
CS 747 (Spring 2025) Week 9 Test (Batch 1)

5.35 p.m. – 6.00 p.m., March 20, 2025, LA 001

Name: Roll number:

Note. There is one question in this test. You can use the space on both pages for your answer. Draw
a line (either vertical or horizontal) and do all your rough work on one side of it.

Question 1. Suppose the TD(0) algorithm is being run with learning rate αt ∈ [0, 1] for time steps
t = 0, 1, 2, . . . . The algorithm is run on a continuing MDP M = (S,A, T,R, γ), with notations as usual,
in which discount factor γ ∈ (0, 1). A policy π : S → A is being evaluated. At time step t (that is,
after t updates have been made), let V t(s) denote the value function estimate for state s ∈ S; thus the
initial values are V 0 : S → R. Learning rate αt is used in the update to get V t+1 from V t.

Recall that one of the conditions required on the learning rate sequence (αt)
∞

t=0 for V t to converge
to V π as t → ∞ is that

∑
∞

t=0
αt = ∞. Call this the unbounded-sum condition. On the other hand,

suppose that the learning rate sequence we are using is such that its sum is upper-bounded by a
constant. In other words, our sequence satisfies

∞∑

t=0

αt < c

for some positive constant c.
Show that there exist M , π, and V 0 such that V t

does not converge to V π as t → ∞. Your
demonstration will serve as a proof that the unbounded-sum condition is necessary in general for
TD(0) to converge to the true value function. You are encouraged to think of a “simple” choice of
MDP M for this proof; to focus on the relationship between V t+1 and V t, which will depend on αt;
and to examine resulting constraints on the sequence of value estimates. [3 marks]
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Answer 1.
Consider an MDP with a single state s, a single action a, and discount factor γ ∈ (0, 1) that we

will specify later. The MDP is shown in the figure below—the sole transition has transition probability
and reward both as 1.

s

1, 1

Clearly the value of state s is V (s)
def

= 1

1−γ
. Suppose our sequence of estimates of the value of s is

V 0, V 1, V 2, . . . . We set our initial estimate to be V 0 = 0. For t = 0, 1, 2, . . . , the TD(0) update rule
yields

V t+1 = V t(1− αt) + αt(1 + γV t) = V t + αt − V t(1− γ)αt.

We shall prove by induction that for t = 0, 1, 2, . . . , (1) V t+1 ≥ 0 and (2) V t+1 ≤ V t + αt. The
base case of t = 0 is easily verified, since V 1 = α0. If the hypothesis is true for t, it must follow for
t + 1 since (1) V t+1 is the sum of V t(1− (1− γ)αt) and αt, which are both non-negative, and (2) the
quantity 1− (1− γ)αt lies in (0, 1), and hence V t+1 ≤ V t(1) + αt.

It follows from the proof above that for t = 0, 1, 2, . . . ,

V t+1
≤

t∑

i=0

αi ≤

∞∑

i=0

αi < c.

On the other hand, if γ > 1− 1

c
, then the true value

V (s) =
1

1− γ
> c.

We have shown that the sequence V 0, V 1, V 2, . . . cannot converge to V (s).
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CS 747 (Spring 2025) Week 9 Test (Batch 2)

6.15 p.m. – 6.40 p.m., March 20, 2025, LA 001

Name: Roll number:

Note. There is one question in this test. You can use the space on both pages for your answer. Draw
a line (either vertical or horizontal) and do all your rough work on one side of it.

Question 1. An MDP has a single non-terminal state s and a terminal state s⊤. Starting from s and
following some fixed policy π, the probability of staying in s is p, while the probability of terminating
is 1 − p, for some p ∈ (0, 1). The reward for transitioning from s to s is 1, while that for terminating
is 0. Transitions in the MDP, under this fixed policy π, are shown below; arrows are annotated with
“transition probability, reward”. There is no discounting.

s s⊤

p, 1

1− p, 0

Suppose we use the TD(0) algorithm to estimate the value of s under π, starting with an initial
estimate V 0 = 0. Also suppose that each learning update is performed with a constant learning rate
α ∈ [0, 1]. A single episode is executed, starting from s and following π, until s⊤ is reached. A learning
update using the TD(0) rule is performed after each transition. Let V denote the value estimate for s
obtained at the end of the episode. Naturally V is a random variable, obtained after 1 or more time
steps (the length of the episode). Calculate E[V ]—that is, the expectation of V . Comment on its
dependence on α (if any). [3 marks]
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Answer 1.
V is determined by the number of transitions in the episode, which is itself a random variable.

Suppose an episode ends after m transitions from s to s, and then a final transition to s⊤, for some
m ≥ 0. The probability of such an episode is pm(1− p). On such an episode, we have

V 0 = 0;

V 1 = V 0(1− α) + α(1 + V 0) = V 0 + α = α.

V 2 = V 1(1− α) + α(1 + V 1) = V 1 + α = 2α.

...

V m = V m−1(1− α) + α(1 + V m−1) = V m−1 + α = mα.

V = V m(1− α) + α(0) = V m(1− α) = mα(1− α).

Having characterised the probability distribution over V , we obtain its expectation:

E[V ] =
∞∑

m=0

P{The episode has m transitions from s to s} ×mα(1− α)

=
∞∑

m=0

pm(1− p)mα(1− α)

=
pα(1− α)

1− p
.

We observe that E[V ] does depend on α, and V is a biased estimator for all values of α ∈ [0, 1], since
V π(s) = p

1−p
.
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