwards from the goal we want to achieve: of getting M{′} to have the
same value function as M . An easy way of ensuring this is by getting both M and M ′ to have the
same Bellman equations for each policy. Note that on M , for policy π : S → A and state s ∈ S,

V π
M(s) =

∑
s′∈S

T (s, π(s), s′){R(s, π(s), s′) + γV π
M(s′)}. (1)

• Since M ′ is undiscounted, how do we get “γTV ” on the right hand side? The natural approach
is to set T ′ to be the product of γ and T . That is, we set

T ′(s, a, s′) = γT (s, a, s′)

for s, s′ ∈ S, a ∈ A.

• The operation above does ensure that the elements of T ′ we have set are non-negative, but they
do not sum up to 1. In fact,

∑
s′∈S T

′(s, a, s′) = γ
∑

s′∈S T
′(s, a, s′) = γ. To make T ′ a valid

distribution, we use the terminal state. For s ∈ S, a ∈ A, we set

T ′(s, a, s⊤) = 1− γ.

• Since T ′ is γT , a consequence is that the T ′R product in (1) has now become γTR. However,
since we have control of R′, we can set

R′(s, a, s′) =
R(s, a, s′)

γ

for s, s′ ∈ S, a ∈ A. We also have to set a reward for transitioning to s⊤, which it seems
appropriate to leave as 0: that is, for s ∈ S, a ∈ A,

R′(s, a, s⊤) = 0.
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Taken together, do these definitions of T ′ and R′ satisfy our requirements? First, as we have verified
above, T ′(s, a, ·) is indeed a probability distribution for each s ∈ S, a ∈ A, and also, R′(s, a, s′) is
well-defined for every s, s′ ∈ S, a ∈ A. To verify if policies have the same values under M ′ as they do
under M , we write out the Bellman equations for M ′. For π : S → A and s ∈ S,

V π
M ′(s) =

∑
s′∈S∪{s⊤}

T ′(s, π(s), s′){R′(s, π(s), s′) + γ′V π
M ′(s′)}.

=
∑
s′∈S

T ′(s, π(s), s′){R′(s, π(s), s′) + γ′V π
M ′(s′)}+ T (s, π(s), s⊤){R(s, π(s), s⊤) + γ′V π

M ′(s⊤)}.

=
∑
s′∈S

T ′(s, π(s), s′){R′(s, π(s), s′) + γ′V π
M ′(s′)}+ (1− γ){0 + 1 · 0}.

=
∑
s′∈S

T ′(s, π(s), s′){R′(s, π(s), s′) + γ′V π
M ′(s′)}.

=
∑
s′∈S

T ′(s, π(s), s′){R′(s, π(s), s′) + V π
M ′(s′)}.

=
∑
s′∈S

γT (s, π(s), s′)

{
R(s, π(s), s′)

γ
+ V π

M ′(s′)

}
.

=
∑
s′∈S

T (s, π(s), s′){R(s, π(s), s′) + γV π
M ′(s′)}. (2)

We observe that M ′ and M have an identical set of Bellman equations ((1) and (2)) for each policy
π : S → A. Since the equations have a unique solution, it follows that V π

M = V π
M ′ .
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Question 3. Consider a continuing MDP M = (S,A, T,R, γ), with notation as usual, and with
γ ∈ (0, 1). Let π0 : S → A be an arbitrary policy for M ; denote its value function V π0 by V0. In this
question, we compare the progress made by two different methods for iterating from V0 (or π0) to the
optimal value function (or an optimal policy).

1. The first method is value iteration (VI), which we have covered in class. We use the notation

V0
V I−→ V1 to mean that the vector V1 is obtained by performing a single step of value iteration to

V0. As you are aware, VI is identical to the Bellman optimality operator.

2. The second method is a greedy variant of policy iteration (GPI), in which the policy π1 obtained
from π0 satisfies

π1(s) = argmax
a∈A

Qπ0(s, a)

for s ∈ S, a ∈ A, with ties broken arbitrarily. We denote the above operation as π0
GPI−−→ π1.

Again, as you know, GPI is a particular (greedy) form of policy improvement.

We similarly obtain V2 by applying VI to V1, and we obtain π2 by applying GPI to π1. In summary,

V0
V I−→ V1

V I−→ V2;

π0
GPI−−→ π1

GPI−−→ π2.

Recall that V π0 = V0. Answer the following questions.

3a. Can we conclude that V π1 ⪰ V1? If you claim yes, provide a proof. If you claim no, provide a
counterexample. [2 marks]

3b. Can we conclude that V π2 ⪰ V2? If you claim yes, provide a proof. If you claim no, provide a
counterexample. [2 marks]

For both parts, you are free to use any results we have established in class.

Answer. We claim yes for both parts a and b. For part a, we use the fact that π1 ≻ π0, which must

be true since π0
GPI−−→ π1. We also use Bellman equations and a definition of the Bellman optimality

operator. For s ∈ S,

V π1(s) =
∑
s′∈S

T (s, π1(s), s
′){R(s, π1(s), s

′) + γV π1(s′)}

≥
∑
s′∈S

T (s, π1(s), s
′){R(s, π1(s), s

′) + γV π0(s′)}

= Qπ0(s, π1(s))

= max
a∈A

Qπ0(s, a)

= max
a∈A

∑
s′∈S

T (s, a, s′){R(s, a, s′) + γV0(s
′)}

= V1(s).
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For part b, we proceed similarly, using the fact that π2 ≻ π1. For s ∈ S,

V π2(s) =
∑
s′∈S

T (s, π2(s), s
′){R(s, π2(s), s

′) + γV π2(s′)}

≥
∑
s′∈S

T (s, π2(s), s
′){R(s, π2(s), s

′) + γV π1(s′)}

= Qπ1(s, π2(s))

= max
a∈A

Qπ1(s, a)

= max
a∈A

∑
s′∈S

T (s, a, s′){R(s, a, s′) + γV π1(s′)}.

Now, using the result from part a, we have for s ∈ S:

V π2(s) ≥ max
a∈A

∑
s′∈S

T (s, a, s′){R(s, a, s′) + γV π1(s′)}

≥ max
a∈A

∑
s′∈S

T (s, a, s′){R(s, a, s′) + γV1(s
′)}

= V2(s).

These same inequalities can also be shown on vectors by applying the Bellman operator for different
policies and using the fact that it preserves the ⪰ relation.
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Question 4. The figure below is the state-transition diagram for an episodic MDP that has non-
terminal states s1 and s2, and a terminal state s⊤. When policy π is executed:

• s1 transitions to itself with probability p ∈ (0, 1) and to s2 with probability 1− p;

• s2 transitions to itself with probability q ∈ (0, 1) and to s⊤ with probability 1− q.

Any transition beginning at s1 gets a reward of x ∈ R, while any transition beginning at s2 gets a
reward of y ∈ R. There is no discounting. In the figure below, arrows are annotated with “transition
probability under π, reward”.

s1 s2 s⊤

p, x q, y

(1− p), x (1− q), y

Suppose a single episode is executed on the MDP, with the agent starting at s1.

4a. Let F denote the estimated value of s1 under π from this episode, using the first-visit Monte
Carlo estimation technique. What is E[F ]—that is, the expected value of F? [1 mark]

4b. Let E denote the estimated value of s1 under π from this episode, using the every-visit Monte
Carlo estimation technique. What is E[E]—that is, the expected value of E? [4 marks]

Answer. Any episode started at s1 will see m occurrences of s1, followed by n occurrences of s2, before
termination, where m ≥ 1 and n ≥ 1. The probability of such an “(m,n) episode” is precisely

Pm,n = pm−1(1− p)qn−1(1− q).

On an (m,n) episode, we have

F = mx+ ny, and

E =
1

m
{(mx+ ny) + ((m− 1)x+ ny) + ((m− 2)x+ ny) + · · ·+ (x+ ny)}

=
m+ 1

2
x+ ny.

Notice that to get E, we average the return after every visit to s1—there are m visits. All that
remains is to compute expectations of F and E by considering all possible values of m and n. For part
a, we get

E[F ] =
∞∑

m=1

∞∑
n=1

Pm,n(mx+ ny)

=
∞∑

m=1

∞∑
n=1

pm−1(1− p)qn−1(1− q)(mx+ ny)

= (1− p)(1− q)

{
∞∑

m=1

pm−1(mx)
∞∑
n=1

qn−1 +
∞∑
n=1

qn−1(ny)
∞∑

m=1

pm−1

}
=

x

1− p
+

y

1− q
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For part b, we get

E[E] =
∞∑

m=1

∞∑
n=1

Pm,n

(
m+ 1

2
x+ ny

)
=

∞∑
m=1

∞∑
n=1

Pm,n

(
m
x

2
+ ny

)
+

∞∑
m=1

∞∑
n=1

Pm,n
x

2

The first term is the same expression as E[F ], except with x
2
in place of x. The second term is simply

x
2
since

∑∞
m=1

∑∞
n=1 Pm,n is 1. Thus, we have

E[E] =
x

2

(
1

1− p

)
+

y

1− q
+

x

2
=

x(2− p)

2(1− p)
+

y

1− q
.
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Question 5. This question has six parts: (a) through (f). Answer all parts.

5a. Does Sarsa perform on-policy or off-policy updates? Does Expected Sarsa perform on-policy or
off-policy updates? [1 mark]

Answer. Both Sarsa and Expected Sarsa perform on-policy updates.

5b. State an advantage of on-line reinforcement learning over batch reinforcement learning, and also
an advantage of batch reinforcement learning over on-line reinforcement learning. [1 mark]

Answer. On-line reinforcement learning requires only a constant amount of compute time per
update, and it does not need to store observed transitions. On the other hand, by using memory
to save experience and extracting more out of it through computationally-intensive learning up-
dates, batch reinforcement learning usually requires many fewer samples to reach the same levels
of performance on the task as on-line reinforcement learning. Batch updates also tend to be more
stable for function approximation.

5c. In class we have typically taken that an agent follows a policy that specifies which action to take
from each state. This encoding of behaviour is also called closed-loop control. By contrast, under
open-loop control, an agent can execute a longer sequence of actions without sensing intermediate
states. For example, if at state s at time step t, the agent can decide to execute the sequence
(a1, a2, a3): which means a1 gets executed at s at time step t, then a2 gets executed at time step
t + 1 from whichever state is reached, then a3 gets executed at time step t + 2 from whichever
state gets reached. Thus open-loop control allows for executing a sequence of actions from each
sensed state; closed-loop control is a special case in which the sequences are all of length 1.

What are the potential benefits of open-loop control? Give a real-life example that has some form
of open-loop control. What kind of environments are suitable for open-loop control? [2 marks]

Answer. Sensing state can be expensive in terms of time, energy, and compute. The main
advantage of open-loop control is that the agent can go without sensing state on many time
steps. One practical example of an open-loop control system is an old-fashioned washing machine,
which, when started, will execute a sequence such as soak for 5 minutes, then spin for 12 minutes,
then mix detergent, then spin for 6 minutes, and so on, without necessarily monitoring the state
of the clothes inside. Today’s washing machines integrate more sensing (of temperature, weight
of clothes, and so on) to control these cycles more effectively. Another example of open-loop
control would be me descending a flight of stairs. At the top of the flight, I “mindlessly” step
down, down, down say 5–6 times before pausing to see how many more steps are left to reach the
floor. Here the high-level decision of whether to take a “down” step or a “reach the floor” step is
done open loop; each physical step still takes into account balance signals from the inner ear and
pressure sensations on the feet to contract and relax the body’s muscles.

Open-loop control is as capable as closed loop control on MDPs with deterministic transitions.
Other environments favouring open-loop controls are ones in which state changes gradually: that
is, a good action for the current state is likely to also be good for the states reached within the
next few time steps.
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5d. A designer has implemented Reinforce to get an agent to optimise its behaviour on a certain
episodic task. The task is such that from the starting state, every policy will either reach a goal
state (counting as a “successful” episode) or a bad terminal state (counting as a “failed” episode).
The aim is to maximise the probability of succeeding.

The designer sets up Reinforce to make an update to the policy parameters after each episode.
However, while running it, the designer notices that after the first 10 episodes are completed, no
policy changes have occurred; that is, the policy parameters are still those from initialisation.
The update rule is correct; the learning rate is positive. What is the likely explanation for this
observation? [1 mark]

Answer. The Reinforce update rule is

θt+1 ← θt + α

T∑
t=0

Gt:T∇ lnπ(st, at),

where the notation is as used in class. In the task described above, it is very plausible that the
reward function is such that a non-zero reward is given only if the agent completes a successful
episode. If, in the initial few episodes, the agent never gets a non-zero reward, the Gt:T factors
in the update will all be 0, and hence the weights will not change. Note that even at a local
optimum (as long as the success probability is not 100%), there will be weight changes since we
perform stochastic gradient ascent.

5e. Suppose an agent observes an “expert” who is taking actions in a known environment. The data
collected by the agent is a set of state-action pairs visited by the expert. Of course, this data
may only cover some part of the state space; the agent’s aim is to generalise from this data to a
policy that it can apply from any state.

Inverse reinforcement learning (IRL) is a popular approach for this purpose. In IRL, the agent
asks: “for what reward function is the expert’s behaviour optimal?” In mathematical terms,
say the agent already knows (1) the environment: that is, S,A, T, γ (notation as usual), and (2)
some state-action pairs that are consistent with an “optimal policy” π⋆. The agent first tries to
determine a reward function R such that some π⋆ consistent with the collected data is an optimal
policy for M = (S,A, T,R, γ). Then the agent computes an optimal policy for M . R is usually
represented using function approximation, taking features of states and actions as input.

What do you foresee as the primary mathematical challenge in IRL? Can you think of any
alternative approaches (different from IRL) to generalise from expert-demonstration data to a
full-fledged policy? [2 marks]

Answer. There are an infinite number of reward functions R for which any policy is optimal.
In fact, an extreme example is a reward function that gives the same constant reward for all
transitions—this reward function is optimal for every policy! The main mathematical challenge
in IRL is to suitably define which among this infinite set of reward functions is more appropriate
to consider as the one the expert is optimising.

A more direct way to generalise from the expert’s demonstration is to use supervised learning:
in fact the first stage in AlphaGo was to run supervised learning on expert games to obtain a
good starting policy for subsequent optimisation (using reinforcement learning). Model-learning
(as done by Ng et al.) is not relevant here since the model (T ) is already given.

5f. Name the pioneers of reinforcement learning who were selected for the 2024 ACM A. M. Turing
Award. [1 mark]

Answer. Andrew G. Barto and Richard S. Sutton.
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