
CS 747 (Spring 2025) Week 2 Test (Batch 1)

5.35 p.m. – 6.00 p.m., January 23, 2025, LA 001

Name: Roll number:

Note. There is one question in this test. You can use the space on both pages for your answer. Draw
a line (either vertical or horizontal) and do all your rough work on one side of it.

Question 1. Consider an n-armed bandit instance, n ≥ 2, whose arms yield Bernoulli rewards. The
arms are numbered 0, 1, . . . , n - 1.

An algorithm’s t ≥ 0 interactions with the instance are recorded as an (arm pulled, reward
obtained)-sequence a[0], r[0], a[1], r[1], . . . , a[t - 1], r[t - 1], where a[] and r[] are ar-
rays of size t. Each element of a[] is from {0, 1, . . . , n− 1}, while each element of r[] is from {0, 1}.
Write down pseudocode for a function call to Thompson Sampling that takes n, t, a[], and r[] as
input, and returns the next arm to pull. You can assume access to an inbuilt function R() for random
number generation, but must precisely specify the inputs R() takes, as well as the relationship of its
output to the inputs. [3 marks]

Answer 1.

Initialise successes[] and failures[] as arrays of size n, with all elements set to 0.

For i = 0, 1, . . . , t− 1:
If r[i] is 0:

failures[a[i]] = failures[a[i]] + 1.
Else:

successes[a[i]] = successes[a[i]] + 1.

maxSample = -1; maxIndex = -1;
For a = 0, 1, . . . , n− 1:

x = R(successes[a] + 1, failures[a] + 1).
If x > maxSample:

maxSample = x; maxIndex = a.

Return maxIndex.

We have assumed that a call to R(a, b) returns a sample from a Beta distribution whose parameters
are a and b.

1



2



CS 747 (Spring 2025) Week 2 Test (Batch 2)

6.15 p.m. – 6.40 p.m., January 23, 2025, LA 001

Name: Roll number:

Note. There is one question in this test. You can use the space on both pages for your answer. Draw
a line (either vertical or horizontal) and do all your rough work on one side of it.

Question 1. Below is pseudocode for an algorithm called LCB that resembles the UCB algorithm
presented in class, but has two important differences.

1. Instead of the upper confidence bound, we define a lower confidence bound (LCB) for each arm
by subtracting the “exploration bonus” from the empirical mean.

2. The arm eventually pulled has the smallest LCB (rather than the largest UCB) in the set of arms
A, with ties broken arbitrarily.

//Assume that each arm has been pulled once initially.

//t denotes the number of pulls already performed.

- At time t, for every arm a, define lcbt

a
= p̂t

a
−

√

2 ln(t)
ut
a

, where

p̂t
a
is the empirical mean of rewards from arm a, and

ut

a
the number of times a has been sampled at time t.

- Pull an arm a for which lcbt

a
is minimum; that is, pull arm argmina∈A lcbt

a
.

Consider a 2-armed bandit instance I in which arm 1 yields Bernoulli rewards with mean p1, and
arm 2 yields Bernoulli rewards with mean p2, satisfying p1 > p2. We already know that UCB guarantees
sub-linear (in the horizon) regret on I. Does LCB also guarantee sub-linear regret on I? Answer yes
or no and provide sufficient justification for your answer. [3 marks]

1



Answer 1.
No: LCB will not achieve sub-linear regret. Notice that LCB appears to be symmetric to UCB, and

for similar reasons, will sample each arm infinitely often in the limit. However, it appears by visualising
the progress of the algorithm that as the empirical means converge towards the means, it is arm 2 that
will be pulled more often than arm 1. Hence, LCB is not greedy in the limit.

The intuitive argument above can be formalised as follows with a more precise proof. The arm
pulled by LCB is

argmin
a∈A

lcbt

a
= argmin

a∈A

(

p̂t
a
−

√

2 ln(t)

ut
a

)

= argmax
a∈A

(

1− p̂t
a
+

√

2 ln(t)

ut
a

)

.

The RHS is exactly the arm that would be pulled by UCB if the 0-rewards and 1-rewards in each history
were interchanged (notice that p̂t

a
is the ratio of the number of 1’s to ut

a
, whereas 1− p̂t

a
is the ratio of

the number of 0’s to ut

a
.) It follows that the probability of generating any history ht by running LCB

on our bandit instance I = (p1, p2) will be the same as generating the “complementary history” (with
1’s and 0’s switched) by running UCB under instance Ic = (1 − p1, I − p2). Since UCB is known to
achieve sub-linear regret, its fraction of pulls to arm 2 will approach 1 as the horizon becomes infinite.
This identically means LCB will pull arm 2 all but a vanishing fraction of the time on I—implying it
will achieve linear regret on I.

2


