CS 747 (Spring 2025) Week 12 Test (Batch 1)

5.35 p.m. — 6.00 p.m., April 17, 2025, LA 001

Name: Roll number:

Note. There are three questions, one on the first page and two on the second page. Provide your
answer to each question in the space given below it. Draw a line (either vertical or horizontal) and do
all your rough work on one side of it.

Question 1. The general idea behind the Dyna-Q architecture is that learning a model in addition to
an action value function can help accelerate learning, since (assuming compute is available) additional
Q-learning updates can be performed using transitions simulated using the model. Consider practical
real-world applications, such as the soccer, helicopter control, finance, and healthcare-related ones we
have discussed in class. Suppose a learning agent for these tasks indeed has sufficient time and resources
for computing. Will Dyna-Q necessarily speed up the agent’s learning? Why or why not? [1 mark]

Answer 1. In most practical tasks, due to the size of the state space, the learned model will have to
use some form of function approximation. Consequently there is almost always some error in predicting
next states. Simulation using an erroneous model could lead to systematic errors in the learned policy—
hence the model could hurt, rather than benefit, performance. This is the main reason model-learning
is not commonly undertaken across all applications of reinforcement learning. Where model-learning
is done (such as the helicopter control work of Ng et al.), designers usually invest a lot of effort into
making the model as accurate as possible.



Question 2. The first step in the helicopter control application of Ng et al. is to record trajectories of
flight when the control is performed by a human pilot. Is the reward function learned from this data?
If yes, provide details; if not, specify how rewards are obtained. [1 mark]

Answer 2. The reward function is defined by the authors. It is not induced from the flight data.

Question 3. Recall from the proof of the regret bound for UCB that the main tool used to prove that
each arm’s upper confidence bound is indeed a high-probability upper bound on the arm’s true mean is
Hoeffding’s inequality. In UCT, an upper confidence bound is similarly defined for the Q-value of each
state-action pair encountered within a fixed number of steps from the current state. Nonetheless, it is
not possible to directly apply Hoeffding’s inequality to argue for the correctness of the upper confidence
bound on each Q-value in UCT (the argument becomes more involved). What is the main difference
between the bandit and MDP settings, which is the cause for this disparity? [1 mark]

Answer 3. When UCB is applied to bandits, an upper confidence bound is constructed on the mean
reward of each arm. The samples used to construct the “empirical mean” component of the upper
confidence bound are i.i.d. samples drawn from the arm’s reward distribution. Hoeffding’s inequality
is used to bound the deviation of the empirical mean from the true mean.

When UCT is applied in MDPs, the upper confidence bound is constructed on the “Q-value” of
each state-action pair visited in the tree. But the Q-value under which policy?! Since the policy used
for each simulation is based on the downstream upper confidence bounds, it can keep changing. For
example, following (s1,a1), the first time a trajectory may go through (sg,as), and the next time it
could go through (sg,az). Since the empirical returns from these trajectories are used for getting the
“empirical mean” component of the upper confidence bound, it becomes the average of samples from
random variables that are not identically distributed. Hence Hoeffding’s inequality cannot be applied
directly, as in bandits. However, in the long-term, the fraction of suboptimal actions taken by UCT
within the tree vanishes, and so most returns come from the same distribution.



CS 747 (Spring 2025) Week 12 Test (Batch 2)

6.15 p.m. — 6.40 p.m., April 17, 2025, LA 001

Name: Roll number:

Note. There are three questions, one on the first page and two on the second page. Provide your
answer to each question in the space given below it. Draw a line (either vertical or horizontal) and do
all your rough work on one side of it.

Question 1. In Experience Replay, each recorded transition is potentially used multiple times to
make Q-learning updates. The information contained in any given transition (suppose it is (s, a,r,s’))
remains the same; the transition itself does not change as learning updates are performed. How, then,
does the update process benefit from making multiple updates using the same transition? [1 mark]

Answer 1. Let )y be the initial Q-table and for ¢ > 1, let ); denote the Q-table after i learning
updates have been made by Experience Replay. Suppose that a particular transition is used in updates
j and k with 1 < 7 < k. Update 7 is

Qj(57 CL) — Qj*l(sﬂ a)(l - Oé) + O‘<T + f}/mﬁx ijl(sla a/))>

while update k is
Qr(s,a) « Qr_1(s,a)(1 — a) + a(r + 7 max Qr_1(s',a")).

Although the transition used is the same, notice that the update is based on bootstrapping. The
J-update is based on ();_;, whereas the subsequent k-update is based on Q;—;. In a rough sense,
@Q; becomes more accurate as i increases. Hence, Qx_1(s,a) is likely to be a better approximation of
Q*(s,a) compared to Q;_1(s,a). In turn, Q(s,a) is likely to be a better approximation of Q*(s,a)
than Q;(s,a).



Question 2. Is supervised learning used in any component of the solution devised by Ng et al. for
helicopter control? If yes, provide details; if not, explain why not. [1 mark]

Answer 2. Yes: the transition model is learned using supervised learning. A data set of (state, action,
next state) tripes is collected in a sequence when the helicopter is flown by a human pilot. Thereafter,
locally-weighted linear regression is used to obtain a model that predicts (stochastically) next state
when given state and action as input.

Question 3. In decision-time planning, what are the main tradeoffs between using an evaluation
function and using rollouts? [1 mark]

Answer 3. The purpose of both evaluation functions and rollouts is to come up with a utility for
any given state. Evaluation functions are computationally cheaper, since they need only a single pass
through a function approximator such as a neural network to obtain the utility. On the other hand,
the utility itself might not be sufficiently accurate/useful. With rollouts, the rollout policy is executed
multiple times from the state, and the average return taken as the utility. While computationally more
expensive, the advantage is that the utility is indeed an estimate (even if noisy) of the value of the
state under the rollout policy.



